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Simulators and inference

Many domains of science have developed complex simulations to
describe phenomena of interest.

While these simulators provide higly sophisticated models, they are
poorly suited for inference and lead to challenging inverse problems.

The source of the challenge is that the probability density (or likelihood)
for a given observation is typically intractable. Such models are often
refered to as ,,implicit” models.

The often used solution is to construct poweful summary statistics
(observable) and compare observed data to simulated data. This
approach have been used for Higgs discovery in a frequentist paradigm.

Alternative technique known as Approximate Bayesian Computation
(ABC) compares observed and simulated data based on some distance
measure involving the summary statistics. ABS ,ethods is widely used in
population biology, computational neuroscience, cosmology.



High-fidelity simulators in Science
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The expressiveness of programming languages facilitates the development of

complex, high-fidelity simulations, and the power of modern computing provides the
ability to generate synthetic data from them.

Unfortunately, these simulators are poorly suited for statistical inference.
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Simulation based inference

 The class of inference methods for stochastic
simulator where

— evaluating the likelihood is intractable
— it is possible to sample synthetic data x ~ p(x|0)

* One usually approximate likelihood or likelihood
ratio and then uses established inference
techniques.



Model mis-specification

* Inference is always done within cotext of a model
— If the model is mis-specified it wil affect inference

— Here the model is the simulator
* The simulator may not be perfect

e Simulators usually include more effects than traditionally prescibed
models

* To account for mis-modeling, simulators are often extended
In numerous ways

— Often these extensions are not based on first principles but
ad-hoc/practical parameters

— The simulator now also depends on nuisance parameters v
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The particle physics context

- ATLAS and CMS
2FLHC Run 1
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The likelihood is a key object

Let 6 denote the coefficients of higher dimensional operators in the Lagrangian, x be high-

| d
dimensional data associated to an event, and p(x | 6) = %d—a be the distribution for the data
o(0) dx

. o Confidence limits based
Maximum-likelihood o [ikelihood ratio tests

estimator \ l

Likelihood function

ﬁ )
p(z|0)

High-dimensional Constraints on
eventdata x parameters f



Modeling particle physics processes
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Modeling particle physics processes

Latent variables

Parton-level Theory
momenta parameters

Evolution
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Modeling particle physics processes

Latent variables

Shower Parton-level Theory
splittings momenta parameters
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Modeling particle physics processes

Latent variables

Detector Shower Parton-level Theory
interactions splittings momenta parameters
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Modeling particle physics processes

Latent variables
Detector Shower Parton-level Theory
Observables . . o
interactions splittings momenta parameters
r < Ll ——— Ly e— i, < 0

[M. Cacciari, G. Salam, G. Soyez 0802.1189]
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Modeling particle physics processes

Latent variables

Detector Shower Parton-level Theory
Observables . : e
interactions splittings momenta parameters
€r - 4 —— Z3 —— I « )
Sample from p(z|zq) p(zd|zs) p(zs]2p) p(zp]0)

SIMULATION TOOLKIT

Prediction (simulation)
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Modeling particle physics processes

Latent variables

Detector Shower Parton-level Theory
Observables : : .
interactions splittings momenta parameters
€T - Il —— Iy e—— I, < f
p(xlf) = /dz'd/ /:'S/dz'p p(z|zq) p(zd|zs) p(zs|2p) pl2p)0)

It's infeasible to calculate the
integral over this enormous
space!

—
Inference
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Detector simulation

Conceptually: Prob(detector response | particles)
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable
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Key:

Muon

Electron

Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
""" Photon

through CMS
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Detector simulation

Conceptually: Prob(detector response | particles)
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

This motivates a new class of algorithms for what is called
likelihood-free inference (or simulation-based inference),
which only require ability to generate samples from the
simulation in the “forward mode”
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Detector simulation
10® SENSORS = 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single variable / observable / feature / summary statistic s(x)

e designing a good observable / summary statistic s(x) is a task for a skilled

ohysicist and tailored to the goal of measurement or new particle search

* likelihood p(s|0) appreximated using histograms (univariate density estimation)
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This doesn’t scale if s is high dimensional!
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An intractable integral

