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Standard measurement in HEP

 Roadmap
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Alternative measurement roadmap

* Unfolding

Detector reconstruction
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Alternative measurement roadmap

* Unfolding

Gy [fb]

Physics mode

8

Ratio to default pred.

10°

10?

10

I |
_ ATLAS Preliminary
—4— Data, tot. unc. 2
H—yy, \s=13 TeV, 139 fb”
anti kK, R = 0.4, p.>30 GeV

syst. unc.

I Illllll
B-EQW

= lllllll]

ul
Illl

| |
gg—H default MC + XH [l Powheg NNLOPS + XH

N’LO + XH

NLO+JVE + XH
STWZ, BLPTW + XH

NNLOJET + XH

GoSam+Sherpa + XH

& Sherpa (vepsanLo) + XH
¥ MG5 aMC@NLO + XH
“  XH = VBF+VH+ttH+bbH

Ll lllll

1

- llllll

LS R




Roadmap comparison

Detector reconstruction
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Detector interaction

Detector simulation
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Roadmap comparison

Want to check how well the prediction matches the measurements?

=» Standard roadmap!
¢ Hypothesis testing

So whylwhen do you want to use unfolding?
= Multiple predictions differ within the uncertainties
= Ready for future reinterpretations and combinations with other experiments

= Learn about physics model
¢ Notonly likelihood, but physics quantities



Unfolding

 Unfolding: estimate truth * Integral equation of 1% kind
distribution from measurement, fk %, 9)F () v 40 (x)=g(x]
distorted by
given observatlons g x)
- detector effects the kernel k(x, )
- statistical fluctuations and fluctuations (x|
« truth distribution: cross estimate the truth £y |

sections or similar quantities * K(x,y): detector effects,

» Unfolding is also referred toas ~ Packground, etc
“correction for detector effects”™ « g(x) has uncertainties

* K(X,y) has syst. uncertainties
— not covered in this talk



Migrations and stat. fluctuations

Histogram of observed event counts is affected by statistical fluctuations
(vertical axis) and detector effects (horizontal axis)

2001 *} { Unfolding: correct for
€0k | migration effects in the
g g +HI * g $ satisical  PreSENCe of statistical
g100 _}++ ++ A + fauctuations TUctuations
B ¥# ;j ,/ _ . Result: estimator of the

L ey B “truth” and its

PRI ' PRI . :
100 0 100 migrations due to
observable detector effects

covariance matrix
(statistical uncertainties)



Unfolding of binned measurement

* unfolding of binned o Statistical fluctuations: the
(discrete) distributions, where bin- observations y are drawn from a
to-bin migrations are described by Poisson distriblution
a matrix equation

.uz:z A;x 4D, Plyu)=
L, : expected measurement in bin 7 given the truth x

4, : probability of truth bin j to reconstructinbini o Large sample limit: Gaussian

¥ truth in'bin distributions
b. : background 1n bin 7

Y
e !,lf

/
J” f .

* Correlated bins: multivariate
Gaussians

) IMCreco,MCh'uth

1 — L .
A = T 1 calculated from MC

]




Unfolding of binned measurement

* unfolding of binned o Statistical fluctuations: the
(discrete) distributions, where bin- observations y are drawn from a

to-bin migrations are described by Poisson distribution
a matrix eqqation

(truth+background) x detector x stat.fluctuations — measurement

Result: estimator of truth «unfolding algorithm « measurement
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Example of unfolding problem

arXiv:1611.01927

* Toy example to illustrate basic « Two samples of toy events

properties of unfolding algorithms - “data” P_ distribution following

» Decay of a heavy particle into two Landau(6,1.8)

light particles - “MC’ P_distribution following

 Light particles smeared by spatial Landau(5,2)

and energy resolution + Background mainly at high P_

» Trigger threshold causes 2 00— uth __Reconstructed
. . - 0 —McC % 4
reconstruction inefficiency § [ mesa o Sggop | —wewa |
:g 300t Landau(6,1.8) E% E [ Dbackgmund é
: : Q L o Q 3 o
» Background important at high P_ § 200, § g0 5
« Variable bin size, overflow bin 1005 oo} i
S S oy i =
. . . 0 -
 Goal: reconstruct P_ distribution 0 yreen i 40 ° e, ¥

