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Lecture 2: The Gaussian Limit
The central limit theorem, Gaussian errors, Error
propagation, Combination of measurements, Multi-
dimensional Gaussian errors, Error Matrix



How to calculate uncertainties?

* Problem: given the results of two straight line fits with errors,
calculate the uncertainty on the intersection

y=0Xx—+cC

* Solution: first learn about
» Gaussian errors
» Correlations
" Error propagation



The Central Limit Theorem

* We have already shown that for large p that a Poisson distribution tends to a
Gaussian

* This is one example of a more general theorem, the “Central Limit Theorem”*

If » random variables, x;, each distributed according to any PDF, are combined
then the sum y = 2 x; will have a PDF which, for large n, tends to a Gaussian

* For this reason the Gaussian distribution plays an important role in statistics

. _ 1 (x—u)?
Gx,u,0) = maexp{—ﬁ}

which by make a suitable coordinate transformation, x — Ox + U, gives the
Normal distribution

- 1 X Mean = zero
;N(x): - EXP{_E}E RmS =1

* The proof of the central limit theorem is non-trivial



A useful integral relationship

* We will often take averages of functions of Gaussian distributed quantities (x2>} (x4>
* Hence interested in integrals of the form

((x— ) e o de o [ e
—_— EUE = —{j‘n M 1
*—H# «..f Cr'/ oty V2T ]—m )
* Define I, = x” ~ 7T dx Fornodd, [,=0
oo 2 to 2
For even n: = d—x"'e Z)+(n—1) X' e Tdx
271"
= [—x”_le_T} +(n—1),»
* Hence Iy _
= (n—1) n> 1
Iy
[o-pyre
* By writing . e n I
(x—p)"y = 270 — = |(Gb-w)) = ;o
P v L
2ng v
Iy 1 fg ly
eg. (x—w) = pot=yrot=@-12-1et=30"

Iy Ig fﬂ



Properties of Gaussian Distribution

* Normalised to unity (it’'s a PDF)

oo
/ G(x;u,0)dx=1
- oy = [T
Proof: - G(x;u,0)dx = Z:Wf e dx
- zlsrm' \/_G / ¢ rd}
- L re.ym=1
2no
* Variance Var(x) = ((x — n)?) = o?
A 2 1 e 2 -
Proof: Var(x) :/ (x—u)*Glxyu,0)dx = 2?:0'/ (x—pu)e
12 2

.t—;.![z
202 dx



Properties of the 1D Gaussian Distribution, cont.

1 aew)?
Gx;u,0) = e 20’
E 0.5 : T T T ( ’ ) NG
= i
36 04k * Natural to introduce XE(I)
2 (x—u)?
o [ 2 X H)”
T oaf S
0-3 i “squared deviation from mean in
- terms of standard error”
0.2 N 1 xZ
: G(x;u,0) = exp | —7-
2o 2
0.1
* Fractions of events
0- 1 L i 1 E L I L E L i L 683% |I_M|<1G E(ch:l)

-4 2 0 2 . 4 95.5% : |x—pu <20§ é(f{‘i}
(X-u)o = 99.7% : [x—u| <30 (x*<9)
6x107 ¢ [x—p|>50 (x>2)




Averaging Gaussian Measurements

* Suppose we have two independent measurements of a quantity, e.g. the W

boson mass:
X140, and x» o

there are two questions we can ask:

- Are the measurements compatible? [Hypothesis test —we’ Il return to this ]
- What is our best estimate of the parameter X? (i.e. how to average)

* In principle can take any linear combination as an unbiased estimator of x
X12 = @1 X] + Wox2 provided W+ =1
since  (X12) = 01 (x1) + @2 (x2) = O U+ O =

* Clearly want to give the highest weight to the more_nrecise measurements...
e.d. two undergraduate measurements of g[m S ]

10.1+£0.3 5£5

* Method I: choose the weights to minimise the uncertainty on
2 _ 2 22
O, = Z W; O,

I
subject to constraint f(w;,@,...)=1—-Y,;0;=0



* Hence for two measurements

with

X X2
I
Y=

of O3
, 1
T T o

of 03

— Problem: derive this.

