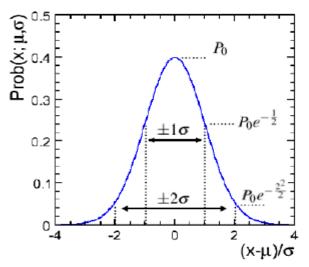
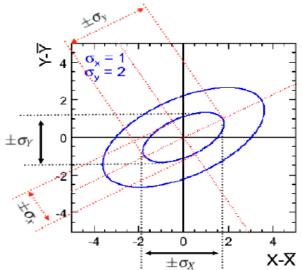
Statistics and Data Analysis (HEP)

The Gaussian Limit

- The central limit theorem,
- Gaussian errors,
- Error propagation,
- Combination of measurements,
- Multidimensional Gaussian errors,
- Error Matrix





Following the course/slides from M. A. Thomson lectures at Cambridge University

Lecture 1: Back to basics
Introduction, Probability distribution functions, Binomial
distributions, Poisson distribution

Lecture 2: The Gaussian Limit

The central limit theorem, Gaussian errors, Error propagation, Combination of measurements, Multi-dimensional Gaussian errors, Error Matrix

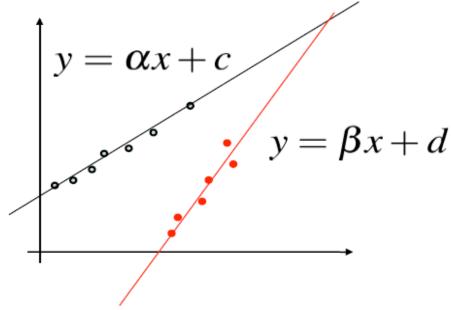
Lecture 3: Fitting and Hypothesis Testing
The χ² test, Likelihood functions, Fitting, Binned maximum likelihood, Unbinned maximum likelihood

Lecture 4: Dark Arts

Bayesian statistics, Confidence intervals, systematic errors.

How to calculate uncertainties?

★Problem: given the results of two straight line fits with errors, calculate the uncertainty on the intersection



- **★Solution:** first learn about
 - Gaussian errors
 - Correlations
 - Error propagation

The Central Limit Theorem

- ★ We have already shown that for large μ that a Poisson distribution tends to a Gaussian
- **★** This is one example of a more general theorem, the "Central Limit Theorem"*

If n random variables, x_i , each distributed according to any PDF, are combined then the sum $y = \sum x_i$ will have a PDF which, for large n, tends to a Gaussian

★ For this reason the Gaussian distribution plays an important role in statistics

$$G(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

which by make a suitable coordinate transformation, $x \to \sigma x + \mu$, gives the Normal distribution

$$N(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}$$

^{*} The proof of the central limit theorem is non-trivial

A useful integral relationship

- ***** We will often take averages of functions of Gaussian distributed quantities $\langle x^2 \rangle$, $\langle x^4 \rangle$
- Hence interested in integrals of the form

$$\langle (x-\mu)^n \rangle = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} (x-\mu)^n e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi}} \sigma^n \int_{-\infty}^{+\infty} y^n e^{-\frac{y^2}{2}} dy$$

$$I_n = \int_{-\infty}^{+\infty} x^n e^{-\frac{x^2}{2}} dx$$

For n odd, $I_n = 0$

For even n:

$$= \int_{-\infty}^{+\infty} d(-x^{n-1}e^{-\frac{x^2}{2}}) + (n-1)\int_{-\infty}^{+\infty} x^{n-2}e^{-\frac{x^2}{2}} dx$$
$$= \left[-x^{n-1}e^{-\frac{x^2}{2}}\right]_{-\infty}^{+\infty} + (n-1)I_{n-2}$$

★ Hence

$$\frac{I_n}{I_{n-2}} = (n-1) \qquad n > 1$$

★ By writing

$$\langle (x-\mu)^n \rangle = \frac{\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} (x-\mu)^n e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx}{\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx} \Longrightarrow \langle (x-\mu)^n \rangle = \frac{I_n}{I_0} \sigma^n$$

e.g.
$$\langle (x-\mu)^4 \rangle = \frac{I_4}{I_0} \sigma^4 = \frac{I_4}{I_2} \frac{I_2}{I_0} \sigma^4 = (4-1)(2-1)\frac{I_0}{I_0} \sigma^4 = 3\sigma^4$$

Properties of Gaussian Distribution

★Normalised to unity (it's a PDF)

$$\int_{-\infty}^{+\infty} G(x; \mu, \sigma) \mathrm{d}x = 1$$

Proof:

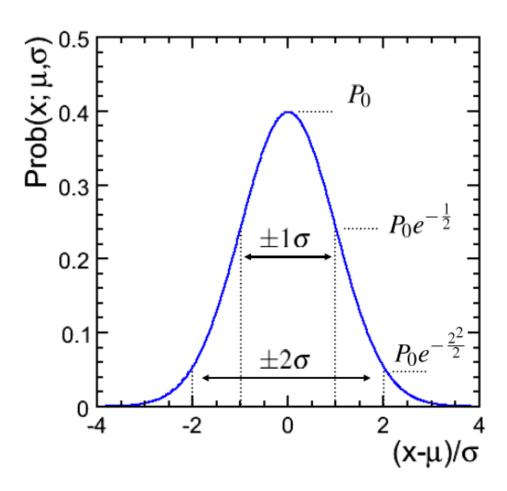
$$\int_{-\infty}^{+\infty} G(x; \mu, \sigma) dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \cdot \sqrt{2}\sigma \cdot \int_{-\infty}^{+\infty} e^{-y^2} dy$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \cdot \sqrt{2}\sigma \cdot \sqrt{\pi} = 1$$

★Variance

$$Var(x) = \langle (x - \mu)^2 \rangle = \sigma^2$$

Proof:
$$Var(x) = \int_{-\infty}^{+\infty} (x - \mu)^2 G(x; \mu, \sigma) dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} (x - \mu)^2 e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$
$$= \frac{I_2}{I_0} \sigma^2$$
$$= \sigma^2$$

Properties of the 1D Gaussian Distribution, cont.



