StatAnal-exercises-lecture-3 ====================================== ----------------------------------- I. Programming exercise Implement example from slide 5: --> make histogram of Gaussian distribution chracterised by (mu, sigma) --> calculate probability of |x_obs - mu| > 1.5 sigma --> draw corresponding chi2 distribution --> confirm value of probability chi2 > 2.25 ----------------------------------- II. Programming exercise Implement example from slide 12-14: --> generate datapoints, assume Poissonian errors --> evaluate chi2 --> perform chi2 consistency test ----------------------------------- III. Programming exercise Implement example from slide 15-16: --> generate datapoints, assume Poissonian errors --> evaluate lnL --> generate many MC toy distribution, see code on slice 16 --> obtain expected lnL ditribution, compare with observed --> is your observed lnL imply good agreement? ----------------------------------- IV. Programming exercise Implement example from slide 18-19: --> for the given measured data points obtain best fit value --> reproduce figure shown on the bottom of page 19 -------------------------------- V. Programming exercise Implement example from slide 21-23: --> generate datapoints, assume Gaussian errors --> find the best straight line and uncertainties implement formulas, get numerical values --> draw datapoints and fitted line ----------------------------------- VI. Programming exercise Implement example from slide 24-27: --> generate datapoints, assume Poissonian errors --> find the best straight line and uncertainties, implement formulas, get numerical values --> draw datapoints and fitted line ----------------------------------- VII. Programming exercise Implement example from slide 31-32: --> generate datapoints for lifetime mesurement with assumed PDF: P(t) = 1/tau exp(-t/tau) --> perfom unbinned likelihood fit, estimate measured value and its uncertainties --> draw likelihood function -----------------------------------