T 5o P; V. Prlrec)
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Example of unfolding problem

arXiv:1611.01927

» Significant migrations at low P_

* Toy example to illustrate basic
properties of unfolding algorithms

+ Decay of a heavy particle into two ~ * ©hange of bin size leads to

light particles change in bin purity
+ Light particles smeared by spatial ~ * Efficiency >95%, not important for
and energy resolution this study
migration probabilities efficiency
 Trigger threshold causes 3 v ‘i_f——
reconstruction inefficiency = O35 _ ecansructon
- 0 0_9;— efficiency
» Background important at high P_ o 085} .
: :
» Variable bin size, overflow bin 5 ;
01~ "20 40

« Goal: reconstruct PT distribution
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How to test unfolding results?

» Tests with real data  Test with Monte Carlo

- Look at (global) correlation - Trivial test: response matrix and
coefficients MC using the same truth

- Trivial test: fold back unfolding - Non-trivial test: use different truth
result and compare to data for response matrix and

unfolding result: x;.“]f unfold alternative MC (here: "data"): x}mf

fold back and compare to data: compare to alternattve MC truth:

y=2, Apx+h, - | Quantitative | —» S
comparison: x?

... plus many other things
not discussed here, e.g.

Look at average global correlation coefficients _ ,
eigenvalue analysis

Compare folded result with data
Compare result to “data” truth
Extract “data” truth parameters using a fit

13



Unfolding methods

* Bin-by-bin correction factors
» Matrix inversion
« Template fit
 Tikhonov regularisation: [Tikhonov 1963]
implementation: e.g. RUN [Blobel 1984], TUnfold [S.S. 2012]

* [terative method: [Shepp/Vardi 1982, Multhel/Schorr 1986, D'Agostini
1999]

* |DS method: [Malaescu 2011]

14



Bin-by-bin correction factors

Very simple method: s eensind
Vga\ Correction O 300 ) backgpourd :
4Ys = i —o— dataN_=4584 ]
x}_:( V= b ] erec il factor % 200 - — folded N_ =4521 E
\& / > - ¥?=34.7 ndf=0
y. : observed in bin 100 a
b : expected backround 1n bin T == '
' ‘ N."EC’ dam, A xr.m 1f )
N MC truth in bin 7 ;oY A, Pire)
- Coq Truth
N™=) 4 N*:MCreconstructedinbin i 3  40F ——=me
i U 8 . _g_m?w_b_ P
z a0 LI :
i« : ” 2 - == :
Results “looks nice” ———————2 =t i&J °
No statistical bin-to-bin correlations 100 b e
but N
Method is wrong, fails very basic tests O e i o 40 -
I J J T
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Simple ,,Bin-by-bin”: why is it wrong?

» Migrations are additive,
while BBB correction is
multiplicative — wrong
type of correction

_data
BBB __ _gen Vi
i —A I
jrec
Vi

* |t should be:

xBBBSUB_ _gen Vi i i

scale evel

bin=-by=bin:

rything '
=

aled! |
i

o
o
< rec&gen
1=
o
g
g

data ( e rec&gen )

i i rec&gen
,
1

-y (1-p))

Lgen y.f

o V=P

S i

MCirec)

MC events generated and
reconstructed in bin i

MC events generated in a
neighbour bin i-1 or i+1

MC events generated in a
non-neighbour bin

MC events generated outside

analysis phase-space or other

background

Relevant quantity: purity

p— Vi

recdgen

rec

Vi
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Matrix methods

» All matrix methods are based on the matrix of probabilities:

. . . trutl
Expected number of events in bin 7: =2 A, x""

« The Aij are calculated from Monte Carlo
rec.gen
. }/’g ) . . .
A.= and the reconstruction efficiencies are € .= Z A.
if gen J iU
;

. Aij Is normalized to the generated number of events in bin j,

so it is (largely) model independent, only depends on the
detector response.
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Matrix inversion

Truth | Good x*:

* |fthe number of bins is equal on gen 5 —we o bias
. . L —— data
and rec level: A is a square matrix [ ~- Inversin 5
500 '_ :(2#1%'{'.8 prob=0.701 £
— Invert it I ; g
- S Unfolded resuilt - iH:%
foldmg equation: y=4r+5 | ¢ hipjts bin-to-bin [g ————
. oscillations t . -
mvert matrix: x=A4" (y—b] 0 20 40
I::'T
Covarance: VH: A_l VJ_T(A_I)T = correlation coefficients - Reconstructed
| ' ) & — NC total :
: . t er )g G, g 300F []background o
correlation coefficients: p,=—= = = o dataN, 454 |3
y [ VHJ:-‘.-[_ Vﬂ)ﬂ- % %200 _f:|MNm=4534 g
- ¥°=0.0 nddf=0
¥y : measurements o z
V', : covariance matrix of measurements 100

b background

A4 : matrix Gfﬂllgrﬂtl{}ﬂs arge bin-to-oin

correlations P (gen) [GeV]

Folded-back |40
result is on Py(rec)
the data
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Cause of large fluctuations

« Matrix inversion: creates large negative off-diagonals
— statistical fluctuations of the data are amplified
» Possible improvements

- Avoid matrix inversion “Bayesian” or “Iterative”
- Use more reconstructed bins — TFractionFitter, TUnfold

- Regularisation: e . g mereot
TSVDUnfold, TUnfold 22 z:

0.2 L

0.4 015 0.4F

0.2 ! 0.2
0.05

0

0 0.2 04 0.6 08 1

0 02 04 06 08 1

rgen rrec
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Template fit

Truth
« Choose larger number of reconstructed : —
bins than truth bins — least-square fit 600 i <
C test wrt data: =
_ _ ] - 1%/16=0.8 prob=0,688 S
+ |dea: use more information — obtain 4001 _1'_ g
better result? 200 i3 ﬂ |
2 T -1 0F T 2 5 .
=y —b—Ax) Vﬂ)()-’—b—Ax] 4 S
y : measurements 0 20 40
V., covariance matrix of measurements Pr
Reconstructed
b : background
A4 : matrix of migrations | B bectoruund
A : MC template for truth bin j + data N, 4584
g — folded Nm=4572
#2=12.0 ndi=16

(4Tl g1 T g
x=(4 Vﬂ,A) A4V (y-b)

covariance of x : V_=(4 ! V;l A"

20 40
P(rec)
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Template fit

Truth
 Choose larger number of reconstructed i — e
bins than truth bins — least-square fit 600 i ;
- test wrt data: 2
. . . [ 1%/16=0.8 prob=0.676 S
* |dea: use more information — obtain 4001 H <IN
better result 200f ;’;I:Q;
— Result does not improve much over 0F ——
matrix inversion in this example 5 s
New problem: normalisation is not o 2% more (finer) bins for
preserved [Ndata=4534, Nf0|d=4572] correfation WE""E"'51 . reconstructed quantities

— MC total
|_|background

- data N _=4584
—folded N_ -4584

72=12.0 ndi=16

Well-known problem with least-square
fits to Poisson-distributed data if sqrt(N)
uncertainties are used

P;(gen) [GeV]

Can be improved by adding a constraint

to the fit TR 0 0 40

P (rec) [GeV] P;(rec)
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Template fit with area constraint

« Template with with constraint on the

total number of events

Basic idea: preserve normalisation
for the folded-back result by adding
the constraint

Z (J”:‘_b:‘):ZU A:jx;'

Technical implementation: see
TUnfold documentation

— Result does not change much
over unconstrained template fit, but
normalisation is recovered

IN =N _=4584]

data fold

400

P;(gen) [GeV]

600

200

test wrt data:
1416208 prob=0.676

Owerflow bin

-

T

i 5

20 40
P(rec) [GeV]

40

Reconstructed

— MC total

[ background

- dataN_ =4584
__folded N. w=4534

¥*=12.0 ndf=16

20 40
P{rec)
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Tikhonov regularisation

Basic idea: add terms to the
likelihood which damp
osclillations In the result.

