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Lecture 1: The basics
Introduction, Probability distribution functions, Binomial

distributions, Poisson distribution

Lecture 2: Treatment of Gaussian Errors
The central limit theorem, Gaussian errors, Error
propagation, Combination of measurements, Multi-
dimensional Gaussian errors, Error Matrix

Lecture 3: Fitting and Hypothesis Testing
The 2 test, Likelihood functions, Fitting, Binned maximum

likelihood, Unbinned maximum likelihood

Lecture 4: The Dark Arts

Bayesian Inference, Credible Intervals

Systematic Uncertainties



Parameter Estimation Revisited

* Let’ s consider more carefully the maximum likelihood method
for simplicity consider a single parameter X
* Construct the likelihood that our data are consistent with the model, i.e.
the probability that the model would give the observed data

[

L = P(data;x) J\.
. X

* We have then (very reasonably) taken the value of x which maximises
the likelihood as our best estimate of the parameter
* With less justification we then took our error estimate from

—1InL — —lnLJr%

* Does this really make sense ?
* What we really want to calculate is the posterior PDF for the parameter

given the data, i.e. P(x;data)

“assumed” P(x;data) = P(data;x)

Can not justify this — in general it is not the case




Conditional Probabilities and Bayes’ Theory

* A nice example of conditional probability (from L. Lyons)
* In the general population, the probability of a randomly selected woman
being pregnant is 2%

P(pregnant;woman) = 0.02
= But P(woman; pregnant) > .02
* Correct treatment of conditional probabilities requires Bayes’ theorem
* Probability of A and B can be expressed in terms of conditional probabilities
P(AB) = P(A;B)P(B) = P(B;A)P(A)
P(B;A)P(A)
P(B)
* Here the prior probability of selecting a woman is

P(Woman] =(0.50 i.e. half population are women
and the prior probability of selecting a pregnant person is

P(pregnant) = 0.01 i.e. 1 % of population are pregnant

P(A;B) =

P(pregnant; woman ) P(woman) - 0.02x0.5 Sanity
P(pregnant) 001 restored...

P(woman; pregnant) =



* Apply Bayes’ theory to our the measurement of a parameter x
= We determine P(data;x) , i.e. the likelihood function

» We want P(x;data) , i.e. the PDF for x in the light of the data

= Bayes' theory gives:

P(data;x)P(x)
P(data)

P(x;data) =

P(data;x) the likelihood function, i.e. what we measure
P(x; da[a) the posterior PDF for X, i.e. in the light of the data

P(data) { prior probability of the data. Since this doesn’t depend on
X it is essentially a normalisation constant

P(x) { prior probability of X, i.e. encompassing our knowledge of
X before the measurement

* Bayes’ theory tells us how to modify our knowledge of x in the light of new data

Bayes’ theory is the formal basis of Statistical Inference




Applying Bayes’ Theorem

* Bayes’ theory provides an unambiguous prescription for going from
P(data;x) — P(x;data)

* But you need to provide the PRIOR PROBABILITY P(x)

* This is fine if you have an objective prior, e.g. a previous measurement

o (x—x1)?
P(x) = oo exp {——20_12 }

* If we now make a new measurement, i.e. determine the likelihood function

] (x —x2)? }
P(data;x) = exp {— T
V21nor 203

= Bayes’ theory then gives

P(data;x)P(x | 1 x—x1)? x—xr)>
P(x;data) = ( )P) = CXpy — ( 21) - 22)
P(data) P(data) 2oy 0y 20; 20;
1 | (x —X)? Where X and g are the usual
P(x; data) = CXpy — 5 mean and variance for combining
P(data) 270, 0, 20 two measurements

» For this to be a (normalised) PDF can infer (although it isn’ t of any interest):
; 1
P(data) = 27(6? + 07)] 2



The Problem with Applying Bayes’ Theorem

* The problem arises when there is no objective prior

* For example, in a hypothetical background free search for a Z’, observe
no events

* No problem in calculating the likelihood function (a conditional probability)

P(data;x) = P(0;x) = e™* <—— Poisson prob. for observing 0

X is the true number of expected events

= What is the best estimate of x and the 90 % “confidence level upper limit” ?
* Depends on the choice of prior probability:

P(x;data) = P(x)e™"
» What to do about the prior ?
" j.e. how do we express our knowledge (none) of X prior to the measurement
* In general there is no objective answer, always putting in some extra information
" j.e. a subjective bias
= could argue that a flat prior, i.e. P(x) = constant, is objective
* but why not choose a prior thatis flatinInx ?

* for some limits/measurements (e.g. a mass) a flat prior in In x is more natural
* the arbitrariness in the choice of prior is a problem for the Bayesian approach
* it can make a big difference...



