Machine Learning and Multivariate

Techniques in HEP data Analyses

Example of MVA methods :

- Rectangular cut optimization
- Fisher

- Likelihood

- Neural network

- Decision tree

- Support Vector Machine

Extracted from slides by N. Chanon, ETH Zurich.
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MultiVariate Analysis: definitions

MultiVariate Analysis :

- Set of statistical analysis methods that simultaneously analyze multiple
measurements (variables) on the object studied

- Variables can be dependent or correlated in various ways

Classification / regression :

- Classification : discriminant analysis to separate classes of events, given
already known results on a training sample

- Regression ; analysis which provides an output variable taken into account the

correlations of the input variables

Statistical learning :
- Supervised learning : the multivariate method is trained over a sample were

the result is known (e.g. Monte-Carlo simulation of signal and background)
- Unsupervised learning : no prior knowledge is required. The algorithm will
cluster events in an optimal way



Event classification

- Focus here on supervised learning for classification.
- Use case in particle physics : signal/background discrimination

- Possible solutions : rectangular cuts, Fisher, non-linear contour

Rectangular cuts Linear (Fisher) Non-linear
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Regression

- Assume we have one set of measurements.

- How to approximate the law underlying such measurement ?

- If the value of the function in each point is known, this is an example of
supervised regression.

- If F(X) is not known this is an example of unsupervised regression
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Multi-variate analyses in HEP

- Signal/background discrimination :
- Object reconstruction : discriminate against instrumental background
(electronic noise...)

- Object identification : e.g. electron, bottom quark identification, to
improve the rejection other objects resembling (e.g. jets)

- Discriminating physics process against physics backgrounds. Many
examples, e.g. single top against W+jets, H->WW against WW
background...

- Improving the energy measurement, via regression. Allows to narrow the
reconstructed mass peak, improve the resolution.

- Estimate the sensitivity of the analysis :

- Sensitivity to signal exclusion or discoveries : Likelihood of the data to
be consistent with background only or signal+background hypothesis

- Combination of many channels

=> exclusion limits or discoveries



Multi-variate examples in HEP: Tevatron

Single top discovery  PhysRevLett.98.181802
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Multi-variate examples in HEP: Tevatron

Photon identification at DO and applications  arxiv:1002.4917v3
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- Neural network for Photon Id based on
calorimeter energy deposit and track variables
in an isolation cone around the photon

- Used to identify and measure the diphoton+X
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Multi-variate examples in HEP: LHC

H—=WW-=llvv searches in CMS CMS-PAS-HIG-11-024
- 3 channels : 0-jet, 1-jet, 2-jet A B s s
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Multi-variate examples in HEP: LHC

H->yy in CMS: energy resolution

- Higgs natural width is zero from an experimental

point of view in the yy channel —~ —
. . . . o 1.8F - _ CMS preliminary
- So the experimental width is driven by how well < | - Simulaton Simulation
the photon energy is reconstructed (once o) 1'6;_—paramemmde| Al Categories
measured the position in the ECAL and the vertex & ™4 | e
found) Sit2p T
:2: 1O v <435 Gevie? |
- CMS : PbWO4 crystals calorimeter, subject to loss ¢ 0.8f
of transparency Wosk
- Clustering of the energy deposited is affected by 04f
the tracker material in front of the ECAL 02k %
- Corrections to get back the reconstructed energy 10 | bmmmemmmme® . . . |\ Powmimgm

the energy at the vertex might not be optimal 0 110 120 3

- CMS : energy regression



Plenty of multi-variate methods...

Example of MVA methods :
- Rectangular cut optimization
- Fisher
- Likelihood
- Neural network
- Decision tree
- Support Vector Machine

Characteristics :

- Level of complexity and transparency

- Performance in term of background rejection

- Way of dealing with non-linear correlations

- Speed of training

- Robustness while increasing the number of input variables
- Robustness against overtraining
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Training and application