Monte Carlo

Sampling
observed \ what happened

l inside simulation

p(s|0) = |dzdx p(s(x), z|0)
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Two approaches for simulation based inference

(1600w + 10b)

Use simulator Learn simulator
(much more efficiently) (with deep learning)
conv (180w + 5b) non-linear

/’T‘G"‘PCO' conv (450w + 10b) < EC ®
-y . ¢ = ©
i non-linear ¢ — @
I||Fillll"' G ‘Z i z - 8

i i i
W < o
\\.\ 8 =i %

N =
a5 non-linear maxpoo ¢ = 6
.l fully-connected e = ©

* Approximate Bayesian e Generative Adversarial Networks (GANSs),
Computation (ABC) Variational Auto-Encoders (VAE)

e Probabilistic Programming e Likelihood ratio from classifiers (CARL)

* Adversarial Variational * Autogregressive models,
Optimization (AVO) Normalizing Flows
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What we usually do: number counting or single

differential

SMEFT: Opg®® = 01
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" MadGraph Simulation — s\
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High-dimensional event data One or two summary statistics 2

p(x'|#) can be estimated

p(z|#) cannot be calculated with histograms

n.b. “summary statistic” = a sensitive observable
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Inference by estimating the likelihood

Parameters (/

|

Simulator

Observables x

|

Summary statistics z’

Prior p(#) | —> Inference <

|

i E \ Classical density estimation

Approximate likelihood p(2’|0)

Observed data ;s

!
obs

Summary statistics x

/ N\

Confidence sets

Posterior

[e.g. P. Diggle, R. Gratton 1984]

Compression to summary
statistics loses information &
reduces quality of inference

Curse of dimensionality:
does not scale to more than a
few summary statistics

Related alternative:
Approximate Bayesian
Computation (ABC) (b rubin 1984]
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Combined fits for Higgs discovery
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Colaborative statistial modeling
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Summary statistics for LHC?

 Inmany LHC problems (eg. EFTs) ed 411
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Solve by approximating the integral

Mz
o aciien

=== tharged Haran [mg Pan

= = = - Newval Hadrondeq Newrm|

o Problem: high-dimensional integral over shower / detector trajectories

p(z|f) = /c'l:d/d:S/dzp p()za) plzalzs) p(zs|2p) p(2p0) -
v
i
 Matrix Element Method (and similarly Optimal Observables): [« kondo 1958
+ approximate shower + detector effects into transfer function p(x|z,)
+ explicitly calculate remaining integral 08 197 1" 8 TeV)
.§ 30r cms % Light quark jets
~ ~ £ Simulation * ¢ Mean=-4.02 GeV
plz]d) = /dzp px|zp) pl2p|0) 2% CCRNS=233GeV |
a2 + Simulation ™~
5 20f WE  EJ| G
E parkon’jet o
o —
Z15 E
= Uses matrix-element information, no summary statistics necessary, but: ol i
o ad-hoc transfer functions (what about extra radiation?) 5 r Y
. f . . . f Mﬂﬂ. e .,
« evaluation still requires calculating an expensive integral L E— 00
AE (GeV)
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What if we could estimate the likelihood...

for high-dimensional observables, including correlations?
like MEM: no need to pick summary statistics

including state-of-the-art shower and detector models?
allowing for extra radiation, no need for transfer functions

in microseconds?

amortized inference: train once, then always evaluate fast

requiring less training examples than established machine learning methods?
using matrix element information: “ML version of MEM”
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Learning the likelihood ratio

Cranmer, Louppe, Pavez, arXiv:1506.021569
PMAS, arXiv:1805.12244

PRL, arXiv:1805.00013

PRD, arXiv:1805.00020

NeurlPS, arXiv:1808.00973

physics.aps.org/articles/v11/90

¢
MNeu

physics.a

parameter (/

) ,.n" -_\\__\ i H )
J’ . \  observable : J

latent = \:L P I — approximate
M | likelihood
} ; ' ratio
il SRR Nl g
0;
Simulation Machine Learning Inference