$$G(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

***Natural to introduce** $\chi^2(x)$

$$\chi^2 = \frac{(x-\mu)^2}{\sigma^2}$$

"squared deviation from mean in terms of standard error"

$$G(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\chi^2}{2}\right)$$

★Fractions of events

$$68.3\% : |x - \mu| < 1\sigma \qquad (\chi^2 < 1)$$

$$95.5\% : |x - \mu| < 2\sigma \qquad (\chi^2 < 4)$$

$$99.7\% : |x - \mu| < 3\sigma \qquad (\chi^2 < 9)$$

$$6 \times 10^{-7} : |x - \mu| > 5\sigma \qquad (\chi^2 > 25)$$

Averaging Gaussian Measurements

★ Suppose we have two independent measurements of a quantity, e.g. the W boson mass:

 $x_1 \pm \sigma_1$ and $x_2 \pm \sigma_2$

there are two questions we can ask:

- Are the measurements compatible? [Hypothesis test we'll return to this]
- What is our best estimate of the parameter x? (i.e. how to average)
- ★ In principle can take any linear combination as an unbiased estimator of x

$$x_{12}=\pmb{\omega}_1x_1+\pmb{\omega}_2x_2$$
 provided $\pmb{\omega}_1+\pmb{\omega}_2=1$ since $\langle x_{12}\rangle=\pmb{\omega}_1\langle x_1\rangle+\pmb{\omega}_2\langle x_2\rangle=\pmb{\omega}_1\mu+\pmb{\omega}_2\mu=\mu$

\star Clearly want to give the highest weight to the more precise measurements... e.g. two undergraduate measurements of $g[m\,s^{-2}]$

$$10.1 \pm 0.3$$
 5 ± 5

★ Method I: choose the weights to minimise the uncertainty on

$$\sigma_x^2 = \sum_i \omega_i^2 \sigma_i^2$$
 subject to constraint $f(\pmb{\omega}_1,\pmb{\omega}_2,...)=1-\sum_i \pmb{\omega}_i=0$

$$\frac{\partial(\sigma_x^2 + \lambda f)}{\partial \omega_i} = 0$$

$$\Rightarrow 2\omega_i \sigma_i^2 - \lambda = 0$$

$$\omega_i \propto \frac{1}{\sigma_i^2}$$

★Therefore, since the weights sum to unity:

$$\omega_i = \frac{1/\sigma_i^2}{\sum_j 1/\sigma_j^2}$$

★Hence for two measurements

$$\overline{x} = \frac{\frac{x_1}{\sigma_1^2} + \frac{x_2}{\sigma_2^2}}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}$$

with

$$\sigma_{\overline{x}}^2 = \frac{1}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}$$

Problem: derive this. (just error propagation as described later)

Averaging Gaussian Measurements II

- ★Can obtain the same expression using a natural probability based approach
 - We can interpret the first measurement in terms of a probability distribution for the true value of x, i.e. a Gaussian centred on x_1

$$P(x) = P(x; x_1) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x - x_1)^2}{2\sigma_1^2}\right\}$$

Bayes' theorem then tells us how to modify this in the light of a new measurement

$$P(x;data) \propto P(data;x)P(x)$$

$$P(x; data) \propto \exp\left\{-\frac{(x-x_2)^2}{2\sigma_2^2}\right\} \exp\left\{-\frac{(x-x_1)^2}{2\sigma_1^2}\right\}$$

So our new expression for the knowledge of x is:

$$P(x) \propto \exp{-\frac{1}{2} \left\{ \frac{(x - x_1)^2}{\sigma_1^2} + \frac{(x - x_2)^2}{\sigma_2^2} \right\}}$$

Completing the square gives plus a little algebra gives

$$P(x) \propto \exp\left\{-\frac{(x-\overline{x})^2}{2\sigma^2}\right\}$$
 with $\overline{x} = \frac{\frac{x_1}{\sigma_1^2} + \frac{x_2}{\sigma_2^2}}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}$ and $\sigma^2 = \frac{1}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}$

Product of n Gaussians is a Gaussian

Error Propagation I

Suppose measure a quantity x with a Gaussian uncertainty σ_x; what is the uncertainty on a derived quantity

$$y = f(x)$$

• Expand f(x) about \bar{x}

$$f(x) = f(\overline{x}) + (x - \overline{x}) \left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)_{\overline{x}} + \dots$$

• Define estimate of y: $\overline{y} = f(\overline{x})$

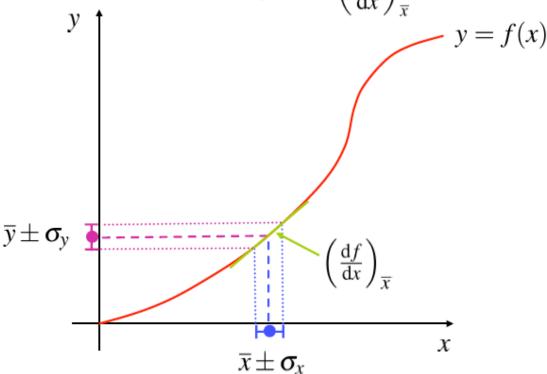
so
$$y - \overline{y} = f(x) - f(\overline{x}) \approx (x - \overline{x}) \left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)_{\overline{x}}$$

$$\langle (y - \overline{y})^2 \rangle = \langle (x - \overline{x})^2 \rangle \left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)_{\overline{x}}^2$$

$$\sigma_y^2 = \left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)_{\overline{x}}^2 \sigma_x^2$$

$$\sigma_y = \left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)_{\overline{x}}\sigma_x$$

★ It is easy to understand the origin of $\sigma_y = \left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)_{\overline{x}}\sigma_x$

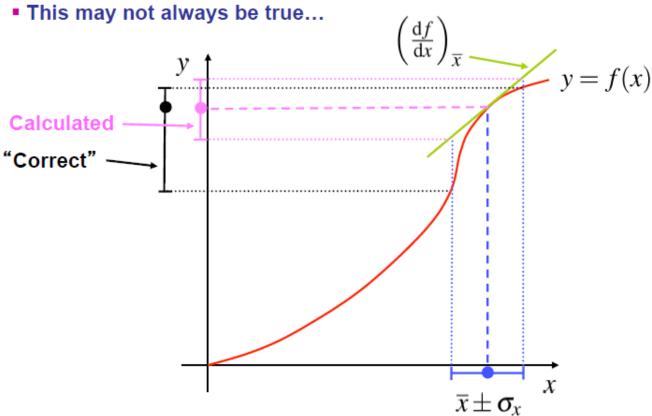


***** How does a "small" change in x, i.e. σ_x , propagate to a small change in y, σ_y

$$\frac{\sigma_y}{\sigma_x} \approx \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\overline{x}}$$

★ A word of warning...