Training / test samples
- For all multivariate methods, two samples are

used :
- Training sample - _
- Test sample S 0 bkt | dl it i)
. . - ignal (test sample) = SJignal (training sample)
= ThIS |S mandatory to CheCk that the tralnlng haS ; 25 :ﬁ Background{te::sample] a B:Ickground [tgrainingsample}:
' ' - m—— fitHH
Converged to a solution which does not depend z EKolmugmuv-Smimov test: signal (background) probability = 0.492 (0.822)
on the statistical fluctuations of the training S , s
sample F | £
- Generally speaking, MVA should be applied (or - ;—
tested) in events where the response is not 10 / 1z
known - % B
T . 15
- Training is time-consuming, especially while 0 L S
) : . 0.2 0 0.2 0.4 0.6 0.8 1
increasing the number of variables (and MLP response

depending on the method)
- Application is usually faster : it uses a set of
weights used in the MVA output computation
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Which method to choose

From TMVA manual

MVA METHOD

CRITERIA Cuts Likeli- PDE- PDE- H- Fisher MLP BDT Rule- SVM
hood RS / Foam Matrix / LD Fit
k-NN

No or linear * Fox * * * *k *ok * Fk *
Perfor-  correlations
mance  Nonlinear 0 0 e *ok 0 0 *ok *ok *ok Hok

correlations

Training 0 ok Hok *ok ok *k * 0 * 0
Speed

Response dok ok o * 3ok *ok Ak * e *
Robust-  Overtraining Aok * * * Aok *k * 0 * Aok
ness Weak variables — #x * o 0 *ok *k * ok * *
Curse of dimensionality o Fox o 0 *k *k * * *
Transparency Hok Hox * * Aok *k 0 0 0 0
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Rectangular cuts
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- Simplest multivariate method, very intuitive
- All HEP analyses are using rectangular cuts, not
always completely optimized

Rectangular cuts optimization :

- Grid search, Monte-Carlo sampling
- Genetic algorithm

- Simulated annealing
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Characteristics :
- Difficult to discriminate signal from background if X,

too much correlations Define the signal region :
- Optimization difficult to handle with high number of al <x1<a2,

variables b1 < x2 < b2
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Cut optimisation

How to find the best set of cuts for a given criterion ?

Grid search

- Try N points (usually very large) of the phase-space
equally spaced in each dimensions

=> Impossible with high number of variables (too much

CPU time)

Parameter B

Parameter A

Monte-Carlo sampling
- Try N points randomly chosen in the phase space
=> Usually performs better, but still non optimal

Both are good global minimum finder but have poor
accuracy

Examples of criterion :
- Maximize the signal efficiency for a given background rejection
- Maximize the significance
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Curse of dimensionality

Grid search and Monte-Carlo sampling suffer from the curse of
dimensionality :

- For one variables, trying 100 working points is easy
- For two variables, 100 working points will lead to not well covered phase-space
because each points have more distance between them

- 100x100 points should be used

- Increasing number of variables will lead this algorithm to be impossible in
practice

A S S |

B B AT RS RE

AP A
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Optimisation methods

Quadratic interpolation

- Compute the function (say the significance) in 3 points.
Interpolate with a quadratic function and go to the minimum.
Repeat the operation.

=> Problem if no minimum but a maximum is found (work around

exist)

Gradient descent

- At each point, go in the gradient direction. This should lead to a
minimum.

=> This method is not the fastest since the gradient direction at

each step is not always the direction of the minimum.

Both methods are good to find local minima

- MINUIT package uses a combination : gradient-driven search,

using variable metric, can use quadratic Newton-type solution
- Other methods exist : genetic algorithms, simulated
annealing

Parameter B

Parameter B

Py

Parameter A
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Decision tree

- A decision tree is a binary tree : a sequence of cuts paving the phase-space of

the input variables
- Repeated yes/no decisions on each variables are taken for an event until a

stop criterion is fulfilled
- Trained to maximize the purity of signal nodes (or the impurity of background

nodes)

Root

node
T e - Decision trees are extremely
prd . sensitive to the training samples,
- o therefore to overtraining
VAN / N\
Xj=c2 mj=c2 Xj>=c3 x=c3
B" \S £ \“S - To stabilize their performance, one
bas uses different techniques :
xk;cd xk\:cd - Boosting
i - Bagging

:f'/ B S
- Random forests
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Decision tree: structure

- Similar to rectangular cuts, but each cut depends on the previous one
- Classifies from a set of attributes. Each node splits the data according to one
attribute

Root node Internal node

\ am
Decision b &
®i = cl xi = c1
\ _/

>(j:>c2 X|<C2 )q::-c3 }{j-cCB

xk‘f"c" xk\

Terminal node

B ﬁ::

A

Assigned class
(here, signal/background)
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Decision tree: training

- Training a decision tree : process that defines the splitting criteria for each node.