=y =b=dx)" V(y—b-Ax)
+IE(£(x—xB))T£[: X=X,
y : measurements
V,, - covariance matrix of measurements

b : background

A : matrix of migrations

X : regularisation bias

L : regularisation conditions
T : regularisation strength

Regularisation bias x : set to
zero or to MC truth

Regularisation conditions L: set
to unity matrix [or mimic second
derivatives, “curvature’]

Regularisation strength t:
‘small” number

1<l1/lo

where o~uncertainty after
unfolding

23



Tikhonov regularisation (eg. TUnfold)

Truth
400 F —MC
C —— data
- —a— Tikhonov 1=0.0068
300 test wrt data:

¥*16=17 prob=0,032

an;

znf—

1DE—

ok
4|

» Basic idea: add terms to the
likelihood which damp

Overflow bin

200 [~

oscillations in the result. 100
0 — [——
I I I - + I ; 1
. Th|§ IS _W0rk|ng well: no : - .
oscillations, moderate P,
Correla‘hons and un Certa|nt|es correlation coefficients Reconstructed
. : — NIC total
Basic tests look reasonable Dseckgrond
_foldad.l:;mﬂm

¥2=13.4 ndi=16

« Question: objective to choose 1

0 20 40 ' 0 20 40
P (rec) GeV] P.(rec)
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Choice of the regularisation parameter

 Eigenvalue analysis (SVD)

— not discussed

 Scan of parameter t

- L-curve scan
- Scan of global correlation coefficients

+ Other data driven methods (e.g. compare stat and syst errors,
define convergence criteria) — not discussed

25



L-curve scan

* Algorithm is often used in
medical image processing

for each T repeat the unfolding:
vi=(y—b—dx) V; (y—b—4x)
+0(L(x—x, :]':]TL['x—th]
=L +1° L
study parametric plot of: 'log L vslogl,

» Parametric plot is “L-shaped”

— Kink (largest curvature)
defines t

For a review, see: [P. C. Hansen
20001

I-:}g10 L,

L curve

x"“m
12 14 16
Iong,

Small Lx: result
- Compatible with

L-shaped

Small Ly result
compatible
ST with bias (MC)

26



Scan of global correlation coeff.

* Global correlation coefficient (bin 1)

e —
V)

xx i

V' result's covariance matrix

. Take average of all p. and study

dependence on T — choose point
with smallest avg(p)

(idea by V. Blobel/DESY)

» Comparison to L-curve scan:
stronger regulatisation, more bias,
smaller uncertainties & correlations

Maximum L-curve

curvature \Q,

o 8
3 Il[\
S 6f /o
=3 L |I \
3] [ [
g 4r [
3 . '
- 2r /
OF -
3 25 -2
log. (1
Truth
> 400F _ —mc
@ —data
O . - Tikhonov t=0.0068 |=
= 300} test wrt data: s
5 : 7216=1.7 prob=0.032 %
% 200}, g
Z i
100k
of . ™
0 20 40
P

Minimum average
global correlation
1

E_ T IIl
9 o8f |
@ i
w \
@0.75} |
|
|
|
0.7¢ "l
n |
0651 . \'/
35 3 25 -2
log, (1
Truth
> 400 —MC
Q —data
] = Tikhonov 1=0.012

test wrt data:
72116=6.3 prab=0.000

re

Overflow bin

a0r

inr

AT
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Iterative method

Ratio data to folded

| /_T iterate until ~1
AL = Y - + Mathematical properties (Shepp/Vardi
oo j'\ZHf@) 1982 and Multhei/Schorr 1987)
efficiency: Ej:ZfA:j o - Ultimately converges to a maximum of

the (Poisson) Likelihood

, )
start values: x;  [e.g. MC truth] — like matrix inversion but with all x=0

terate until N 1s sufficiently large .
’ - Convergence is very slow

+ Original works by Shepp/Vardi 1982, ~ * UseinHEP:
Kondor 1983, Mlthei/Schorr 1987 - Stop after N iterations — result il

+ Re-invented by D'Agostini 1995 as be “smooth” [regularized] but is
“Iterative Bayesian unfolding” biased to the start value

Note: efficiency is absorbed in a redefinition of A, x Regularlsatlon Strength:
in the original works: x'=ex and A'=A/e Tikhonov: T < lterative: N
' O iter

28



Iterative method with background

"Hl ‘» -I-1

ZEZJH

zkk 1'