- Neglected second order terms in the Taylor expansion
- This is equivalent to saying that the derivative is constant in region of interest



Error on Error

★Recall guestion 2:

Given 5 measurements of a quantity x: 10.2, 5.5, 6.7, 3.4, 3.5

What is the best estimate of x and what is the estimated uncertainty?

$$\bar{x} = 5.86; \quad s_{n-1} = 2.80; \quad \sigma_{\bar{x}} = \frac{s_{n-1}}{\sqrt{5}} = 1.25$$

So our best estimate of x is: $x = 5.9 \pm 1.3$

$$x = 5.9 \pm 1.3$$

- **★But how good is our estimate of the error i.e. what is the "error on the error"?**
 - It can be shown (see Appendix)

$$Var(s^2) = \frac{1}{n} \left(\langle (x - \mu)^4 \rangle - \frac{n - 3}{n - 1} \langle (x - \mu)^2 \rangle^2 \right)$$

• For a Gaussian distribution $\langle (x-\mu)^4 \rangle = 3\sigma^4$

so
$$Var(s^2) = \frac{\sigma^4}{n} \left(3 - \frac{n-3}{n-1} \right) = \frac{2\sigma^4}{n-1}$$

Hence (by error propagation – show this) the error on the error estimate is

$$\sigma_s = \frac{\sigma}{\sqrt{2(n-1)}}$$

To obtain a 10% estimate of σ; need rms of 51 measurements!

Combining Gaussian Errors

★ There are many cases where we want to combine measurements to extract a single quantity, e.g. di-jet invariant mass
E₁

$$m^2 = E_1 E_2 (1 - \cos \theta)$$

- What is the uncertainty on the mass given $\sigma_{\!E_1},\,\sigma_{\!E_2},\sigma_{\! heta}$
- ★ Start by considering a simple example

$$a = x + y$$

Mean of a is

$$\overline{a} = \overline{x} + \overline{y}$$

Variance of a is given by:

$$\langle (a-\overline{a})^{2} \rangle = \langle (x+y-(\overline{x}+\overline{y}))^{2} \rangle$$

$$\sigma_{a}^{2} = \langle ([x-\overline{x}]+[y-\overline{y}])^{2} \rangle$$

$$= \langle (x-\overline{x})^{2} \rangle + \langle (y-\overline{y})^{2} \rangle + 2\langle (x-\overline{x})(y-\overline{y}) \rangle$$

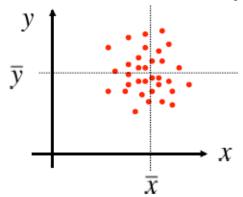
$$= \sigma_{x}^{2} + \sigma_{y}^{2} + 2\langle (x-\overline{x})(y-\overline{y}) \rangle$$

- **★** Two important points:
 - Errors add in quadrature (i.e. sum the squares)
 - The appearance of a new term, the covariance of x and y

$$cov(x,y) = \langle (x - \overline{x})(y - \overline{y}) \rangle$$

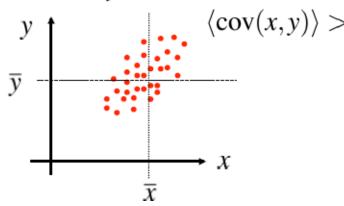
Correlated errors: covariance

- **★ Consider** $cov(x,y) = \langle (x \overline{x})(y \overline{y}) \rangle$
 - Suppose in a single experiment measure a value of x and y
 - Imagine repeating the measurement multiple times $\Rightarrow \{x_i, y_i\}$
 - If the measurements of x and y are uncorrelated, i.e. INDEPENDENT

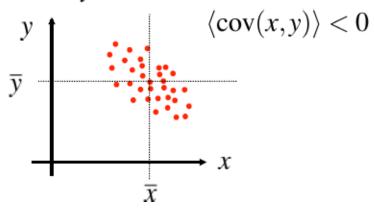


$$\langle \operatorname{cov}(x,y) \rangle = 0$$

If x and y are correlated



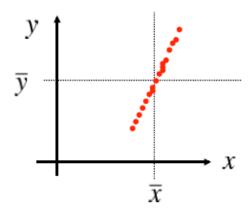
If x and y are anti-correlated



★ Often convenient to express covariance in terms of the correlation coefficient

$$\rho = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} \qquad \text{cov}(x, y) = \langle (x - \overline{x})(y - \overline{y}) \rangle \\ \sigma_x = \langle (x - \overline{x})^2 \rangle^{\frac{1}{2}}$$

• Consider an experiment which returns two values x and y; where $y - \overline{y} = 2(x - \overline{x})$



$$cov(x,y) = \langle (x - \overline{x})(2x - 2\overline{x}) \rangle$$

$$= 2\langle (x - \overline{x})^2 \rangle$$

$$= 2\sigma_x^2 = \sigma_x \sigma_y$$

$$\Rightarrow \rho = +1$$

★ Hence (unsurprisingly) the correlation coefficient expresses the degree of correlation with

\star Going back to a = x + y

$$\Rightarrow \quad \sigma_a^2 = \sigma_x^2 + \sigma_y^2 + 2\rho \sigma_x \sigma_y$$