(just error propagation as
described later)



Averaging Gaussian Measurements li

* Can obtain the same expression using a natural probability based approach
* We can interpret the first measurement in terms of a probability distribution for

| (x—x1)°
i~}

P(x)=P(x;x1) = Tomo

* Bayes’ theorem then tells us how to modify this in the light of a new measurement
P(x;data) =« P(data;x)P(x)
2 _ 2
X—X X—X
(x —x2) }Hp{_( ;)}
20

2
203

the true value of x, i.e. a Gaussian centred on x;,

P(x;data) o< exp {—

= S0 our new expression for the knowledge of x is:
[ (x—x1)* (x—x2)?
P(x) < exp—x +
(%) P 2{ o} o5
* Completing the square gives plus a little algebra gives
Mo
(x —X)? . 2 I
P(X)DCBKP —_ 5 with X = 7 LandO' :L-I-L
20 ot o3 o o3

* Product of n Gaussians is a Gaussian
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Error Propagation |

* Suppose measure a quantity x with a Gaussian uncertainty o_; what is the
uncertainty on a derived quantity
y=f(x)

- Expand f(x) about X

flx) = (@+@—@(g)4m.

- Define estimate of y: y

o y—y=f(x)—f(z—c>x(x—f>(df)
2

11



YEOy $-oiiniiiii Ay
i,
e .
X+t o,

* How does a “small” change in X, i.e. O, propagate to a small change iny, O,

oy dy
o \dx/.
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* A word of warning... df
" |n deriving the error propagation equation » O = - O,
» Neglected second order terms in the Taylor expansion ' dx X

» This is equivalent to saying that the derivative is constant in region of interest
* This may not always be true...

y ‘h r.r
Calculated I‘

y= f(x)

“Correct” —,

X+ o,
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* Recall question 2:
Given 5 measurements of a quantity x: 10.2, 5.5, 6.7, 3.4, 3.5

What is the best estimate of X and what is the estimated uncertainty?

x=35.86; 5,1 =2.80; oy= -‘5‘:/—51 = 1.25

So our best estimate of xis: | x=5.94+1.3

* But how good is our estimate of the error — i.e. what is the “error on the error” ?
* |t can be shown (see Appendix)

var(s) = 1 (= - 253

» For a Gaussian distribution ((x — 1.1)4) — 304

4 —3 4
50 Vf,uv(arz):ﬁ—(3—M )=26

(=)

n n— | n—1
» Hence (by error propagation — show this) the error on the error estimate is
o}
O, —
2(n—1)

* To obtain a 10% estimate of G; need rms of 51 measurements !
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Combining Gaussian Errors

* There are many cases where we want to combine measurements to extract a
single quantity, e.g. di-jet invariant mass E|

m> = E{E>(1 —cos0)
- What is the uncertainty on the mass given OE,, OF,,0¢

* Start by considering a simple example

a=x+y
- Mean of a is a=x+y
« Variance of g is given by:
(@a=a)’) = ((x+y—(GE+¥)?)
o, = ((k=3+p-3)

= (=) + (-9 +2((x—F)(v-7))
= o7 +0; +2((x—3)(y—7))

* Two important points:
* Errors add in quadrature (i.e. sum the squares)

* The appearance of a new term, the covariance of x and y

cov(x,y) = {(x —%)(y —¥))

15



Correlated errors: covariance

* Consider cov(x,y) = ((x—X)(y—9))
- Suppose in a single experiment measure a value of x and y
- Imagine repeating the measurement multiple times =) {xi,,yi}

« If the measurements of X and y are uncorrelated, i.e. INDEPENDENT

y - .EE::;.-. (CDV( _xjy)) — ()
X
- If X and y are correlated « If X and y are anti-correlated
y 1t 1. (eov(x,y)) >0 y 1 (cov(x,y)) <0
7 .‘_-E'E:EE;' y - "{E}i;- .....................
X X

16



* Often convenient to express covariance in terms of the correlation coefficient

COV(X,Y)
OOy

p:

cov(x,y) = ((x=X%)(y —¥))
0, = ((x—x)2)?