My 2 9
Z e
efficiency: € Z 4 OR efficiency: E—Z 4

start values: x [e g. MC truth] start values: x | U Te.g. MC fruth]

» Background could be subtracted from the data

» Or: background could be added to the folded MC in the denominator. This
guarantees the desired property x20

»  D'Agostini suggests to include the background normalisation as extra binx . This

also guarantees x20 but results in an extra parameter — make sure to then include a
background control bin in the set of measurement bins

29



Evaluation of the covariance matrix

« Matrix inversion methods (with or
without Tikhonov regularisation):
covariance matrix is calculated
analytically

¢ [terative methods: non-linear,
covariance matrix calculation in
general has to be done by other
means

* Replica method

- Apply statistical fluctuations on
the data histogram

— N replicas of the data

- Repeat the unfolding for each
replica

- Covariance is estimated from
RMS of the results

» Bootstrap method:
similar idea, but based on events

— test complete analysis chain

30



Iterative method: O iteration

Truth
400 F —we
L — data
B —l—ileralivel'l:ﬂv -E
N #)_ Z 300 ] 2163168 prob=0.00 8
S g
o Z 4 200 | °
T E = / 100::
efficiency: €, Z,-Ag = N
start values xg._” set to MC truth % 0 40
I:,T
» 0" iteration: “Bayesian unfolding” correlation coefficients Reconstructed
. =
from 1995 D'Agostini paper > s 0 LY e |,
O, 8 ..HSGD_ [|background |2
y C = 40 4 g +data N_ 24564 é
« Result “looks nice”, very small S . 6 — tolded N_=4537 |5
L : o 2200 5 8
uncertianties, but fails all tests < ', Z #2808 ndi=0
— the method has to be iterated All correlation

coefficients are |
positive — this 20 40

s “smearing’, P;(rec)
not “unfolding”
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Iterative method: 15t iteration

Truth
400F — W
L —— data
N —=— jterative I'«I:'IJ' =
N+l Z 300 - ;ﬁﬁgfﬁThmmm E
€ i 5
Z th k +b 200 -
» Convergence rate is expected to 100 =
grow quadratically with the number 00'— = = ]
of bins [Multhei/Schorr 1987] P,

correlation coefficients Reconstructed
4

« Look at 1% iteration

— MC total

- Neighboring bins have positive nansisos |2
correlation (expect: negative) —ioed N 9T 1 8

42=80.6 ndf=0

- Shape not described

- Folded-back different from data 0 _
0 20 40 0 20 40

— have to iterate further P(rec) [GeV] P(rec)
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Iterative method: 10th iteration

Truth
e
300 7 e data; s
N H)_ Z = xne;:gimb:u.m F;
DN 4;kxk +h 200-{ | 3 :
« Convergence rate is expected to 100 =
grow quadratically with the number = . . .
of bins [Milthei/Schorr 1987] : N N

Reconstructed

 Look at 10" iteration

E — MC total c
- Similar to Tikhonov with strong = Do s |3
. . c -+ avi™ é
regularisation 5 o NS

n-l—

¥%=8.2 ndf=0

0 20 40 ' 0 20 40
P (rec) [GeV] P(rec)
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Iterative method: 100t" iteration

Truth
- :Iu.‘l(:a
400 - . idl::aﬁwe N=100 g
B tgstwﬂdata: g
N +1 Z 300 1116z prob=0.369 : g
g Z 4,24, : AT 7|
o 200 - - %%=
« Convergence rate is expected to 100 = LI
grow quadratically with the number 00;—= T -
of bins [Multhei/Schorr 1987] P,
+ Look at 100" iteration < , - Reconstructed
g 8300_ — NC total .
- Similar to Tikhonov with weak = > . s é
regularisation 5 S200f]] T et
n-l- Z f:#.zndf:ﬂ
100
0 1 ﬁ
0 20 40 0 20 40
P(rec) GeV] P.(rec)
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Iterative method: 1000t iteration

Truth

— MC

— data

—s— jterative N=1000
test wrt data:

N +1 400 - 1%116=1,4 prob=0.128
B E

Overflow bin

ZEZJM%

« Convergence rate is expected to
grow quadratically with the number o=

200

. . . 0 | | | | | )
of bins [Multhei/Schorr 1987] P,
. LO Ok at 1000th iterati on correlation coefficients Reconstructed
E — MC total <
- Similar to matrix inversion, but = 40 i s ;
all guaranteed to be x20 5 Nt S
u-|- ¥°=3.9 ndi=
- Objective to choose number of %
iterations? Scan of correlation? ™

20 40 ' 0 20 40
P (rec)[GeV] P(rec)
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Comparison y* vs. Data truth

 Test x? of unfolded results against L : i ersion
{ n () i 'f
data” truth Z ) I |\ Tikhonov L-curve
~ I N
+ Forreal analyses, such tests can be <, 10%¢ ::k“:“:‘l’ global cor.
done by unfolding alternative truth : i
models -E « "Bayesian"
E DS o iterative
Method X2IN_ + 10F g™t - bs
Tikhonov L-curve 1.75 1 2
Tikhonov min(avg(p)) 6.30 @) [ lterative
bin-by-bin 424 T . SN T
iterative, N=20 min(avg(p ) 1.12 - 1 B .
IDS, N=3 min(avg(p)) 9.88 g )
|DS:N=11 097 i | IIIIII| 11 IIIIII| 11 IIIIII| | | IIIIII|
 Forthe example studied, 1 10 1 02 103

terative+min(avg(p ) performs best , ,
| | N teration
« |DS does not work with the min(avg(p)) condition, N>10 seems appropriate
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Comparison vs. Data truth parameter

+ Fitresults by the analytic function use | 00—
to generate the truth: G - R = Tionoy czooues
T_.; 300 - . %;En 6=1.7 prob=0.032 é
Landau(p,0) > 200 B H é
. . z - “F
* Only the width o is shown here (more 100 = g;%%
difficult to fit) of —
q- L | L 1
Method fit of width o ° * ® P
Tikhonov L-curve 1.858+ 0.057 !
Tikhonov min(avg(p ) 1.965+ 0.049 24 —
bin-by-bin 20641 0.046 c Tt el e ﬁEE”Lm
terative, N=20 min(avg(p)) ~ 1.906+ 0.071 s 2of - T pinbysin
B "Bayesian"
IDS, N=3 min(avg(p)) 2268+ 0.034 g : o "
DS, N=11 1915+ 0.050 Q 2 K ~__.__| sz |
truth 1.800 | g2 e — |
 Forthis test Tikhonov with L-curve is N S § e ,“”3\
doing better than the iterative method 1 10 N
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Events

Over- and Under-Regularised Unfolding

Over-regularised Best regularisation choice Under-regularised

Unfolding toy example with TSVDUnfold | Unfolding toy example with TSVDUnfold L Unfeolding toy example with TSVDUnfold |
- sig _ + . Unfolded data ] sig _ + +  Unfolded data —| sig _ . + . Unfolded data -
1200~ h;bi" =3 .+ —— Truedata ]~ Nhizn =13 1 —— Truedata [ Nb;" =31 —— Truedata |
C (Cx) = 0.0002 ------- Measured data | - (Cx) = 0.003 I ------- Measured data [ (Cx) = 0.078 N E— Measured data |
1000 - Treme 17 e Tueme L s R— TrueMc ]
800} - ]
600} —: ]
400} q: = .
200} 37 — -
O hicessnsaciti R e T R o e ] - e T ]
] N | I 111 | 111 I 111 | 111 | 111 | 111 | 111 I 111 | 1117 =111 | 111 | 111 I 11 1 | 111 I 111 I 111 | 111 I 111 | 11 1411 1 I 111 I 111 I 111 I 111 I 111 I 111 I 111 I 111 | 11 17

8 6 4 2 0 2 4 6 8 4 6 4 2 0 2 4 6 8 4 6 4 2 0 2 4 6 8
x variable x variable ¥ variable

The parameter determines the strength of the regularization
» T too small = oscillations

» Ttoo large — unfolded spectrum biased towards MC
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» Unfolding: get measurements independent of the detector response
» Alternative: publish folding matrix with the result
» Many methods exist, only a few have been compared in this talk

