Statistics and Data Analysis (HEP)

— 05 | T T T " "]
oy ne . . 8 A - ]
Fitting and Hypothesis testing 2 F =1
= n=3
* The xZ test E 03;— ::g .
e Likelihood functions 02} :
o oy ge | ]
Fitting o1k S
 Binned maximum likelihood LI R S R
X
 Unbinned maximum likelihood _ . ———
0 i ]
Niu.os— .
E 0.06
0.04 -
0.02 1 .
Follow the course/slides from M. A. Thomson lectures at Cambridge University 5

il il il & L
0 20 40 €0 80 100 120

Prof. dr hab. Elzbieta Richter-Was v




Lecture 3: Fitting and Hypothesis Testing
The ? test, Likelihood functions, Fitting, Binned maximum
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Introduction

* Given some data (event counts, distributions) and a particular theoretical model
= are the data consistent with the model:
* hypothesis testing
- goodness of fit
* in the context of the model, what are our best estimates of its parameters:
= fitting
* In both cases, need a measure of consistency of data with our model

* Start with a discussion of x2



The Chi-Squared Statistic

* Suppose we measure a parameter, y -+ ¢, which a theorist says should have
the value

* Within this simple model, we can write down the prior probability of obtaining
the value x+ & given the prediction

1 (x—p)?
e 2 )

P(data; prediction) =

* To express the consistency of the data, ask the © %F ' ' '
question “if the model is correct what is the :-“u
probability of obtaining result at least as far §
from the prediction as the observed value” T,

* This is simply the fraction of the area under the ﬂ-Ei
Gaussian with |x — | > |xpps — U] :

* e.g. if 1.50 from the prediction: | 139,

* Only care about degree of consistency, not whether
we are on the +ve or —ve side, so equivalently want

the probability . X —
P(x >x{}bs) where ! = ﬂ

* For Gaussian distributed variables, xz , forms the basis of our consistency test




* The probability distribution for, X2= can be obtained easily from the ID distribution

P(x*)d(x*) = G(x)dx ~  and

O
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The Chi-Squared Statistic in higher dimensions

* So far, this isn’ t particularly useful...
* But now extend this to two dimensions (ignoring correlations for the moment,

although we now know how to include them)

I L (r—pe)? | (v—my)?
P(I’y}ZZRGrGyﬂXP{_E [( 53) +( U;)

* Lines of equal probability are equivalent to lines of equal x2
_ (x_ﬂx)z (J“'_:uy)z

- 7 T 2

o o;

"‘=.,‘ ' * What if | measure {x{),. yg}
* How consistent is this with expected
values ?
* ANSWER: the probability of obtaining

smaller probability then observed
= j.e. integrate 2D PDF over region

where x2 > x&bﬁ




* |t is worth seeing how this works mathematically...
* First transform error ellipse into circular contours

X — )2 — >
(v} = {21} 2= F R xj?:(y i)

o? o2

y
P(%x, %y)dxxdy = P(x,y)dxdy
* Therefore b LRI
P(2xs Xy) = o ﬂxp{ > [X_x +X}‘]}
= ———— ,”I ,.., ——T—T 4 T
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* Only interested in “radius” i.e. Z2

* so transform { ¥y, Xy} = 1X,0}
with 5;{,(5%3; XOX00
P(X,9)8%89 = P(Xuexy)82:82
P(x)ox = 2mxP(%c2y)0%

P(x) = xexp(—x;)

* Therefore, probability distribution in chi-squared:
1 2

P(*n=2) = sexp (_x_)

2 2

S(x*) =2y

* For two Gaussian distributed variables, we now have an expression for the

chi-squared probability distribution !
Problem: Show that:

! 2 5
P(x*n=3) = ﬁ(f)?cxp(—’%) and |P(x*n) o (%)
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* For any number of variables (degrees of freedom) can now obtain

P(x* > xop) = f ~ P(x*.n)dy*

x(‘;bx
* Already done for you, e.g. tables or more convenient TMath::PrDb(xz,n)