- Consider an experiment which returns two values x and y; where y-y = 2(x-X)

. g
M F)
X

cov(x,y)

= P

((x—X)(2x - 2x%))

2((x—x)%)
qu = 0,0y
+1

* Hence (unsurprisingly) the correlation coefficient expresses the degree

of correlation with

* Going backto @ =X+

2

= O,

pl<1

o; + 0, +2p0,0,
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Error propagation ll: the general case

* We can now consider the more general case

a=f(x,y)
a = flny)= (xy)+§—f(x 9+ 2L -5+

(a—a) = (f(xy)=f(xy)?
(2) w22+ (L) o9 02L Y 69
@) = (Z) o+ (Z) ©- +2§ﬁ<<x B0-5)
)

’ of 9
( ) —|—2a—:: afcov(x y)

2 _ (9f df afé‘f
- ) () 7 e

* |n order to estimate the error on a derived quantity need to know correlations
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Example continued

!
* Back to the original problem m = {E|E»(1 —co0s0)}?2

mo T \9E,) B \oE,)] B \og) °
dm dm dm dm

2 om om Og, O, +2 E,0p +2 ——Og, O
PlzaEl 8E E, OF, PleaE 86 0 PzaaE 90 E>Op
* First assume independent errors on £ , EZ? 0 and for simplicity neqlect Op term
|
dm 1 Ez 2 dm E] 2
— =—=¢—(l—cos6 = 1 —cos@
JE, 2{51( o8 )} JE> 2{53( )
.. 1 [ E> 1 [ E;
giving: G2 = 4{El(1_CDSG)}GEI+Z{E_(1_CDSG)}G§2
Om _ I GE] 4 Ja%z :
m 2 E2 E3

* EXERCISE: by first considering 0,2, calculate ?’:L, including the Og term

on _ 1]oE of 6\ |’
ANS: -5 = 2{52 E? (z)gﬂ}

m
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Estimating the Correlation Coefficient

* Correlations can arise from physical effects, e.q.
* Would expect E, and E, to be (slightly) anti-correlated
why ?
- Can always check (in MC) by plotting

AE| = E —Efdc against AE» ZEQ—ESdC

AE»
:_-_,:' . o= cov(Xx,y) cov(x,y) = ((X—f)(}’]— y))
_n_l.'.:_t.r‘_.. . o
T AR 00y 0= (v -2
(1-p?)
NOTE: uncertainty on correlation coefficient Sp = ﬂ
* Correlations also arise when calculating derived quantities from uncorrelated

measurements
ceg. x=a+b y=a-—>b

- this type of correlation can be handled mathematically (see later)

20



Properties of the 2D Gaussian Distribution

* For two independent variables (x,)) the joint probability distribution P(xgy)
is simply the product of the two distributions

1 x—X)? I =)
P(x,y) = P(x)P(y) = Vano. P {_ | 253) } V2mo, o { i (}2"? }

_ 1 1| (x=%)°*  (y—y)
P(x’y)Z?erO'yEXP{Zl o2 T G2 ]}

¥y
NOTE: e | (x —X)*
[ P T O 5gr [ = P
- X X

* Can write in terms of Zz with

1 ° JC—.TZ —y
P23) = g P] -5 | Pogigpe B 09
x Oy

21



Ii 'E' " - 68 % of events within 1 o_
4 N - 68 % of events within 1 ¢,
i - Now consider contours of
- —=\2 =\2
2f » (=x)°  O-Yy)
L x T 2 + 2
i Oy Oy
0 ! | IR x2 =1 corresponds to ?untuur
D ] where PDF fallsto ¢ 2 of peak
2r B - Only 39% of events within x2 < 1
- - » Only 86% of events within x2 <4
4 F -
T T I T T Now to introduce correlations...
-4 D i 0 i 09 4 rotate the ellipse
o, X-X X=X\ _(c s)(x%
: F Y-Y) \-sc)\y=y
+20, s =sinf@; c=cosH
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'""-..\Xo
" sl

H:Q xq =

LENLIE B N R B II__.I'LE__

sSame PDF, but now w.r.t. different

=Simple to derive the general error
ellipse with correlations...

okl
X



Let X = Hcx+sy

Y = —sx+cy
To find the equivalent correlation coefficient, evaluate

(XY) = (scy* — scx? —|- ( )xy) = sc(oy — 07)

_ 2 0\
hence PXYUXO'}’ — E‘C(Gy O; ):

To eliminate the rotation angle, write
oy = (X?) = (*x* +5%y* + 2csxy) = ¢* 02 +5’2 2
o7 = (Y?) = (c®y? +5°x> — 2esxy) = ¢ 0’2 + 52
giving 050y = s*c*(0} +0)) + (¢t +5%) o7 _3
Compare to: p Oy o'% — 52(32(6;1 1+ g;‘ — ZGEGE} ”

gives O')%G}%=PZO'X0'}"|‘( 4+25202+S) r2 5
N2l — 242
hence (1-p~)ogoy = o0,
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Properties of 2D Gaussian Distribution