Error propagation II: the general case

★ We can now consider the more general case

$$a = f(x,y)$$

$$a = f(x,y) = f(\overline{x},\overline{y}) + \frac{\partial f}{\partial x}(x-\overline{x}) + \frac{\partial f}{\partial y}(y-\overline{y}) + \dots$$

$$(a-\overline{a})^{2} = (f(x,y) - f(\overline{x},\overline{y}))^{2}$$

$$\approx \left(\frac{\partial f}{\partial x}\right)^{2}(x-\overline{x})^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}(y-\overline{y})^{2} + 2\frac{\partial f}{\partial x}\frac{\partial f}{\partial y}(x-\overline{x})(y-\overline{y})$$

$$\langle (a-\overline{a})^{2}\rangle = \left(\frac{\partial f}{\partial x}\right)^{2}\langle (x-\overline{x})^{2}\rangle + \left(\frac{\partial f}{\partial y}\right)^{2}\langle (y-\overline{y})^{2}\rangle + 2\frac{\partial f}{\partial x}\frac{\partial f}{\partial y}\langle (x-\overline{x})(y-\overline{y})\rangle$$

$$\sigma_{a}^{2} = \left(\frac{\partial f}{\partial x}\right)^{2}\sigma_{x}^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}\sigma_{y}^{2} + 2\frac{\partial f}{\partial x}\frac{\partial f}{\partial y}\operatorname{cov}(x,y)$$

$$\sigma_{a}^{2} = \left(\frac{\partial f}{\partial x}\right)^{2}\sigma_{x}^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}\sigma_{y}^{2} + 2\rho\frac{\partial f}{\partial x}\frac{\partial f}{\partial y}\sigma_{x}\sigma_{y}$$

★ In order to estimate the error on a derived quantity need to know correlations

Example continued

★Back to the original problem $m = \{E_1 E_2 (1 - \cos \theta)\}^{\frac{1}{2}}$

$$\sigma_{m}^{2} = \left(\frac{\partial m}{\partial E_{1}}\right)^{2} \sigma_{E_{1}}^{2} + \left(\frac{\partial m}{\partial E_{2}}\right)^{2} \sigma_{E_{2}}^{2} + \left(\frac{\partial m}{\partial \theta}\right)^{2} \sigma_{\theta}^{2} + 2\rho_{12} \frac{\partial m}{\partial E_{1}} \frac{\partial m}{\partial E_{2}} \sigma_{E_{1}} \sigma_{E_{2}} + 2\rho_{1\theta} \frac{\partial m}{\partial E_{1}} \frac{\partial m}{\partial \theta} \sigma_{E_{1}} \sigma_{\theta} + 2\rho_{2\theta} \frac{\partial m}{\partial E_{2}} \frac{\partial m}{\partial \theta} \sigma_{E_{2}} \sigma_{\theta}$$

 \star First assume independent errors on $E_1, E_2, \, heta$ and for simplicity neglect $\sigma_{\! heta}$ term

$$\frac{\partial m}{\partial E_1} = \frac{1}{2} \left\{ \frac{E_2}{E_1} (1 - \cos \theta) \right\}^{\frac{1}{2}} \qquad \frac{\partial m}{\partial E_2} = \frac{1}{2} \left\{ \frac{E_1}{E_2} (1 - \cos \theta) \right\}^{\frac{1}{2}}$$
giving:
$$\sigma_m^2 = \frac{1}{4} \left\{ \frac{E_2}{E_1} (1 - \cos \theta) \right\} \sigma_{E_1}^2 + \frac{1}{4} \left\{ \frac{E_1}{E_2} (1 - \cos \theta) \right\} \sigma_{E_2}^2$$

$$\frac{\sigma_m}{m} = \frac{1}{2} \left\{ \frac{\sigma_{E_1}^2}{E_1^2} + \frac{\sigma_{E_2}^2}{E_2^2} \right\}^{\frac{1}{2}}$$

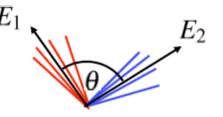
***EXERCISE:** by first considering σ_{m^2} , calculate $\frac{\sigma_m}{m}$, including the σ_{θ} term

ANS:
$$\frac{\sigma_m}{m} = \frac{1}{2} \left\{ \frac{\sigma_{E_1}^2}{E_1^2} + \frac{\sigma_{E_2}^2}{E_2^2} + \cot^2\left(\frac{\theta}{2}\right)\sigma_{\theta}^2 \right\}^{\frac{1}{2}}$$

Estimating the Correlation Coefficient

- ★ Correlations can arise from physical effects, e.g.
 - Would expect E₁ and E₂ to be (slightly) anti-correlated whv?

$$\Delta E_1 = E_1 - E_1^{ ext{MC}}$$
 against $\Delta E_2 = E_2 - E_2^{ ext{MC}}$



$$\Delta E_2$$
 ΔE_1

$$\rho = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y}$$

$$\Delta E_1 \qquad \rho = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} \qquad \text{cov}(x, y) = \langle (x - \overline{x})(y - \overline{y}) \rangle \\ \sigma_x = \langle (x - \overline{x})^2 \rangle^{\frac{1}{2}}$$

NOTE: uncertainty on correlation coefficient
$$s_{
ho} pprox rac{(1-
ho^2)}{\sqrt{n-2}}$$

- ★ Correlations also arise when calculating derived quantities from uncorrelated measurements
 - e.g. x = a + b y = a b
 - this type of correlation can be handled mathematically (see later)

Properties of the 2D Gaussian Distribution

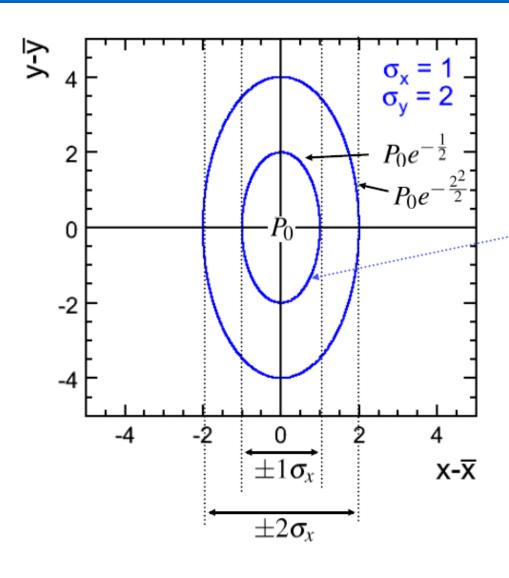
\star For two independent variables (x,y) the joint probability distribution P(x,y) is simply the product of the two distributions

$$P(x,y) = P(x)P(y) = \frac{1}{\sqrt{2\pi}\sigma_x} \exp\left\{-\frac{(x-\overline{x})^2}{2\sigma_x^2}\right\} \frac{1}{\sqrt{2\pi}\sigma_y} \exp\left\{-\frac{(y-\overline{y})^2}{2\sigma_y^2}\right\}$$
$$P(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left\{-\frac{1}{2}\left[\frac{(x-\overline{x})^2}{\sigma_x^2} + \frac{(y-\overline{y})^2}{\sigma_y^2}\right]\right\}$$