- Start with the root node, the split in two subsets of training events. Go through the
same algorithm for the next splitting operation

- Repeat until the whole tree is built

- Splitting criterion found maximizing the signal/background separation.
- Different criteria available. Usually one uses the
Gini Index : p.(1-p) where p is the signal purity
- Note that it is symmetric between signal and background
- Selects the variable and cut value that optimises the increase in the separation
index between the parent node and the sum of the indices of the two daughter
nodes, weighted by their relative fraction of events.

Criterion = Gini gather — Ginileft son — Giniright son

0.0 01 0.2 0.3 0.4 0.5

0.0 0.2 04 0.6 0.8 1.0
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Decision tree: overtraining

Advantages :
- Decision trees are independent of monotonous variable transformations
- Weak variables are ignored and do not deteriorate performance

- But Decision trees are extremely sensitive to the training samples,
therefore to overtraining
- Slightly different training samples can lead to radically different DT

- To stabilize Decision Tree performance, one can use different techniques.
- Boosting
- Bagging
- Random forests
- Pruning
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Decision tree: boosting

Boosting :

- Sequentially apply the DT algorithm to reweighted
(boosted) versions of the training data

- Take a weighted majority vote of the sequence of DT
algorithms produced.

- Boosting allows also to increase the performance.

- Works very well on non-optimal decision tree (small
number of nodes...)

Most famous implementation in AdaBoost (adaptive

boost) :

- Events misclassified during the training of a decision
tree are given a higher event weight

- Events are reweighted depending on the error of the
previous tree

- The output of the BDT is : 1

oost\ X) = —=
YBoost (X) A

where hi=+1 or -1. 'collection

[eighted Sample)  wemmmmmmmmmumnn > TM(X)
Jeighted Sample)  mmmmmmmmmmmn » Ti®)
@@ ............................. > T,

oy e 1

FIG. 2: Schematic of a boosting procedure.

_ misclassified events
i all events
1 — err
v —
err
*Ncollection

Z In(a;) - hi(x)
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Decision tree: AdaBoost

error on the

mth tree
N ‘ I=1 if the event is
\ ; ' ‘z[ Y; Tnz €I; - y aips .
"2 g g Zz=1 e (;[/ 7 (:)) misclassified (O otherwise)
Zi:l Wy
weight of the ith event :
Gy = 0% (1 — &r ) 81T ) w; — w; X cmI(yi#Tm (z1))
: misclassitiea events get
Start here: . g  anda.
equal event weights larger weights
O signal QO backgroond @————- current tree  ——————— alltrees
3, -0 o T 3 0F - v T = v 3 A - - — - -]
| O 1sttree « 10th tree ’ | « 150th tree
o o o p % . L 2 . ) . - ol
| | 0 " g ke
0 dc)) %0 % 0 %_ (2 0 y (())
_____ T
o) 0 0 O 'oO (o) | N
= O$o =0 e 8 . 2 3 @ .Q
] ¥ |
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Decision tree: output

Decision tree

—+

- A single decision tree can be trained to gives always +
an integer response, : signal (+1) / background (-1)

Boosted decision trees give a Real-valued output :

- The output is a linear combination of +1 and -1, because of the weights over
the different training decision trees during boosting

- Output is quasi-continuous. The number of classes depends on the number of

trees used in the boosting process
My

TMVA

| . e g R » T LI B B B L T T
&5 60 ] Signal {test sample) « Signal [training sample) = pd 14 :E Signal .
.‘i .| Background (test sample} « Background (training sample) n % :EI BaCKQI‘OI-md n
= = - - —
= 50 [ Helmogorov-Smirnov test: signal (background) probability = 1( 1} — g 12 .
= E = o -

@ __ 7] &£ 5 [ 1 g

n a5 = 1z

30 1 tree 1= 850 trees 12

i -~ 6 [ Az

i : 13

20 — = 1z

- s =

k- = 1z

10 - . E rl‘Hllll _—2_

i : £

S ST | T -
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23



Decision tree: bagging, random forest, prunning

- One can also use different techniques such as bagging and random forest
- Improves the stability against fluctuations, not much the performance
- Both of them makes use of the idea of randomizing trees.