The surrogate for the likelihood ratio used for inference

A 2-stage process:
1. learning surrogate (amortized)
2. Inference on parameters of simulator (frequentist or Bayesian)

No Bayesian prior used for training, but one can use prior for inference.
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NN = A highly flexible family of functions

In calculus of variations, the optimization is over all functions: § = argmin L|s]
S

* In applied calculus of variations, we consider a highly flexible family of
functions s, and optimize

* Think of neural networks as a highly flexible family of functions

e Machine learning also includes non-convex optimization algorithms that
are affective even with millions of parameters!

'Shallow neural network Deep neural network
hidden laver . hidden layer 1 hidden layer 2  hidden layer 3
- input layer
input laver ——:::_P__— — —
'—/_/‘ output layer L
— _ output layer
A
=ale = ™ %
; = e
;
=~ S Z
Ay
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Learning with Augmented Data

parameter 6'
l _fe_;\_/ \ Hj
latent 7 a‘fé}ﬁxﬁﬁl approximate
) likelihood
. . ratio
— e (T, 2|0) . : (2l
" e N T arg min Llg] = 7(1|f) =—>
wa§ v oz v \ v/ .
v#}f} J—> t(z, 2[6) >
augmented data
0;
Simulation Machine Learning Inference
“Mining gold”: Extract - . o
additio?we?l nformation Use this information to Limit setting with
train estimator for likelihood ratio standard hypothesis tests

from simulator
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Gold mining: augmenting the training data

The augmented training data converts e ikt
supervised classification into supervised SJ i v
regression with lower variance g:::: | ]
o:o- N e Y :::ii:!illz.‘]%].l.'\'x.—_.zll?)
* improvement in training efficiency L

2D histogram === SALLY
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5
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T a2 .
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Training sample size 1.0

-ehmer, Louppe, Pavez, KC, PNAS (2019), arXiv:1805.12244
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More precise likelihood ratio estimates with less training

data

Each point =1 event
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Error inlikelihood ratio estimation

2D histogram =~ === SALLY
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Training sample size

SALLY and RASCAL
require less data than

generic ML method
[CARL, K. Cranmer,
G. Louppe, J. Pavez
1506.02169]

Baseline:
2D histogram
(based on large

training sample)
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Mining gold from the simulator

Latent variables

Detector Shower Parton-level Theory
Observables . : s
interactions splittings momenta parameters
L L & Ae— e I, 0
plxz]d) = f zd/d;;'s/dzp p(r|zq) p(zd|2s) plzs|2p) p(zplf)
Intractable integrals Parton-level likelihood

is given by matrix element
and can be evaluated!

= For each simulated event, we can calculate the joint likelihood ratio which depends on the specific
evolution of the simulation:

p(x, za, 26 2pl00) _ plelza) plzalzs) plzl2) | p(zplbo) — [M(zplfh)[
p(T, zd, zs, 2pl6h)  p(x|2a) P(24]2s

r(z, z|0g, 01)

) plzs -3'p.:' p(zp‘gl) |M(Zp‘91)‘2
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The value of gold

We can calculate the joint likelihood ratio

plx, z4, 2s. 3p|(7'0}

r(z, 2|6, 0h) = ———— — r(x|60,61)
p(x, 24, 25, 2p|01) 5 _
rix, z|6g, 61), x ~ p(x|6 = Bg)
-~ r(x, z|6g, 61), x ~ p(x|6 = 0;)

® 41
>
. : =

J'(.;'.:\H.;;;.Hl}are < 3

scattered around & )

r(x|fo, 61) S

N2
X
L

1_

v 0 I I I
. . . , 0 2 4 6 8
We want the likelihood ratio function N
g _ P(RTW{J)
r(z|fo, 01) = ——
p(|fr)
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The value of gold