NOTE:
$$\int_{-\infty}^{+\infty} P(x, y) dy = \frac{1}{\sqrt{2\pi}\sigma_x} \exp\left\{-\frac{(x - \overline{x})^2}{2\sigma_x^2}\right\} = P(x)$$

\star Can write in terms of χ^2 with

$$P(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left\{-\frac{\chi^2}{2}\right\} \qquad \qquad \chi^2 = \chi_x^2 + \chi_y^2 = \frac{(x-\overline{x})^2}{\sigma_x^2} + \frac{(y-\overline{y})^2}{\sigma_y^2}$$



- 68 % of events within ±1 σ_{χ}
- 68 % of events within ±1 σ_v
- · Now consider contours of

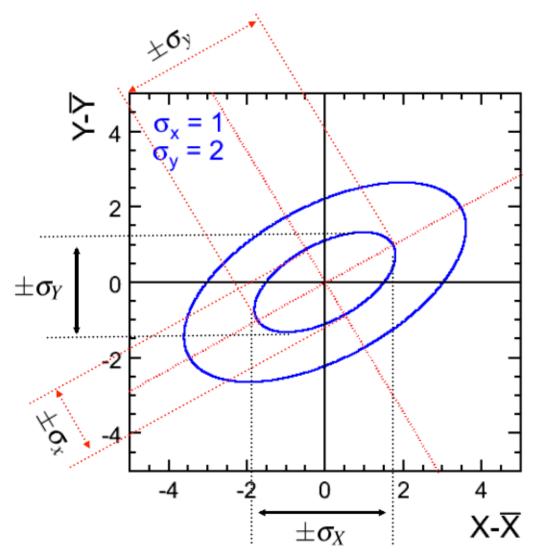
$$\chi^2 = \frac{(x - \overline{x})^2}{\sigma_x^2} + \frac{(y - \overline{y})^2}{\sigma_y^2}$$

- $\chi^2=1$ corresponds to contour where PDF falls to $e^{-rac{1}{2}}$ of peak
 - Only 39% of events within $\chi^2 < 1$
 - Only 86% of events within $\chi^2 < 4$

Now to introduce correlations... rotate the ellipse

$$\begin{pmatrix} X - \overline{X} \\ Y - \overline{Y} \end{pmatrix} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \begin{pmatrix} x - \overline{x} \\ y - \overline{y} \end{pmatrix}$$

$$s = \sin \theta$$
; $c = \cos \theta$



- Same PDF, but now w.r.t. different axes
- Simple to derive the general error ellipse with correlations...

Let
$$X = +cx + sy$$

 $Y = -sx + cy$

To find the equivalent correlation coefficient, evaluate

$$\langle XY \rangle = \langle scy^2 - scx^2 + (c^2 - s^2)xy \rangle = sc(\sigma_y^2 - \sigma_x^2)$$

hence

$$\rho_{XY}\sigma_X\sigma_Y=sc(\sigma_y^2-\sigma_x^2)\cdots$$

To eliminate the rotation angle, write

$$\sigma_X^2 = \langle X^2 \rangle = \langle c^2 x^2 + s^2 y^2 + 2csxy \rangle = c^2 \sigma_x^2 + s^2 \sigma_y^2$$

$$\sigma_Y^2 = \langle Y^2 \rangle = \langle c^2 y^2 + s^2 x^2 - 2csxy \rangle = c^2 \sigma_y^2 + s^2 \sigma_x^2$$

$$\sigma_Y^2 \sigma_Y^2 = s^2 c^2 (\sigma_y^4 + \sigma_y^4) + (c^4 + s^4) \sigma_y^2 \sigma_y^2$$

giving

$$\sigma_X^2 \sigma_Y^2 = s^2 c^2 (\sigma_X^4 + \sigma_Y^4) + (c^4 + s^4) \sigma_X^2 \sigma_Y^2$$

Compare to:

$$\rho^{2}\sigma_{X}^{2}\sigma_{Y}^{2} = s^{2}c^{2}(\sigma_{y}^{4} + \sigma_{x}^{4} - 2\sigma_{x}^{2}\sigma_{y}^{2}) -$$

gives

$$\sigma_X^2 \sigma_Y^2 = \rho^2 \sigma_X \sigma_Y + (c^4 + 2s^2c^2 + s^4)\sigma_x^2 \sigma_y^2$$

hence

$$(1 - \rho^2)\sigma_X^2\sigma_Y^2 = \sigma_x^2\sigma_y^2$$

Properties of 2D Gaussian Distribution

★ Start from uncorrelated 2D Gaussian:

$$P(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left\{-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right\}$$

★ Make the coordinate transformation

$$x = cX - sY; \quad y = sX + cY \qquad P(x,y) dxdy = P(X,Y) dXdY$$

$$P(X,Y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left\{-\frac{(cX - sY)^2}{2\sigma_x^2} - \frac{(cY + sX)^2}{2\sigma_y^2}\right\}$$

$$= \frac{1}{2\pi\sigma_x\sigma_y} \exp\left\{-\frac{X^2}{2} \left[\frac{c^2}{\sigma_x^2} + \frac{s^2}{\sigma_y^2}\right] - \frac{Y^2}{2} \left[\frac{c^2}{\sigma_y^2} + \frac{s^2}{\sigma_x^2}\right] + \frac{2XY}{2} sc \left[\frac{1}{\sigma_x^2} - \frac{1}{\sigma_y^2}\right]\right\}$$

$$= \frac{1}{2\pi\sigma_x\sigma_y} \exp\left\{-\frac{X^2}{2} \left[\frac{c^2\sigma_y^2 + s^2\sigma_x^2}{\sigma_x^2\sigma_y^2}\right] - \frac{Y^2}{2} \left[\frac{c^2\sigma_x^2 + s^2\sigma_y^2}{\sigma_x^2\sigma_y^2}\right] + \frac{2XY}{2} sc \left[\frac{\sigma_y^2 - \sigma_x^2}{\sigma_x^2\sigma_y^2}\right]\right\}$$