Properties of chi-squared

* For n degrees of freedom ( x2> —n
Proof: o JXPP(xin)d(x?)
W) = <ix-2> T G
i—1 _ 2
n (x,_“,)z _ fxz(xz)(_zﬂﬁ'_%zxdx
. 1 I : - e 2
E ;< o} > f(2?)" e 2y
= iIZH _ fxnﬂe_%zdx
=1 [xn=le™ 2 dx
i — n
* F:rrngfc.iegrees of freedom Var(xz) =2n o fx”+3e_"§dx
. . x - . 2
Var(x’) = (°2°) —x*)’ Jxr—te T dx
= n{xy+n(n—1)—n = g3/l
= 3n+n*—n—n = (n42)n

= 2 Var(z*) = (") - %)’
= n2—1—2n—n2=2n
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* For large n; the distribution tends to a Gaussian

Useful for quick estimates...
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* Suppose we have an absolute prediction for a distribution, e.g. a differential
cross section and we can account perfectly for experimental effects
(efficiency, background, bin-bin migration)

* Measure number of events in bins of cos6, n; , and compare to predictionll;

* |f prediction is correct, expect the observed number of events in a given bin to
to follow a Poisson distribution of mean U;

* |If the expectations in all bins are sufficiently large, the Poisson distribution
can be approximated as a Gaussian with mean [; and variance J;

* |n this limit can use chi-squared for consistency with hypothesis
2 (”i — u»i)z Expected fluctuations

Xi = / around mean
M

* For N bins, have N independent (approximately) Gaussian distributed variables
* Overall consistency of data with prediction assessed using

=Y

* If hypothesis (prediction) is correct expect

(x*) =n Var(x?) =2n
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* Quick estimates:

~82/63 =130 ~19.1/6.3 =3.00

* But N=20, not very large, these estimates only give an indication of the agreement.

» Correct numbers (integral of expected y? distribution)  TMath::Prob(%2,20)

P(x? > 28.2;N =20) =10.4% P(x%>39.1;N =20) = 0.6%

Perfectly consistent: 10 % probability A bit dodgy: only 1 % probability
of getting a %2 worse than observed of getting a 2 worse than observed
value by chance value by chance
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* What about a very small value of chi-squared, e.g.

52 ' ' ' = Expected (¥?) = 20
% 200 » Observed value is much smaller
it « P(x? > 3.3;N =20) =99.999%

1505
: « P(x* < 3.3;N =20) = 0.00001

= Conclude 1/1000000 chance of getting
such a small value: highly suspicious...

100

ED -_ —
: ;{2 =3.3 1] = What could be wrong:

03 , Ny , : - Errors not estimated correctly
-1 0.5 0 0.5 1 .
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Log-Likelihood

* The chi-squared-n distribution is just a re-expression of a Gaussian for N-variables

* If the expected numbers of events are low, have to base consistency of data and
prediction on Poisson statistics

s T « For the ith bin:
& o 5 Ly MiteH
a : Pi(nis i) =
[ ] n;
2 1{u:ﬂ 1T ? * Therefore the joint probability of obtaining
| I exactly the observed {n;}, i.e. the likelihood L
1: L‘_"ﬂ_l_L ] i E — L
: |....|....|..:_!_!-—: L: P: _
" s 0 0.5 1 H H n;!
cosb

= Convenient to take the natural logarithm (hence log-likelihood)

Juf”e_iuf Poisson
InL = Zln i~} TS\ distributed
; H;‘!
{

variables

* The likelihood is often very small. It is the probability of obtaining exactly the
observed numbers of events in each bin

» For above distribution [, = 2 x 1010 (InL=—-22.4)
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* What constitutes a good value of log-likelihood ?

= j.e. for the distribution shown, does |InL = —22.4 imply good agreement ?
* There is no simple answer to this question
* Unlike for the chi-squared distribution, there is no general analytic form

* One practical way of assessing the consistency, o e anom2():
" i ” . = . i=1- jie= nbinz- j++
is to generate many "toy MC" distributions fﬂrf;g*;;_-;;;‘;ecgg'fﬁi;t;gmmm
according to expected distributions ot oreh & e,

Double_t prob = TMath::Poissonl{nObs expected);
LogLikelihood += log(prob);
1

0008 T | BLELELEL LR — T e
e [ Bad Good 2T
o | Agreement Agreement | = .
006  +— — v, 08 ]
i B
I :g’n.e - -
0.04 ' - E i
04 B
0.02f - '
- 02r .
U [ PRI I Pl B A :;l | T D -| I Y PRI Lo i e 0 4 & 4 i
-50 -40 -30 -20 -10 O -50 -40 -30 -20 -10 O
InL InL, ..

