INTRODUCTION TO DATA SCIENCE

This lecture is based on course by E. Fox and C. Guestrin, Univ of Washington

WFAiS UJ, Informatyka Stosowana I stopień studiów

Visual product recomender

I want to buy new shoes, but...

Too many options online...

Visual product recomender

Text search doesn't help...

Visual product recomender

Retrieving similar images

Features are key to machine learning

Goal: revisit classifiers, but using more complex, non-linear features

Features are key to machine learning

Neural networks

Learning *very* non-linear features

Recall: Linear classifiers

Score(x) = $w_0 + w_1 x[1] + w_2 x[2] + ... + w_d x[d]$

Graph representation of classifier: useful for defining neural networks

Perceptron as a neural network

This is one **neuron**:

- Input edges $\mathbf{x}[1],...,\mathbf{x}[d]$, along with intercept $\mathbf{x}[0]=1$
- Sum passed through an activation function g

What can a linear classifier represent?

Perceptron, linear classification, Boolean fns: $x[j] \in \{0,1\}$

- Can learn x[1] OR x[2]?
 - -0.5 + x[1] + x[2]
- Can learn x[1] AND x[2]?

$$-1.5 + x[1] + x[2]$$

$$-0.5 + \mathbf{x}[1] + ... + \mathbf{x}[d]$$

$$-(-d+0.5) + x[1] + ... + x[d]$$

- Can learn majority?
 - -(-0.5*d) + x[1] + ... + x[d]
- What are we missing? The dreaded XOR!, etc.

 $\sum_{j=0}^{n} w_j \mathbf{x}[j] \qquad g = \begin{cases} 1 & \text{if } \sum_{j=0}^{d} w_j \mathbf{x}[j] > 0 \\ 0 & \text{otherwise} \end{cases}$

What can't a simple linear classifier represent?

Composing individual neurons

Solving the XOR problem: Going beyond linear classification by adding a layer

Solving the XOR problem: Going beyond linear classification by adding a layer

 $y = x[1] XOR x[2] = (x[1] AND \neg x[2]) OR (x[2] AND \neg x[1])$

Neural net with hiden layer

Example data for neural net with hidden layer

A target function:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned??

Neural net with hiden layer

A network:

Learned weights for hidden layer

Learned hidden layer representation:

	Input	Hidden	\mathbf{Output}
(100	10000000	→ .89 .04 .08 -	→ 10000000
using diff g!	01000000	\rightarrow .01 .11 .88 $-$	→ 01000000
	00100000	\rightarrow .01 .97 .27 -	→ 00100000
	00010000	\rightarrow .99 .97 .71 -	→ 00010000
	00001000	\rightarrow .03 .05 .02 $-$	→ 00001000
	00000100	\rightarrow .22 .99 .99 -	→ 00000100
	00000010	\rightarrow .80 .01 .98 $-$	→ 00000010
	00000001	\rightarrow .60 .94 .01 $-$	→ 00000001

Neural net with hiden layer

Nice overview: http://neuralnetworksanddeeplearning.com/chap4.html

So far focused on thresholding activation

Not actually used in practice!

Can't compute gradients

(will come back to this)

So far focused on thresholding activation

Not actually used in practice!

Can't compute gradients

(will come back to this)

Sigmoid neuron

Just change g!

- Notice the output range [0,1]. What was it before? O or
- Look familiar? logistic regression
- Why would we want to do this? differentiable!

Some choices of activation function

- Sigmoid
 - Historically popular, but (mostly) fallen out of favor
 - Neuron's activation saturates (weights get very large

 gradients get small)
 - Not zero-centered > other issues in the gradient steps
 - When put on the output layer, called "softmax" because interpreted as class probability (soft assignment)
- Hyperbolic tangent g(x) = tanh(x)
 - Saturates like sigmoid unit, but zero-centered
- Rectified linear unit (ReLU) $g(x) = x^+ = max(0,x)$
 - Most popular choice these days
 - Fragile during training and neurons can "die off"...
 be careful about learning rates
 - "Noisy" or "leaky" variants
- Softplus g(x) = log(1+exp(x))
 - Smooth approximation to rectifier activation

A general neural network

Layers and layers and layers of linear models and non-linear

transformations

- Around for about 50 years
 - Fell in "disfavor" in 90s
- In last few years, big resurgence
 - Impressive accuracy on several benchmark problems
 - Powered by huge datasets, GPUs, & modeling/learning alg improvements

Overfitting in NNs

Are NNs likely to overfit?

Yes, they can represent arbitrary functions!!!

Avoiding overfitting?

- More training data
- Fewer hidden nodes / better topology
 - Rule of thumb: 3-layer NNs outperform 2-layer NNs, but going deeper rarely helps (different story for convolutional networks!)
- Regularization
- Early stopping

50

Application to computer vision

Image features

Features = local detectors

- Combined to make prediction
- (in reality, features are more low-level)

Typical local detectors look for locally "interesting points" in image

Image features: collections of locally interesting points

- Combined to build classifiers

Many hand created features exist for finding interest points...

... but very painful to design

Standard image classification approach

11/12/2024