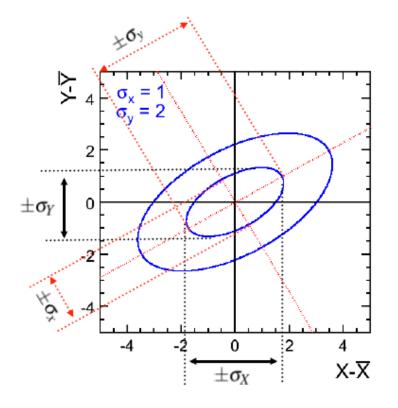
★ From previous page identify

$$\langle X^2 \rangle = \sigma_X^2 = c^2 \sigma_x^2 + s^2 \sigma_y^2 \qquad \langle Y^2 \rangle = \sigma_Y^2 = c^2 \sigma_y^2 + s^2 \sigma_x^2 \qquad (1 - \rho^2) \sigma_X^2 \sigma_Y^2 = \sigma_x^2 \sigma_y^2$$

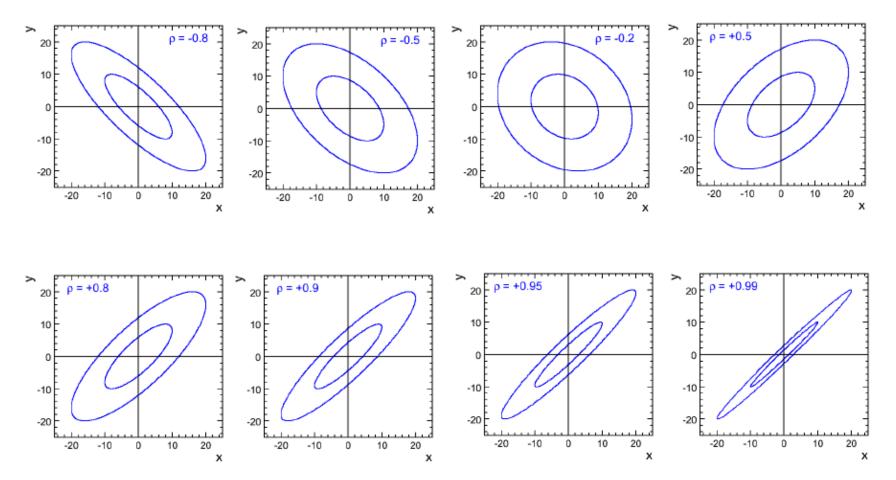
$$P(X,Y) = \frac{1}{2\pi\sqrt{(1-\rho^2)}\sigma_X\sigma_Y} \exp\left\{-\frac{X^2}{2} \left[\frac{\sigma_Y^2}{(1-\rho^2)\sigma_X^2\sigma_Y^2} \right] - \frac{Y^2}{2} \left[\frac{\sigma_X^2}{(1-\rho^2)\sigma_X^2\sigma_Y^2} \right] + \frac{2\rho XY}{2(1-\rho^2)\sigma_X\sigma_Y} \right\}$$

$$= \frac{1}{2\pi\sqrt{(1-\rho^2)}\sigma_X\sigma_Y} \exp\left\{-\frac{1}{2} \frac{1}{1-\rho^2} \left[\frac{X^2}{\sigma_X^2} + \frac{Y^2}{\sigma_Y^2} - \frac{2\rho XY}{\sigma_X\sigma_Y} \right] \right\}$$

- ★ Note we have now expressed the same ellipse in terms of the new coordinates, where the errors are now correlated.
- ★ If dealing with correlated errors can always find a linear combination of variables which are uncorrelated



★ Example 2D error ellipses with different correlation coefficients



The Error Ellipse and Error Matrix

★ Now we have the general equation for two correlated Gaussian distributed quantities

$$P(x,y) = \frac{1}{2\pi\sqrt{(1-\rho^2)}\sigma_x\sigma_y} \exp\left\{-\frac{1}{2}\frac{1}{1-\rho^2}\left[\frac{(x-\overline{x})^2}{\sigma_x^2} + \frac{(y-\overline{y})^2}{\sigma_y^2} - 2\frac{\rho(x-\overline{x})(y-\overline{y})}{\sigma_x\sigma_y}\right]\right\}$$

- ★ Defines the error ellipse
- **★** Ultimately want to generalise this to an N variable hyper-ellipsoid
- **★** Sounds hard... but is actually rather simple in matrix form
- ★ Define the ERROR MATRIX

$$\mathbf{M} = \begin{pmatrix} \langle x^2 \rangle & \langle xy \rangle \\ \langle xy \rangle & \langle y^2 \rangle \end{pmatrix}$$
 i.e

 $\mathbf{M} = \begin{pmatrix} \langle x^2 \rangle & \langle xy \rangle \\ \langle xy \rangle & \langle y^2 \rangle \end{pmatrix} \quad \text{i.e.} \quad \mathbf{M} = \begin{pmatrix} \sigma_x^2 & \rho \, \sigma_x \, \sigma_y \\ \rho \, \sigma_x \, \sigma_y & \sigma_y^2 \end{pmatrix}$

$$\star$$
 and define the DISCREPANCY VECTOR $\mathbf{x} = \begin{pmatrix} x - \overline{x} \\ y - \overline{y} \end{pmatrix}$ $\det \mathbf{M}$

using
$$\mathbf{M}^{-1} = \frac{1}{1-\rho^2} \begin{pmatrix} \frac{1}{\sigma_x^2} & -\frac{\rho}{\sigma_x \sigma_y} \\ -\frac{\rho}{\sigma_x \sigma_y} & \frac{1}{\sigma_y^2} \end{pmatrix}$$
 and $|\mathbf{M}| = (1-\rho^2)\sigma_x^2 \sigma_y^2$

$$|\mathbf{M}| = (1 - \rho^2)\sigma_x^2 \sigma_y^2$$

we can write
$$P(x,y) = \frac{1}{2\pi |\mathbf{M}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{x}\right\}$$