* Hence have obtain expected InL distribution for particular problem
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Relationship between chi-squared and likelihood

* For Gaussian distributed variables

L)) ¢ <o 3 ; [E])

2
X
—InL = =
n > +k
xz = —2InL+«k

Chi-squared x 'z is InL for Gaussian distributed variables

17



Chi-Squared Fitting

* Given some data and a prediction which depends on a set of parameters, we want
to determine our best estimate for the parameters.

* Construct the probability: P(data' {x})
) I

* Best estimate is the set of parameters that maximises P(data; { xi})

Simple Example:

* Two measurements of a quantity, X, using different methods
x:xlim:S.liO.S x:.x,‘gzlz02:6.0:|:0.3
(assume independent Gaussian errors)
* What is our best estimate of the true value of x ?

1 1 [(x1—x)*  (x2—x)? 2
P(data;x) = - —Ae™ T
(data; x) Zﬂﬁlﬁgexp{ 2[ o} * o ‘
12
P = ~
i 2

* Maximum probability corresponds to minimum chi-squared
* For Gaussian distributed variables: fitting = minimising chi-squared
* Here require dxg

i —
dx

18



* Which is the formula we found previously for averaging two measurements
= Note: chi-squared is a quadratic function of the parameter x

" Taylor expansion about minimum with e T
dﬁxi 1 1 dsz
=2 =+ — and —— = I
dx (o',z * cr%) dx 6 -
. 2 - 2 =2 .
gives X (x—X)=x5+ o1 W(x—x} 241 ar 5.76:0.26 -
2 e
2 2 (x—x)2 2
_x x - x """"""""""""""""""""""""""""""""""""""""" H
P(X)DCE_TZE__’QE 20¢ "2t .
[ 5.%0.5 L 6.040.3
-1 i _
_ 2 (1{@1 ) N s eveT S
therefore y — |\ A5 4.5 5 5.5 6 6.5
' 2 d'rz X=X X
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» Started with two measurements of a quantity, X
XZX|:|:CF]:5.1:|:0.5 XZXQ:|:62:6.0:|:0.3

* Best estimate of the true value of x, is that which maximises the likelihood, i.e.
minimises chi-squared, giving a chi-squared at the minimum of:

2 _ [(Il—f)2+(~’f2—f)2]

X0 3 2
Oj 0)

» What is the probability that our data are consistent with a common mean?
i.e. how do we interpret this chi-squared minimum

= Expanding and substituting for X

2 o= A.m o (L+L)

of 03 of 03

2 2 Ax = X1 — X2
(x1 —x2)” _ (Ax) with 5 s s
Gi+0; O Op = 0i 163

* Here the minimum chi-squared corresponds / distributed as chi-squared for
a single Gaussian measurement, i.e. 1 degree of freedom

In general, the fitted minimum chi-squared is distributed as chi-squared for
(number of measurements — number of fitted parameters) degrees of freedom

20



Example: Straight line fitting

* Given a set of points {x;,y; + 0;} | y=mx+c
find the best fit straight line and

the uncertainties

1

i (yi —mx; —¢)?
3
i—0 O,

[}

* First define the chi-squared: x2 =

* Minimise chi-squared with respect to the 2 parameters describing the model

x> & (yi —mx; —¢) ax? & _(yi—mx;—c)
—L =0 oL =0
i=0 i=

am crf g?
::’ mz_+ i-‘-: _zxxya ﬁiﬂ_{_giiziﬁ
i—0 9 i—0) G' =0 U; i=0 Uiz =0 G-IE i=0) sz

sz Sy 7 ( Sxy Where the sums are represented by
d p— n
- . X;
Sy § C Sy Sy = 2 = etc.
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* For the errors first make Taylor expansion around the minimum chi-squared:

1 92y? ) 1%, 197
2 (my0) =12 (m,2) + 5, =~ X (m—m) t o1 gz (€m0 2555

[since the function is quadratic there are no other terms)

(m—7i)(c—7c)?

which gives an elliptical contours
* |In terms of the inverse error matrix
m-—m
with X = ( )

2 Taxg—1
x- = x M 'x C—T
* Hence 10%x% 1 9%%° 2.2
1 eyl B 1 o
M= (2 20008 ) vy, A
lex 17X 72 daida
2 dmde 2 ¢l |
* Here M o ( Sy S )
M: l A _5‘1’ — O}i po”,lzdc
§28—82 \ Sy 5,2 pOuO. O
X
_— o?

* Giving p (ss2)F _(E 1 x;z)%

22



p— S a?
(55.2)* (ZLrs)
Cl'j' O-i'-

1

P
|

* Suppose we want to calculate the error on y as a function of x based on
our fit:

: iy
o7 = @ o PU)(1)
po-mo-c g‘.’. a}.

=  02x" +2pXxG0,,0, + O J

* |t is worth noting that the correlation coefficient is proportional to ): —%
hence one cuuld fit after making the transformation ;H —X—X O
such that X,

Y5 =0
g

i
and the uncertainties on the new intercept and gradient become uncorrelated

23



Binned Maximum Likelihood Fits

* So far only considered chi-squared fitting (i.e. assumes Gaussian errors)
* |n particle physics often dealing with low nhumbers of events and need to

account for the Poisson nature of the data
* |In general can write down the joint probability

P(data;parameters) = P({x;};:{a;})

" e.g. if we predict a distribution should follow S T

a first order polynomial £ I
L 3l i

K = aycos 8;+ap T

* and measure events in bins of C€0s 0; 251{:* TIT

I ! i
* define likelihood based on Poisson statistics S 1 S R ¢
e -ul' I L‘_'“\_l_l_ ]
L P_ S :....l....l....l.-:_!_!--:
H l_[ HII % -0.5 0 0.5 1

cosb
= best estimates of parameters, defined by maximum likelihood or, equivalently,

the minimum of -log-likelihood

—j.t,
E’:—lnL:Z—In(u’n' ) Yoin(nt) + =il
it

i
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* Maximising the likelihood corresponds to solving the set of linear equations

0.%
=
da;
* To estimate the errors on the parameters, expand —InL, about its minimum
82.2," 1 >
L =L(a)+ + =Y (a;i—a;)(a; —a; +0((a—a)’
@) 2,): W' Gar T L@ 3) 5,5 +0((a=a))

* Unlike the case of Gaussian errors, the
335_?

* hence the resulting likelihood surface will not have a quadratic form

* For the moment, restrict the discussion to a single variable

1 ,0°L
—InL=.Z’=.2¢’(E)+E( a—a)’ 53 ((a—a)?)
[ ol g 2a) @ EE 0((a-a))

Gaussian Higher Order

25



* If resulting likelihood distribution is “sufficiently Gaussian” could assign an
estimate of the error on our measurement as: (323)—1

2 v =
da?

o =
* This is OK in the Gaussian limit, but in general it is not very useful
* Usually adopt a Gaussian inspired procedure...
* For Gaussian distributed variables, have a parabolic chi-squared curve which gives

a Gaussian likelihood X2 e
L=Loe T with Ly=e 2"
,..h 8 i 77— ) 3 08 i — — — T )
6 - - 0s -
i, i ]

T
F
=

T

=

(]
'i-"|||||||||
)

0.2

I
m

g
s
—
| |
&
s
T T T | LI I

L=

0

4 5 5] T

X
*x “1 sigma errors” defined the points where xz — ,’{2 + 1
* Or, EQUIVALENTLY, where the Relative Likelihood compared to the maximum
likelihood decreases by ¢—1/2
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e.g. assume a form H{; = ﬂ(l — COS 9&)

- L LA B B B LN B R g BT T T T T T
0} ' -
£ 3r - i -InLg+2.0
o L
= ;
1l 25 7
2 Hp He He e r I
"“'-n.,_
L H"‘-\..,
B TR 4 4 24 InL,+0.5
[
L h‘\\“‘\‘ ] [ Jn
ﬂ-llllllllllllllllh:\‘l\“*"- 2-|||||||§!|||||||||||
-1 -0.5 0 05 1 %,4 0.6 0.8 1 1.2 1.4
coso a