Choice of Prior, example |

* See no events...
P(data;x) = P(0;x) = e™® <—— Poisson prob. for observing 0

Prior flat prior in x : P(x) = const. Prior flat prior in Inx : P(Inx) = const.
-Ei- N B e -5-2,5_"---|"-'|"--|-"-_
-E“ 1-_ P(x) = const. _ 'E A P(x)oc1/x
& Sl

3 4
X
* The Conclusions are very different. Compare regions containing 90 % of probability

x<2.3 x < 0.46

" |In this case, the choice of prior is important



Choice of Prior, example Il

* Suppose we measure the W-boson mass: 80.1 +4.1GeV

(80.1 —m)z}

P(data;m) = G(80.1;m) o< expq —

* We want P(m;data) = P(m) P(data;m)

= Again consider two priors
=0.08 T T

2x4.12

P(m)= const.
—— P(Inm)= const.

0.02

P TR R RN R SN TR TR N SN ST S S NN T S T
D?ﬂ 75 80 85 90

* Here the choice of prior is NOT important
* The data are “strong enough” to overcome our prior assumptions (subjective bias)

* Here, can interpret the measurement as a Gaussian PDF for m



* So what do we learn from this ?

= Whilst we know how to apply Bayesian statistical inference, we have
insufficient data, i.e. we don’ t know the prior

» Unless the data are “strong”, i.e. override the information in the reasonable
range of prior probabilities, we cannot expect to know

P(x;data)

" Applies equally to our experiment where we saw zero events and wanted to
arrive at a PDF for the expected mean number of events...

Don’ t have enough information to answer this question
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Bayesian Credible Intervals

* |deally, (I) would like to work with probabilities, i.e. a PDF which encompasses all
our knowledge of a particular parameter, e.qg. P(mH; data)
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* Could then integrate PDF to contain 95 % of probability. Can then define the
“95 % Credible Interval*: my <186 GeV”

* To do this need to go from P(data;my) , i.e. from Aln.Z ,to P(my;data)
= requires “subjective” choice of prior probability

* Hence Bayesian Credible Intervals necessarily include some additional input
beyond the data alone...

*This is not what is done.
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Bayesian Credible Intervals - example

* Trying to estimate a selection efficiency using MC events. All N events pass cuts.
* what statement can we make about the efficiency?

* Binomial distribution...

P(data; x) P(N;e) = NCyeV(1—¢) =g
* Apply Bayes’ theorem:
P(v:data) - P(e:N) — P(N;e)P(¢€) Prior
P(N) Constant

* Choose prior,e.g. P(g) =1

P(e;N) = keV
* Normalise /Dl P(e;N)de=1 = k=(N+1)
P(e;N)= (N+1)e"
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*Integrate | P(&;N) = (N + I)EN to find region containing 90% of probability

= &% = (1 — 0.90)N4lr_f

Cl _

. N=10,r=1 | Sk N=100,r=100 ]

! 8 v _
o

P(s;data)
=3

s
%5 % "o 07 08 0o
90 % Credible Interval: € > (.81 € >0.977

(with a flat prior probability)
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Likelihood Ordering

* Note, 90 % credible interval is not uniquely defined
* more than one interval contains 90 % probability, e.g. N =100, r =98

EE’G_"'I"'I"'I"'I"' E _"'I"'I"'I"'I"'
€ [ N=100,r=98 8 jN=]OU,r=98
1] = B
o 2{}-_ (n 2{}-_
1{}:' 1{}:'
%.9 U.92. 0.9 098 1 %.9 0.92 ' DI94 0.96 0.98 1
[= X
90 % Credible Interval: £ > ().9482 0.9456 < € < 0.9956

* Natural, to choose the interval such that all points in the excluded region are
lower in likelihood than those in the credible interval : likelihood ordering

* Credible intervals provide an intuitive way of interpreting data, but:
» Rarely used in Particle Physics as a way of presenting data
» Because they represent the “data” and “prior” combined
* NOTE: all information from the experiment is in the likelihood P(data;x)
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C.l.vsC. L.

* From data obtain P(data;x)

* Bayes’' theorem provides the mathematical framework for statistical inference

* To go from P(data;x) — P(x;data) requires a (usually) subjective choice
of Prior probability

* For “weak” data, the choice of Prior can drive the interpretation of the data
* Credible intervals are a useful way of interpreting data, but are generally not

used in Particle Physics as a way of presenting the conclusions of an experiment.

* Particle Physics to use Frequentist “Confidence limits” which are not
P(x; da[a) [and do not form a mathematically consistent basis for
statistical inference]

* Finally, never forget that credible intervals (or confidence limits) are an
interpretation of the data

The experimental result is the likelihood function P(data;x)
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A Few words on Systematics Uncertainties

* Systematic Uncertainties are often associated with an internal unknown bias, e.g.
* How well do you know your calibration
* How well does MC model the data, e.qg. jet fragmentation parameters

* Parametric Uncertainties associated with uncertain parameters
* How does the uncertainty on the Higgs mass impact the interpretation of a
a measurement

* No over-riding principle — just some general guidelines

* Once a result is published, systematic errors will be treated as if they are

Gaussian
X =a+ b (stat.) = ¢ (syst.)