* Start from uncorrelated 2D Gaussian:

1 2 2
A

2 2
210\ Oy 20; 2oy
* Make the coordinate transformation
x=cX—sY; y=sX+cY P(x,y)dxdy = P(X,Y)dXdY
] (X —sY)?  (c¥ +sX)?
PX.Y) = — —
X1 = 2260, ‘*"p{ 202 202
. {' x2 | ¢ N B E e O R
= —_— st = | sC|— — —5
210, 0y P 2 |o7 oy 2 |oy o} 2 c; Oy
| [ x2 [Po2+5°c2| v?2[cPol+s%62| 2xy [ol-o!
= 4 — = —_——_— "
2m0, 0y =P | 2] orders 2 orders 2 ¢ G0}

* From previous page identify

(X% =03 =c?0?+s%0}  (Y2) =0} =c?ol+s’cl  (1—p?)ojo; = 6l0?;

25



2pXY

]+2(

1 —p?)oxoy

I X2 o} Y2 o}
P(X,Y) = EXP{__[ Sy ’?]__[ iy
2m+/(1—p?)oyoy 2 [(1—-p?)ogoy 2 [ (1-p?)oi0;
B 1 o { 11 [X? y? ZpXY] }
2?1"\!(] —pz}{fxﬁ}! 21 —.02 U‘% U}% Oy Oy
* Note we have now expressed the same 503 o
ellipse in terms of the new coordinates, ‘. —_
where the errors are now correlated. 'i R 7.
-5, =2 -
k4

* If dealing with correlated errors can
always find a linear combination
of variables which are uncorrelated

[ L1 .IE. .|. Ll
-4 -2 0 2 4
? —
: :IZUX : X-R

|
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* Example 2D error ellipses with different correlation coefficients

= P T T L L R B P oo . L = P = : e = P "
20 p= 0.8 20 [ p= 0.5 3 20 p= 0.2 20k p= +0.5 E
of v\ of (—\\ ] 1of (—\ 0F //Ij ]
) \z) | i \\\ | | \_) | L/
-0} \Q o0} \\i) h Aok A0 / ]
20F 1 -aof {1  f b 20F ]
20 a6 o 10 2 20 e T e 20 0 0 10 20 0 0 0 10 20
* X ® X
= T T U B . T T R = T ; L - i . ' |
s p=+0.8 h anf p=+09 ] a0l P=+0.95 & aof p=+0.99 ]
1oF /O 1 wof O ] o 4 ] 1oF / E
/7 | ﬁ; NS 748 N
-0f (// 1 -of & ; 10f & 1 of / ;
20 1 o 1 ef 1 af .
T2 a0 o T T T e T T e 20 40 0 10 20 20 -0 0 0 20
X X X X
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The Error Ellipse and Error Matrix

* Now we have the general equation for two correlated Gaussian distributed quantities

27+/(1—-p?)o,o0, o o} 0,0y

* Defines the error ellipse

* Ultimately want to generalise this to an N variable hyper-ellipsoid

* Sounds hard... but is actually rather simple in matrix form
* Define the ERROR MATRIX

(B8 - GE)

y

Plry) = ! ﬂxp{_l | {(x—f)ﬁ _,_(y—ﬁ)z_zp(x—f)(y—?)u

X—X
* and define the DISCREPANCY VECTOR X= ( )

y—y detM
! 5 oo
using M_'Zl_pz(_;‘% E'f) and  [M| = (1-p*)o;oy

1 I v
we can write P(x,y) = —,Exp{—EKM x}
27| M| 2

28



* The beauty of this formalism is that it can be extended to any number of
correlated Gaussian distributed variables

1 1
P(x11x23"':xﬂ) — " T EXP{—EXTM_IX}
(2m) 3 M}
with ‘512 PIEU_} 02 ... Pi1a010y
M — P120102 05 e 2,020
P1n010, P2,020, ... U&

* Can write this in terms of the Z2 for n-variables (including correlations)

1 2 2
P(x1,x2,....%,) = - ] exp{—%—} =P[}€_%_
eoimE L2

with ¥ = x'MIx

29



General transformation of Errors

* Suppose we have a set of variables, x;, and the error matrix, M, and now wish to
transform to a set of variables, y;, defined by

* Taylor expansion about mean:

Vi = +Z («’ff—xk )+ O(Ax*)
=y = 3}?,- Xp—X
Yi—V; ;axk( — Xi)
V(v 7)) — Wi AV Di s
(i }’s)(}; }j)) = <§, Oy (s x;c); 6‘1:; (x¢ xe‘)>

_ v Wiy .
- %‘,axkaxﬁ«xk IL)(-}:E .Igi_‘)>

. dy; dy;
ij ! J' H"
My " = E ox; 8xg

T
My, = T MyT
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* T is the error transformation matrix

/ dyr  dyz
dx dxi
dy,  dy

T=| In Ix
\ dy; Iy

dx,  dxy,

/

For Gaussian errors we can now do anything !

* Can deal with:
+ correlated errors
+ arbitrary dimensions
+ parameter transformations

Examples...




A simple example

* Measure two uncorrelated variables a1 6,, b+ 0}

. o 0 - l/o; 0
Error matrix M:((‘f GE) Ml:( /D.ﬂ 1/55)

* Calculate two derived quantities
xX=a+b y=a—>b

* Transformation matrix

9 o 11
T={ 5 & :(1 1)
db  db

* Giving

2 2
.  pPO.Oy T [ 1] o; 0 11
(pﬁray o2 ) = TMT_(1 —1>( 0 o2 )1 -1
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A more involved example

* Given the results of two straight line fits, calculate the uncertainty on the intersection

« With the error matrix (note the results of
the two fits are uncorrelated)

_— Ug: p|UﬂU{‘ D 0
y ﬁX—Fd M — P10 O, o’ 0 0
. 0 0 cr§ P2030y
0 0 p205 04 ﬁ
: d—c od — PBc
sLines Intersectat: x= y=—
&—ﬁ a—ﬁ
*To calculate error on interse%tion need;rmr transformation matrix, i.e. need the
artial derivatives, e.q. 2 — ¢
° % 3¢ = lapp
" giving
dx Iy
da %a -k —Bx
ax gy 1 1 . d—c
T = gt‘- 3.: o - —p with K = P
X ¥y —
9 9B o — ﬁ K oK
dx  dy +1 o

ad  Jd
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* then its just algebra

2
( % P "xff) = T'MT
poo, O,
oo D100, 0 0 -k —fBx
B -k -1 x +1 p100, O 0 0 -1 -B
— _Bx -B ak a 0 0 "E P20304 K 0K
0 0 P2030, o +1 «
= giving
2 1 202 2 2 | o2
O; = 5 | K (0g + 0p) +2K(p1 0 Oc + P20 04) + O; —|—crd]
(a_B)L - d—c
| [ 2/ 2 2 2 2 K= ——
P OOy = m _K' (ﬁﬂu+ﬂﬁﬁ)+2x(p|ﬁgﬂai+p2agﬁq{)+ﬁgt +ag¢.’] O.'—ﬁ
I =
o) = (apy ¥ (B*0a+aaf) + 2x(piB?0uc + prooyoy) + P17 + o’a|

* OK, it is not pretty, but we now have an analytic expression
(i.e. once you have done the calculation, computationally very fast)
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* Apply to a special case, intersection with a fixed line Yy = I —x

B=-1,d=+1;03=0; 0,=0
o’ = ((x—l—ﬁ)z k204 +2KP1 04O+ O |
|::> pO,0y = ({:x—l—ﬁ)? [~ k%02 — 2Kp) O O, —crf]
| q,f:(a_l—)z k>0 +2Kp1 04 0c + O, |
Hence O'f = O'J?; p = —1 which makes perfect sense

* The treatment of Gaussian errors via the error matrix is an extremely powerful
technique - it is also easy to apply (once you understand the basic ideas)
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Summary

* Should now understand:

* Properties of the Gaussian distribution
+ How to combine errors

+ Propagation simple of 1D errors

+ How to include correlations

+ How to treat multi-dimensional errors

+ How to use the error matrix

* Next up, chi-squared, likelihood fits, ...
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Appendix: Error on Error - Justification

"Assume mean of distribution is zero (can always make this transformation without
affecting the variance)

Var(s*)

(2~ o%)?)
(%Zx —0?)
iz Ex?);xﬁ—zc%(%):xz»ﬂﬁ

iz (n(x4> +n(n— 1)@?«*?)#}) -0

™

4

n—1 4

For large n
o — 0'

( ? 2):3&; ~ O

4
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