* Not unreasonable to use estimate of “1 sigma” uncertainty as the values:
—InL — —InL+0.5
Similarly for the “2 sigma” uncertainty:

—InL — —InL+2
2

* At these points, have probabilities of 8_1/2 and € ° relative to maximum
» BUT: no guarantee that 68 % of PDF lies within +1 ¢

Interpretation requires some care — a dark art (see later)
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Likelihood ratio

* Safest way is to generate toy MC experiments, perform the fit, and thus obtain
the expected InL distribution

* However, there is an invaluable trick
* For Poisson errors, we minimised the function

_;u.'
f——lﬂL-—Elﬂ(u’n ) Zln(ng ) + Wi — niIn y;
it

* Free to add a constant to this — doesn’ t affect the result
* Here the data are fixed and we vary the expectation — :
= Add the InL of observing n. given an expectation of n, Likelihood ratio

N
vy _ _ZI"(P{ _”!)—kzln(” ¢ Hr) = —In [ilgzi—ﬁ:”

= Zlnn;!-l—,u; —nilny; — Inn;! —n; +n;Inn;

1
= Z,u; —n;+n;ln —
i

L

S -
= Eern;ln(H”’ ‘”‘)
i Hi M

28



L

<

&

Q

* |n the limit where the [I; are “not too small, in region of best fit Ll

is small

2 _ .
Z.\u{ Jufint +”E 1[1 |:1 + (nl au'f):|
i Hi Hi

2 s TP . o\ 2 o\ 3
Z.\u{ J"-LGx +Hs (”1 .u't) . E (n! Iu'f) +O H;‘(nl .u't)
- ; Jik 2 Ui Hi

Zﬁ?‘ﬂf”i"‘”?—ﬂr‘”i i (H;'—Juf)z

Hi Hi
z(”r P[z ”f(”i_ﬁi)z
2 Hi
Z (H: 4”‘1 ( _ i) 'Wlth <”i> = U;
21 A S S, S H
z (n; — u;)? i  For Poisson dlstnbuted
27 W .variables of =y :
’ L(ni; i)
;{ . . Iy M
—InA = =~ th A=——7——
e v L(ni:n;)

* Hence —2InA is distributed as x2 in the limit of “large” n
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* This is a very useful trick.
* When fitting a histogram with Poisson errors

ALWAYS

» Perform a maximum likelihood, not a chi-squared fit
» Use the likelihood ratio

—21nﬂ.=2,u;—n;—|—n,~lng
i i

NOTE

* Best fit parameters determined by

Jd[—2InA| ni\ i (L.
a = ZF’ (] - E) Ja =0 ui({ai})

= At the best fit point -2lnA tends to a chi-squared distribution for n-m d.o.f.
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Unbinned Maximum Likelihood Fits

* For some applications, binning data results in a loss of precision
" e.g. sparse data and a rapidly varying prediction

Vit~ 4~—"¢

* |In other cases there is simply no need to bin data: unbinned maximum likelihood
NOTE: this is a “shape-only”fit: normalisation doesn’ t enter

* Suppose we can construct the predicted PDF for the data as a function of
the parameter of interest

* e.g. make N measurements of decay time, {1}-} , and want to estimate lifetime T
» Write down NORMALISED PDF

P(t) = %e_

» We can now write down the likelihood of obtaining our set of data

2 L

I

I _4
L{u}) =] e
i
- Obtain lifetime by maximising likelihood (or equivalently InL)
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InL

dinL
d1

= T

Liti N
2 7
1

N &

i.e. the expected, but not
entirely obvious result

* For the error estimate take the
second derivative

3% InL
d12

2 N
—aLit
i

N
Kz

9’InL -
J12
T

1
3

=

- Since we now know what we are doing,
it is immediately obvious that the
error is not symmetric

d°InL

a3 7 0

* The likelihood function is

lo+ 3
lo

h_J“

E=
|

o_ Oy

T

» Usual to quote with asymmetric
errors, e.g.