* Some systematic errors are Gaussian: e.g. energy scale determined
from datae.g. Z — e“e” to determine electron energy scale

* Others are not: e.g. impact of different jet hadronisation models, where one
might compare PYTHIA with HERWIG - here one obtains a single estimate
of the scale of the uncertainties

* Theoretical uncertainties: e.g. missing HO corrections. Again these are
estimates — should not be treated as Gaussian (although they are)

* Systematic dominated measurements
* Beware - if there is a single dominating systematic error and it is inherently

non-Gaussian, this is a problem

16



Estimating Systematics Uncertainties

* No rules — just guidelines
» Remember syst. errors will be treated as Gaussian, so try to evaluate them on
this basis, e.g. suppose use 3 alternative MC jet fragmentation models and
result changes by +A,, +A, and —A; (where A, is the largest):

i) take largest shift as systematic error estimate: A, ?
i) assume error distributed uniformly in “box” of width 2A, giving an rms

of 2A,/12 ?
= Cut variation is evil (i.e. vary cuts and see how results change)
- at best, introduces statistical noise
- at worst, hides away lack of understanding of some data - MC discrepancy
—> understand the origin of the discrepancy

* Wherever possible use data driven estimates, energy scales, control samples,
etc.

* Remember that you are estimating the scale of a possible systematic bias

17



Incorporating Systematics into Fits

* Two commonly used approaches
* Error matrix — with (correlated) systematic uncertainties
* Nuisance parameters
* Nuisance parameter example:
» Suppose we are looking at WW decays and count nhumbers of events in three
different decay channels qqqq, qqlv and Ivlv
= Want to measure cross section and hadronic branching fractions accounting
for common luminosity uncertainty
i) build physics model

xp _ 2
Naaha(Tww- Boq. £) =0wwB., £L

ii) build likelihood function

exp hs 42 eXp _ agobs 52 ip bs+2
,"(z(ﬂ'ww Bu. L) =-21InL = (quqq Nquq;q} N (qulv qulv) (Nﬁr]v B Nﬁ'li)
» £00Qg» - -

exp Xp EXp
N qq4qq qu v va v

iii) add penalty term for nuisance parameters, here integrated lumi. Known
to be L, with uncertainty o

xp hs 42 po_ bs 42 . :
(Ngqqq N Nqﬂqaq} + (Nslql'-' Ngql'-'} (NE:[E B Nﬁﬁf}z + (L - Lo)?

_l_
exp Xp exp 7
Ngqqq N:qlv Nty Ur

Y (oww, Bgg, £) = —2InL =
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Incorporating Systematics into Fits

* Let’s consider this more closely

2 EXp bs +2
(Ngqqq — NESSqJ“ (Ngqiv = Nagn) N (L- L)’

+ ...
exp exp 7
Nq qqq qu v L

= We are now fitting 3 parameters
« the number of degrees of freedom has not changed, since we have added one
parameter, but also one additional “data point”
» Of the 3 parameters, we are “not interested” in the fitted value of the lumi.
* The penalty term constrains the luminosity to be consistent with the
externally measured value
* The presence of the nuisance parameters will flatten the fitted likelihood
surface — increasing the uncertainties on the fitted parameters
" Also have some measure of the tension in the fit
- if the data pull the nuisance parameter away from the expected value, could
indicate a problem
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Appendix: Choice of Prior, example lli

+ An example (apparently due to Newton), e.g. see CERN Yellow Report 2000-005

* Suppose you are in the Tower of London facing execution.

* The Queen arrives carrying a small bag and says
“This bag contains 5 balls; the balls are either white or black. If you correctly
guess the number of black balls, | will spare your life and set you free.”

* The Queen is in a good mood and continues
“To give you a better chance, you can take one of the balls from the bag.”

It"s BLACK

* The Queen points her pistol at you
“Time to choose, sucker...”

* What do you guess to maximise your chance of survival ?
* Use statistical inference to analyse the problem.
= Let n be the number of black balls in the bag.
» The data are “that you picked out a black ball”
* Can calculate P(data;n)
e.g. if there were two black balls chance of picking out a black ball from the
five in the bag was 2/5.
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z 0.8
<y * But we want P(n;data) < P(n)P(data;n)
C > = 05 . .
..g o4y * Answer depends on choice of Prior
R :f
SR
. 0 1 2 3 4 3
* Could assume flat Prior
018+ 0.354
0146+ ~_
ﬂ 0.3
— 01 = 0z
o 01424 (wn p
= o > T o GUESS: 5
":"'B"f E.r u:j}:f
z;; R 0.0517]
04 04
1] 1 2 3 4 3 0 1 2 3 4 3
* Could assume balls drawn randomly from a large bag containing equal nos. B& W
0.357 —
0341 ~
= 03]
~—. 0.25] o
- 02517
— 024 |_> - 024 GUESS: 3
A, 045} i 01541
041 0447
0.054] Q" 00541
0 0

* Oh dear... answer depends on Prior (unknown) assumptions

1

2

3

4

3