With (. 2|00, 01 ), we define a functional like
We can calculate the joint likelihood ratio (o, Hll—fd.r /d oo, 100) { (oo, 00) = 1, HU.H”)Q]
fo.61) = Pz, zd, 25, 2p|00)
(,20,01) :1_;(‘;-.:&,5,_,1, 1) It is minimized by
E.p(zlzo0) [1(2.2[00.01)] = argmin Ly [7(z|fo, 61)]!
Pz |90 01)
(And we can sample from p(z, z|#) by running the simulator.)
...and then magic ...
p(xﬂz|90)
Bt (ol 1)) = [ plefe ) B2
| e ' (iE 2|61)
We want the likelihood ratio function —/d p(z. "‘|91 . 2|fh)
r(x]6o, 61 ) _ plalto) p(|6h) P($s391)
LU0, U1 =
plalfh) = r(z)f.0) 1
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Learning with augmented data

Parameters f/

/’\
« \\ Observables
latent 2 X | —
/
arg min L{g|
_T}_P__ . Y — t(z, 20) it
— E“_T x, Augmented data
1. Simulation
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Learning the score (related to optimal observables)

Similar to the joint likelihood ratio, from the
simulator we can extract the joint score

t(x, z|0p) = Vg logp(z, 24, 25, 2p|0)

Given t(x, z|fo),
we define the functional

Li[t(x]60)] = /d;r/d: p(x, z|60) {(f(;rwo) — (. :\f)()))Q].

6o

One can show it is minimized by
t(x|6y) = arg min L[t(z|6)] .
i(x|00)

Again, we implement this minimization
through machine learning.

A 4

We want the score

t(x|6) = Vg logp(z|6)

0o
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Challenge for EFT

Let 6 denote the coefficients of higher dimensional operators in the Lagrangian, x be high-

| do
dimensional data associated to an event, and p(x | #) = ——— be the distribution for the data
o(0) do
q
* we want to compare any two points in EFT parameter space
- : p(xz|f

* evaluate the likelihood ratio r(z|fy,6;) = pm 0)
p(x(fh)

Difficulty is that one changes the parameters of the EFT, the distributions p(x|8) change due to
interference.

* |t would be very computationally expensive (infeasible) to generate samples for every value of

6 and estimate p(x|6) with histograms. Small changes mean we need a lot of MC events!

¢ Ideally we could directly estimate the score t(z|fhy) = Vg logp(z|f)

0o
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EFT Embeded in a vector space

SM ATL-PHYS-PUB-2015-047

EFT Embedded in a vector space &

M

Interference
Difficulty is that one changes the parameters of the EFT, \ R

the distributions p(x[B) change due to interference.

But there is a trick: / ‘
Simple example: / |

lg.Msar + g Mpsul* = g1 M|’ + 2g192Re M3y Mpsye] + g5 Mpsu|”

3-d vector space, distribution for any point in this space is linear mixture of distribution for 3 basis samples!
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EFT Embeded in a vector space

SM ATL-PHYS-PUB-2015-047

EFT Embedded in a vector space &

M

Interference
Difficulty is that one changes the parameters of the EFT, \ R

the distributions p(x[B) change due to interference.

But there is a trick: / ‘
Simple example: / |

lg.Msar + g Mpsul* = g1 M|’ + 2g192Re M3y Mpsye] + g5 Mpsu|”

3-d vector space, distribution for any point in this space is linear mixture of distribution for 3 basis samples!
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EFT decomposition

e} L ‘
/--_ . _\\- ' \ e - ¥
production deca 1 » - =
p fi e W g i pgd S S e B
Mst M; ) Miy ZE-MJ .
N A Y, - - -
- e 1A
Express EFT as a mixture: e - 2
plz|f) = E we(6)pe(x ;-‘. e
lals s . :
w,(0) are polynomlalg R F -l
- o TV
Ve log p(x|6) is now possible! . c L
i .
Process Number of components for n operators o "
o) o(A?) o(At) oAt o) ¥ i o M
1V I WBF production 1 " mn+1) (n+1)(n+2) o " i '
2 2 Lx II 3 III
h— V'V decay ! n alnsl) (n+Dn+2) L " no -
2 2 i, i PR o i
) nin+1) (n+2) (n+3 ntd fan - - -
Production + decay 1 n — ( 3) ( 4) ( 4) p - § - - -
e Bl w . - -
Table 1: Number of components ¢ as given in Eq. (6] for different processes, sorted by their sup- T
pression by the EFT cutoff scale A.