— +0.6
T — ] -0_[].4
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* Forward-Backward asymmetry at LEP /\' "
7}

- Expected angular distribution of form e

f(x) o< (142> + 3Ax) X = cos 6O 4 ©

» But measured angular distribution depends on efficiency S(x)

A Af(.?(,‘)E(JC)
-1 +1 -1 +1

» However E(x) is not known (at least not precisely)

« But it is known to be symmetric

» Sufficient to construct an unbinned maximum likelihood fit
* First write down the PDF in terms of the unknown efficiency

P(x) o< f(x)e(x) o< &(x) (1 4+ + JAx)
* For unbinned maximum likelihood fit PDF must be normalised

+1
fx)e(x)dx =1

33



- Since E(.x) is symmetric normalisation gives

+1
(14x*)e(x)dx =1 i.e. independent of 4

« Hence the normalised PDF is of the form
P(x) = ke(x)(1+x + 3Ax)

- For the N observed values {xi} the log-likelihood function becomes:

3
InL = Zln K+Ine(x;)+1In (1 —i—x? - ZM‘)

- For a maximum 8 lnL — Z — ()
] —I—JAL:2 + ﬁAx,

- Which can be solved (preferably minimised by MINUIT) despite the fact we
don’ t know the precise form of the PDF
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Extended Maximum Likelihood Fits

* Unbinned maximum likelihood uses only shape information

* |In the extended maximum likelihood fit include normalisation

* Suppose you observe n events with x; and expect a total of U with PDF
which is a function of some parameter you wish to measure P(x)

e Hu" .
L)) = = =< [[P)  PW)
Poisson Unbinned ML

InL=—p+nlng—Inn!+Y InP(x;)
i

* Just for fun... suppose our PDF is binned with an expectation of #j/“ in each bin

Hj
InL = —u+nlnyg—Inn!+) In— 4
n U+nng —Inn JZnJu P(x)
— —p+nlnp—lnn!—21np+21npj TﬂTh‘hh
J J
= —p—lnn!—l—Zln,uj X

J
« if thereare n j events observed in each bin

InL = —p—Inu!'4+) njlnpy,
J
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InL = —u —lnn!-l—ZnJ,-lnpi
J

For a given data set

8_“1111!-” ! / this is a constant
= E In | L | —In 1
j Hj. EJ, F’Ij.
Binned Poisson Can you see where
Likelihood this comes from ?
[LLETTTITRIIRTIIT I T o

Hence our previous expression for “Binned Maximum likelihood”
is just an Extended Maximum Likelihood fit with a binned PDF
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Fitting Summary

* Have covered main fitting/goodness of fit issues:
= definition of chi-squared
= chi-squared fitting
= definition of likelihood functions and relation to chi-squared
= likelihood fitting techniques
* Next we will consider more carefully the interpretation
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Appendix: The Error Function

* For a single variable the Chi-Squared Probability

9 2y 1 /+,¥| _(x_p')z XL = :J: O
P(x™ < Xxy) = S ). P 552 dx + = N =T X0
X—HU
* Change variable X = p
Pt <) = —— [ { xz}d
< = — expq — =
X Z[] \/ﬁ % P D) Z

* Change variable again tz = x2/2 and integrate over positive values only

V2 (% 2
P(X*<x5) = T/ exzdx
/Zﬂ/“‘//— !,2
\/_

X
= lerf| == Error function
(\/5) -
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* The probability of obtaining a value of xz > x& by chance is:

2 Iﬂf\/i ) X
2 2 _ —t _ Complement of the
P(x">x) = 1- _\/Efﬁ e ' dt =erfc (ﬁ) " Error Function

— 1 T ¥ 1.-1 — 1 ll. T llll. I ll.ll.l
od I od i ]
- 2 i 2 2y 1 ~
—o0sf <X) —os} P(x">x5) A o SRR
T | 1l © 5 5
vos| 1 508} & /\ :
0.4 1 o4} :
0.2 1 o2 .
[ 0
1 P P 1
% 2 4 8 &8 10 0

* This is nothing more than a different way of expressing a 1D Gaussian distribution
(or more correctly its two-sided integral)
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