* Big unfolding families investigated in this talk:

- Matrix inversion +Tikhonov regularisation (parameter 1)
- lterative methods + truncation after N. _steps

* Main question: how to choose the regularisation strength. Objectives studied in
this talk: L-curve and scan of global correlation coefficients

» Tikhonov: L-curve scan Is favored. lterative: correlation scan seems to work

 Danger to obtain biased results if regularisation is too strong
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RooUnfold package

« Provide a framework for different algorithms
- Can compare performance directly, with common user code

+ RooUnfold takes care of different binning, normalisation, efficiency
conventions

« Can use common RooUnfold utilities
» Write once, use for all algorithms

» Currently implement or interface to iterative Bayes, SVD, TUnfold,
unregularised matrix inversion, and bin-by-bin correction factors algorithms

-  Simple OO design
* “response matrix” object can be filled separately from training sample
« in a different routine, or a different program (ROOT I/0 support)
« Simple interface for the user
 From program, ROOT/CINT script, or interactive ROOT prompt
» Fill with histograms, vectors/matrices,... or direct methods:

e response->Fill (X easuredr Xiue) @Nd Miss (Xy,.) Methods takes care of
normalisation

 Results as a histogram with errors, or vector and covariance matrix

40



RooUnfold package

Where do | find more information and code?

e RooUnfold; https://gitlab.cern.ch/RooUnfold/RooUnfold

e User guide;

https://gitlab.cern.ch/RooUnfold/documentation/-/blob/master/RooUnfold _user
quide.pdf

e Paper; Comparison of unfolding methods using RooFitUnfold., International
Journal of Modern Physics A, Vol. 35, No. 24, 2050145 (2020)

https://arxiv.org/abs/1910.14654

Issues or questions?
Email roounfold-support@cern.ch
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RooUnfold features

Supports different binning scenarios
- multi-dimensional distributions (1D, 2D, and 3D)
« Different binning (or even dimensionality) for measured and truth
« Option to include or exclude histogram under/overflow bins in the unfolding

Supports different methods for error computation (simple switch). In order of
increasing CPU time:

- No error calculation (uses VN)
« bin-by-bin errors (no correlations)

« full covariance matrix from the propagation of measurement errors in the
unfolding, or

« covariance matrix from MC toys
» useful to test error propagation and when it is inaccurate

These details are handled by the framework, so don’t need to be implemented for
each algorithm
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RooUnfold testing

- Calculates resolutions, pulls, and

* Includes a toy MC test framework, allowing selection of different
PDFs and PDF parameters

binning

1D, 2D, 3D tests

unfolding methods and parameters

Test procedures for the regularisation parameter and errors
and plotting results from a single command
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RooUnfold classes

Training truth | TH1D

Training measured | TH1D

Response matrix | TH2D

Measured data | TH1D

Or use TH2D/TH3D for
truth and/or measured
distributions

Unfolded distribution
and errors

Training

for (i=0;

if (measured[i])

i<N; i++)

or R->Fill (measured[i], truth[i]) ;
else
R->Miss (truth[i]) ;
RooUnfoldResponse |< :-

RooUnfold 4~

THID |  or

- RooUnfoldSvd

TVector

Subclasses of RooUnfold

__ — - RooUnfoldBayes

RooUnfold TUnfold
RooUnfoldInvert

RooUnfoldBinByBin

Test programs

RooUnfoldExample
RooUnfold Test

TMatrix

RooUnfoldTest2D
RooUnfoldTest3D




RooUnfold example (Bayes)
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RooUnfold example (Bayes)
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RooUnfold algorithms: Iterative Bayes

« Uses the method of Giulio D'Agostini (1995), implemented by Fergus Wilson
and Tim Adye

- Uses repeated application of Bayes’ theorem to invert the response matrix

« Regularisation by stopping iterations before reaching “true” (but wildly
fluctuating) inverse

« Regularisation parameters is the number of iterations, which in principle
has to be tuned according to the statistics, number of bins, etc.
In practice, the results are fairly insensitive to the precise setting.