Bagging :
- Resampling technique. Training is repeated on “bootstrap” samples (i.e re-
sample training data with replacement), then combined

Random forests :
- Training repeated on random bootstrap (or subsets) of the training data only
- Consider at each node only a random subsets of variables for the split

Pruning :
- Grow tree to the end and “cut back”, nodes that seem statistically dominated
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Decision tree: example in HEP

Examples in CMS : H-WW, H—bb analyses

- data [l Z+jets CMS preliminary
[ _—m=130 top L=461f"

B WW B wzizz 7
40 B W+ets | 10°

CMS Preliminary e

VE=TTeV,L=4.7 b’ =R
Wiuv)H(bb) = W +bubgscg

104

Events

10°

20_— H» ‘ 1{1}
gﬁi -# |
Oillll“fﬂ' 06 02 02 0 02 04 06

-05 0 05 1 BDT output
BDT Output
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Neural network

- Most commonly used : the multi-layer perceptron

- Composed of neurons taking as input a linear combination of the previous
neuron outputs

- Activation function (usually tanh) transforms the linear combination

- Weights for each neurons are found during the training phase by minimizing the
error on the neural network output

Input Layer Hidden Layer Output Layer

PN - Neural networks are universal

‘;:;z_l_\\ approximators : takes advantage of
correlations

™,
£ b
Lala
r
B
A
A
s
&

Ve 4~ - Quite stable against overtraining and
- against increasing number of
1 variables
=
Bias[1]
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Neural network: structure

_ Hidden layer
Input variables o
\ Input Layer Hidden Layer Output Layer . Activation

<« functions

1 [

kel

[5.]
:
;
)
)

Multi-layer
perceptron :

most popular neural
network

A

\'\. .‘\.
\\'\. ‘-‘\ i,
3 100 MY
’IJ’ ’r'll_-" o

=R
<
N
\
\
\
\
\

S

Ay
.-‘/
A

- Here : only one = N\~
hidden layer A

Output variable

Weights used for the linear combination
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Neural network: structure

Given input values for the variables, how to compute the output ?

- Start from a set of input variables fed to the input layer

Input
. . -1 _
- For each neuron in the hidden layer yro- wit Output
- Compute a weighted sum of the input variables R P
. T . . ; y /S Ely
(linear combination) fed as input to the hidden neuron T N
Yo WTnj P
(T Linear,
- Transform the input with an activation function : L Sigmoid,
usually tanh or sigmoid e A
£ —C€ _  Tanh,
£+ e
| e—"/2 Radial.

- If there is more hidden layers, repeat the operation for each neuron of the new
hidden layer, taken as input the output of the previous layer

- The output layer performs a weighted sum .. _ Zy (2,2 Ztanh (Zf’fz ( )
of the previous hidden layer output / j=1 :
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Neural network: training

How to compute the weights ? N 4

- By minimization of the error, defined as : : Z D) (YANN,a — 3}&)2
a=1

Where yANN is the output and y is the desired response : -1 for background, +1
for signal.

Th Tlvar
Remember that we have : yanx = Y _ 4} wiy = Ztanh (Z 7w, ) w'}
=1

We will minimize the error using the gradient descent method : this is called the
back-propagation of errors :
bropag wirtl) = wl) — v B

Weights connected to the output layer are updated by :

= 0E, ol

2 A 2

‘&u’él) = 1] P (2) — _T?Z (yANN:a — Ya) y_gja?
a=1 a=1

And weights connected to the hidden layer are therefore updated with :
N
C)E 2 2
— _?I'Z —?}'Z yANNa—ya)ygcf(l yJ,EC?)w(l}lm

-1 811* a=1
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Neural network: input

Input variables :

- Can be correlated (NN uses correlations)