★ The beauty of this formalism is that it can be extended to any number of correlated Gaussian distributed variables

$$P(x_1, x_2, ..., x_n) = \frac{1}{(2\pi)^{\frac{n}{2}} |\mathbf{M}|^{\frac{1}{2}}} \exp \left\{ -\frac{1}{2} \mathbf{x}^{\mathbf{T}} \mathbf{M}^{-1} \mathbf{x} \right\}$$

with

$$\mathbf{M} = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \dots & \rho_{1n}\sigma_1\sigma_n \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 & \dots & \rho_{2n}\sigma_2\sigma_n \\ \dots & \dots & \dots & \dots \\ \rho_{1n}\sigma_1\sigma_n & \rho_{2n}\sigma_2\sigma_n & \dots & \sigma_n^2 \end{pmatrix}$$

\star Can write this in terms of the χ^2 for n-variables (including correlations)

$$P(x_1, x_2, ..., x_n) = \frac{1}{(2\pi)^{\frac{n}{2}} |\mathbf{M}|^{\frac{1}{2}}} \exp\left\{-\frac{\chi^2}{2}\right\} = P_0 e^{-\frac{\chi^2}{2}}$$
with
$$\chi^2 = \mathbf{x}^T \mathbf{M}^{-1} \mathbf{x}$$

General transformation of Errors

- ***** Suppose we have a set of variables, x_i , and the error matrix, M, and now wish to transform to a set of variables, y_i , defined by
- ★ Taylor expansion about mean:

$$y_{i} = \overline{y}_{i} + \sum_{k} \frac{\partial y_{i}}{\partial x_{k}} (x_{l} - \overline{x}_{k}) + \mathcal{O}(\Delta x^{2})$$

$$y_{i} - \overline{y}_{i} \approx \sum_{k} \frac{\partial y_{i}}{\partial x_{k}} (x_{k} - \overline{x}_{k})$$

$$\langle (y_{i} - \overline{y}_{i})(y_{j} - \overline{y}_{j}) \rangle = \left\langle \sum_{k} \frac{\partial y_{i}}{\partial x_{k}} (x_{k} - \overline{x}_{k}) \sum_{\ell} \frac{\partial y_{j}}{\partial x_{\ell}} (x_{\ell} - \overline{x}_{\ell}) \right\rangle$$

$$= \sum_{k\ell} \frac{\partial y_{i}}{\partial x_{k}} \frac{\partial y_{j}}{\partial x_{\ell}} \langle (x_{k} - \overline{x}_{k})(x_{\ell} - \overline{x}_{\ell}) \rangle$$

$$\mathbf{M}_{\{\mathbf{y}\}}^{ij} = \sum_{k\ell} \frac{\partial y_{i}}{\partial x_{k}} \frac{\partial y_{j}}{\partial x_{\ell}} \mathbf{M}_{\{\mathbf{x}\}}^{k\ell}$$

$$\mathbf{M}_{\{\mathbf{y}\}} = \mathbf{T}^{\mathbf{T}} \mathbf{M}_{\{\mathbf{x}\}} \mathbf{T}$$

★ T is the error transformation matrix

$$\mathbf{T} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_2} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial y_1}{\partial x_n} & \frac{\partial y_2}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}$$

For Gaussian errors we can now do anything!

- ★ Can deal with:
 - correlated errors
 - arbitrary dimensions
 - parameter transformations

Examples...

A simple example

***** Measure two uncorrelated variables $a\pm\sigma_a,\ b\pm\sigma_b$

Error matrix
$$\mathbf{M} = \begin{pmatrix} \sigma_a^2 & 0 \\ 0 & \sigma_b^2 \end{pmatrix}$$
 $\mathbf{M}^{-1} = \begin{pmatrix} 1/\sigma_a^2 & 0 \\ 0 & 1/\sigma_b^2 \end{pmatrix}$

★ Calculate two derived quantities

$$x = a + b$$
 $y = a - b$

★ Transformation matrix

$$\mathbf{T} = \begin{pmatrix} \frac{\partial x}{\partial a} & \frac{\partial y}{\partial a} \\ \frac{\partial x}{\partial b} & \frac{\partial y}{\partial b} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

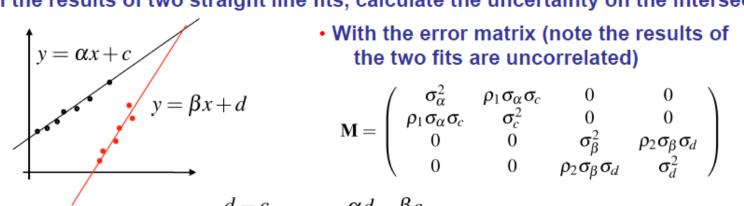
★ Giving

$$\begin{pmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{pmatrix} = \mathbf{T}^{\mathbf{T}} \mathbf{M} \mathbf{T} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \sigma_a^2 & 0 \\ 0 & \sigma_b^2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} \sigma_a^2 + \sigma_b^2 & \sigma_a^2 - \sigma_b^2 \\ \sigma_a^2 - \sigma_b^2 & \sigma_a^2 + \sigma_b^2 \end{pmatrix}$$

$$\sigma_x^2=\sigma_y^2=\sigma_a^2+\sigma_b^2;~~
ho=rac{\sigma_a^2-\sigma_b^2}{\sigma_a^2+\sigma_b^2}$$

A more involved example

★ Given the results of two straight line fits, calculate the uncertainty on the intersection



$$\mathbf{M} = \begin{pmatrix} \sigma_{\alpha}^2 & \rho_1 \sigma_{\alpha} \sigma_c & 0 & 0\\ \rho_1 \sigma_{\alpha} \sigma_c & \sigma_c^2 & 0 & 0\\ 0 & 0 & \sigma_{\beta}^2 & \rho_2 \sigma_{\beta} \sigma_d\\ 0 & 0 & \rho_2 \sigma_{\beta} \sigma_d & \sigma_d^2 \end{pmatrix}$$

•Lines Intersect at:
$$x = \frac{d-c}{\alpha-\beta}$$
 $y = \frac{\alpha d - \beta c}{\alpha-\beta}$