+ Implementation details:
« Initial prior is taken from training truth, rather than a flat distribution

« Does not bias result once we have iterated, but perhaps reach optimum
faster

« Takes account of multinomial errors on the data sample but not, by default,
uncertainties in the response matrix (finite MC statistics), which is very slow

« Does not normally do smoothing (can be enabled with an option)
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RooUnfold algorithms: SVD

« Uses the method of Andreas Hécker and Vato Kartvelishvili

« Obtains inverse of response matrix using singular value decomposition
« Use number-of-events matrix to keep track of MC uncertainties

+ Regularisation with a smooth cut-off on small singular value contributions (these
correspond to high-frequency fluctuations)

- Replaces? —s2/(s2+5,2)
* [k determines the relative contributions of MC truth and data
* k too small — result dominated by MC truth

* [ too large — result dominated by statistical fluctuations

» k needs to be tuned for the particular type of distribution, number of bins, and
approximate sample size

+ Unfolded error matrix includes effect of finite MC training statistics (usually small)
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RooUnfold algorithms: TUnfold

Uses the TUnfold method implemented by Stefan Schmitt and included in ROOT
+ RooUnfold includes an interface to this class

Performs a matrix inversion with 0-, 1-, or 2-order polynomial regularisation of
neighbouring bins
» RooUnfold automatically takes care of packing 2D and 3D distributions and
creating the appropriate regularisation matrix required by TUnfold

TUnfold can determine an optimal regularisation parameter (z) by scanning the
“L-curve” of log(x?) vs logo(7).
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RooUnfold algorithms: Unregularised

« Very simple algorithms
» using bin-by-bin correction factors, with no inter-bin migration

* using unregularised matrix inversion with singular value removal
(TDecompSVD)

are included for comparison — and to demonstrate why they should not be used in
most cases!
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RooUnfold algorithms: comparison

TUnfold and unregularised matrix inversion require the number of bins,

Nmeasured 2 Ntrue

« TUnfold claims best results if N ..cireqd = Niwe: €9- N = 2N

measured ~ true

« This is a common general recommendation from unfolding experts, but
perhaps is most relevant to these types of algorithms with explicit
regularisation

» This is an implicit additional regularisation, since we are “smoothing” two
bins into one

SVD implementation and bin-by-bin methods only support N, casured = Nirue
« SVD implementation also only works well for 1D distributions
The choice of the SVD regularisation parameter has to be done by the user
« TUnfold can often do this automatically
« Can we do something similar for the SVD method?

« The performance of the Bayes method is relatively insensitive to the
regularisation parameter (number of iterations)
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RooUnfold with Bayes algorithm (3 iterations)
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RooUnfold with SVD algorithm ( k=30 )

Gaussian smearing,
systematic translation, and
variable inefficiency
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RooUnfold with TUnfold algorithm ( t=0.004 )
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Unregularised matrix inversion

— PDF
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Unfolding errors

+ All methods return a full covariance matrix of the errors on the unfolded histogram
due to uncertainties on the measured distribution.

« This is often calculated by propagation of errors

» but not always possible if there are non-linearities or other problems,
eg. the iterations in the Bayes method are not handled in D'Agostini’s
formalism:

o Unfolding errors ]

% o Errors from toy MC
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+ RooUnfold allows the covariance matrix to be calculated from toy MC instead

» provides a cross-check of the error propagation or replace it if there are
problems
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Bin-to-bin correlations

Regularisation introduces inevitable correlations between bins in the unfolded
distribution

 To calculate a correct ¥4, one has to invert the covariance matrix:
Xz = (Xm_xt)T V-1 (Xm_xt)
However, in many cases, the covariance matrix is poorly conditioned, which
makes calculating the inverse problematic

* Inverting a poorly conditioned matrix involves subtracting large, but very
similar numbers, leading to significant effects due to the machine precision

In any case, y? may not be the best figure of merit

- could improve ¥? by relaxing regularisation — larger errors, but also larger
residuals

+ |s there a better figure of merit?
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Which Method To Choose?

There i1s no "pest” method. Depends on the analysis.

Main questions:
How to choose regularization parameters?
After how many iterations to stop in the iterative Bayesian unfolding?

Danger: Regularization and early stopping in iterative unfolding introduce a bias

Don't forget:
it some cases it is most useful to publish folding matrix with the result
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