Figure 13: Morphing weights wy(#) for basis points distributed over the full relevant parameter
space.

For 2 BSM operators affecting VBF Higgs production and decay, we need a 15-D vector space
For 5 BSM operators we need 126-D vector space
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Locally sufficient statistics

One of the initial motivations for using ML to approximate the likelihood is that
most summary statistics loose information.

However, the score provides “locally sufficient statistics” that capture all the
information in the region of neighborhood of 6, (aka the standard model)

One summary statistic per parameter

p(z|f) ~ ¢!lelfsm)-(0=0sm)

£1(x|Gsm) (SALLY)

t(z|fh) = Vg log p(2|6)
07 .: " O

_1|5 T T T T T T
-1.0-05 00 05 10 15 20 25

£o(x|Osw) (SALLY)
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Perfect match for EFT measurement

100
0.40 1 4 \ ,\ s
0,351 _r.J'd-H: | | v
| T 050
0,30 1=
T ozs-w i 0.25
gﬂ‘.?ﬂ' i & 000 10! ;‘i
0.151 E -0.25
0,10 — PI&g8=(0,0) i 050
-=- p(Ag;|8=(~0.8, —0.6)) ' 100
0059 plDg;8=(0.3,04)) X > -0.75
c
"0 05 1o 15 20 25 30 0 B T P a—
Ay ' T ' '

« Good for subtle kinematic o Interference effects can be * Morphing techniques allow fast
effects isolated using SALLY at the SM reweighting to any parameter
(Subtle point: Large overlap of kinematic points
distributions reduces variance of joint le.g. ATL-PHYS-PUB-2015-047]

likelihood ratio / joint score)
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Wrap-up of simulation-based inference method

Method Approximations Upfront cost Eval
Summary statistics:
Likelihood for summary stats (standard histograms) Reduction to summary stats Fast Fast
Approximate Bayesian Computation Reduction to summary stats Depends Depends

Matrix elements:
Matrix Element Method Transfer fns Fast Slow

Optimal Observables Transfer fns, optimal only locally Fast Slow

Neural networks:

Neural likelihood NN Needs many samples Fast
Neural posterior NN Needs many samples Fast
Neural likelihood ratio NN Needs many samples Fast

Neural networks + matrix elements:
Neural likelihood (ratio) + gold mining (RASCAL etc) NN Needs less samples  Fast

Neural optimal observables (SALLY) NN, optimal only locally Needs less samples  Fast
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Inference is always done within the context of a model

 |f the model is mis-specified it will affect inference
e Here the model is the simulator, or the surrogate for the simulator

e One hand: simulators usually include more effects than traditional
approaches

* Other hand: more chances for method to focus on aspects that are
poorly modeled

Humans are good at designing robust summary statistics that are not sensitive
to mis-modeled features in the data

* Now there are numerous approaches to build this into the training of ML
models (related to domain adaptation, algorithmic fairness, pivotal
quantities, pr@fi |ir‘]gF e‘t(:_) eg. uBoost by J. Stevens, M. Williams, “learing to pivot” by KC, Louppe, Kagan

These methods do not address hypothesis generation.

* They are not designed to discover new laws of nature.
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Conclusions

 Machine learning can help us get more out of our
simulators

— It can provide effective statistical models

* Our understanding how to leverage our prio physics
knowledge while letting machine learning do what
it’s good at is maturing.

— build in robustness to systematics uncertainty
— ability to inject and extract physics knowledge from models
— exploit symmetries, hierarchical structure of data

* Harnessing full potential of theses techniques requires
augmenting existing simulators.
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