- •To calculate error on intersection need error transformation matrix, i.e. need the partial derivatives, e.g. $\frac{\partial x}{\partial \alpha} = \frac{c-d}{(\alpha-\beta)^2}$
- giving

$$\mathbf{T} = \begin{pmatrix} \frac{\partial x}{\partial \alpha} & \frac{\partial y}{\partial \alpha} \\ \frac{\partial x}{\partial c} & \frac{\partial y}{\partial c} \\ \frac{\partial x}{\partial \beta} & \frac{\partial y}{\partial \beta} \\ \frac{\partial x}{\partial d} & \frac{\partial y}{\partial d} \end{pmatrix} = \frac{1}{\alpha - \beta} \begin{pmatrix} -\kappa & -\beta \kappa \\ -1 & -\beta \\ \kappa & \alpha \kappa \\ +1 & \alpha \end{pmatrix} \quad \text{with} \quad \kappa = \frac{d - c}{\alpha - \beta}$$

then its just algebra

$$\begin{pmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{pmatrix} = \mathbf{T}^{\mathbf{T}} \mathbf{M} \mathbf{T}$$

$$= \begin{pmatrix} -\kappa & -1 & \kappa & +1 \\ -\beta \kappa & -\beta & \alpha \kappa & \alpha \end{pmatrix} \begin{pmatrix} \sigma_\alpha^2 & \rho_1 \sigma_\alpha \sigma_c & 0 & 0 \\ \rho_1 \sigma_\alpha \sigma_c & \sigma_c^2 & 0 & 0 \\ 0 & 0 & \sigma_\beta^2 & \rho_2 \sigma_\beta \sigma_d \\ 0 & 0 & \rho_2 \sigma_\beta \sigma_d & \sigma_z^2 \end{pmatrix} \begin{pmatrix} -\kappa & -\beta \kappa \\ -1 & -\beta \\ \kappa & \alpha \kappa \\ +1 & \alpha \end{pmatrix}$$

giving

$$\sigma_{x}^{2} = \frac{1}{(\alpha - \beta)^{2}} \left[\kappa^{2} (\sigma_{\alpha}^{2} + \sigma_{\beta}^{2}) + 2\kappa(\rho_{1}\sigma_{\alpha}\sigma_{c} + \rho_{2}\sigma_{\beta}\sigma_{d}) + \sigma_{c}^{2} + \sigma_{d}^{2} \right]$$

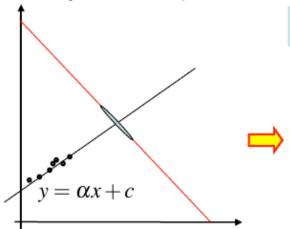
$$\rho \sigma_{x} \sigma_{y} = \frac{1}{(\alpha - \beta)^{2}} \left[\kappa^{2} (\beta \sigma_{\alpha}^{2} + \alpha \sigma_{\beta}^{2}) + 2\kappa(\rho_{1}\beta \sigma_{\alpha}\sigma_{c} + \rho_{2}\alpha\sigma_{\beta}\sigma_{d}) + \beta \sigma_{c}^{2} + \alpha \sigma_{d}^{2} \right]$$

$$\kappa = \frac{d - c}{\alpha - \beta}$$

$$\sigma_{y}^{2} = \frac{1}{(\alpha - \beta)^{2}} \left[\kappa^{2} (\beta^{2}\sigma_{\alpha}^{2} + \alpha^{2}\sigma_{\beta}^{2}) + 2\kappa(\rho_{1}\beta^{2}\sigma_{\alpha}\sigma_{c} + \rho_{2}\alpha^{2}\sigma_{\beta}\sigma_{d}) + \beta^{2}\sigma_{c}^{2} + \alpha^{2}\sigma_{d}^{2} \right]$$

★OK, it is not pretty, but we now have an analytic expression (i.e. once you have done the calculation, computationally very fast)

• Apply to a special case, intersection with a fixed line y = 1 - x



$$\beta = -1; d = +1; \sigma_{\beta} = 0; \sigma_{d} = 0$$

$$\sigma_x^2 = \frac{1}{(\alpha - \beta)^2} \left[\kappa^2 \sigma_\alpha^2 + 2\kappa \rho_1 \sigma_\alpha \sigma_c + \sigma_c^2 \right]$$

$$\rho \sigma_x \sigma_y = \frac{1}{(\alpha - \beta)^2} \left[-\kappa^2 \sigma_\alpha^2 - 2\kappa \rho_1 \sigma_\alpha \sigma_c - \sigma_c^2 \right]$$

$$\sigma_y^2 = \frac{1}{(\alpha - \beta)^2} \left[\kappa^2 \sigma_\alpha^2 + 2\kappa \rho_1 \sigma_\alpha \sigma_c + \sigma_c^2 \right]$$

Hence
$$\sigma_x^2 = \sigma_y^2$$
; $\rho = -1$ which makes perfect sense

★ The treatment of Gaussian errors via the error matrix is an extremely powerful technique – it is also easy to apply (once you understand the basic ideas)

Summary

- **★** Should now understand:
 - Properties of the Gaussian distribution
 - How to combine errors
 - Propagation simple of 1D errors
 - How to include correlations
 - How to treat multi-dimensional errors
 - How to use the error matrix
- ★ Next up, chi-squared, likelihood fits, ...

Appendix: Error on Error - Justification

 Assume mean of distribution is zero (can always make this transformation without affecting the variance)

$$Var(s^{2}) = \langle (s^{2} - \sigma^{2})^{2} \rangle$$

$$= \langle (\frac{1}{n} \sum x^{2} - \sigma^{2})^{2} \rangle$$

$$= \frac{1}{n^{2}} \langle \sum_{i} x_{i}^{2} \sum_{j} x_{j}^{2} \rangle - 2\sigma^{2} \langle (\frac{1}{n} \sum x^{2}) \rangle + \sigma^{4}$$

$$= \frac{1}{n^{2}} (n \langle x^{4} \rangle + n(n-1) \langle x_{i}^{2} x_{j}^{2} \rangle_{i \neq j}) - \sigma^{4}$$

$$\approx \frac{1}{n} \langle x^{4} \rangle + \frac{n-1}{n} \sigma^{4} - \sigma^{4} \qquad \left\{ \begin{array}{c} \text{For large n} \\ \langle x_{i}^{2} x_{j}^{2} \rangle_{i \neq j} \approx \sigma^{4} \end{array} \right.$$

$$= \frac{1}{n} (\langle x^{4} \rangle - \langle x^{2} \rangle^{2})$$