- To improve the NN performance, should avoid unuseful variables (too much
correlated, too low discrimination power)

- They can be transformed to improve their discrimination power before the
training

Input variable: X1 Input variable: X2

(1/N) dN/ 0.169 F
(1/N) dN/ 0.15 F

U/O-flow (S,8): (0.0, 0.01% / (0.0, 0.0)%
U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

X2 [F)
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Neural network: neurons

[ NN, hidden layer 1, node 0 — Signal _NN, hidden layer 1, node 1 | — Signal
= — Background = — Background
1= 1o
104;_ 10'1_5
102 107
1u-3;_ 10‘3
1u4_ 1&‘;—
P | PP o N I AP I I B WP L N T I ATV TR P TS B B B
4 08 06 -04 -02 0 02 04 06 08 1 4 08 -06 -04
= - NN, hidden layer 1, node 3 T
NN, hidden layer 1, node 2 | — signal | y | Signal
— Background E E— Backgrﬂund
1 T
F 10
1“'1 "]-2 =
107 =
10'2: §
C 10+ —
L S T I T T D B I T ma_...|...|...|...|...|...|...|...|..nﬂ.—.-..
-1 0.8 06 -04 -0.2 0 0.2 0.4 0.6 08 1 =1 £8 0.6 04 0.2 0 0.2 0.4 0.6 0.8 1
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Neural network: neurons

NN, hidden layer 2, node 0 — Signal
F — Background

1=
10"
102
10° =
10+ =
1D-s_|||I...I...I...I...I...I......I...I...

1 08 06 04 02 0 02 04 06 08 1

[ NN, hidden layer 2, node 1 | — Signal [_NN, hidden layer 2, node 2_| —— Signal

— Background — Background
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10!

107
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Tl e i o (e fla iy 10
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Neural network: output

- The neural network output can be real or integer

- For most of the HEP applications it is more interesting to have a a real-valued
variable

- If the training is successful, background should peak at -1 (or 0) and signal at +1

- Shape depends a lot on the NN parameters (layers, epochs...)

- Discrimination power achieved depend a lot on the problems.

TMVA response for classifier: MLP
Taava
% 25 I I Isighall T | T | T T T | T T T T T T | T T T _L
2 1~~1 Background ]
= C ]
= 20+ —
- d=
15 — _ g
C 1=
- s
I~ &
10 — — '2‘
- 1<
5 | g
- S Z
= 4=
= 40
D [ | =3
02 0 n.2 0.4 0.6 0.8 1

MLP response
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Neural network: error

M

N
. 1
- Training error : - ; ) (YANN,a — Vla)”

| MLP Convergence Test |

3

0.5[

: i Training Sample
- One can compare, at each iteration (epoch), i oasff |- Test sample

what is the NN error for the training and oalll
the test sample.

o.4afft|

0.42F

- Errors decrease with epochs in both training
and test samples. -
- Usually it stabilizes 038t
- But with more epochs, it can happen L T T P N T T R Y
that the test sample will have an error T YR e
which will increase again

o[l

=> QOvertraining :
- The neural network was trained to recognize even the statistical fluctuations
of the training sample and is therefore not suitable for any test sample
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Neural network: overtraining

- Simple check : NN output for the training and test sample.
- Both samples should have the same shape, with the statistical uncertainties

Not overtrained Overtrained

TMVA overtraining check for classifier: BDT |

TMVA overtraining check for classifier: MLP

5 H Sighal (testsample) | | « Signal (trathing sample) . E 1 [T signal test'sahple) '~ [T] < signal dralning sample)” = 7
%— 25 |~ Background (test sample) | | « Background (training sample) | E L~/ Background (test sample} | | - Background (training sample} -
z | Kolmogorov-Smimov test: signal {background) probability = 0.492 (0.822) ] 5 o ~Kolmogorov-Smirnov test: S?"ﬂl (background) probability = 0( 0 .
S r - z 1or ]
20 - [ i i

- BE s — — &

L 5 » g

- 18 C i 18

15 [ _ g - 13

C j 1= 2

- g 1= -C ==

B v 12 = 1£

— f -3 - 4s

10 | :/» : - 13

- A : K - 12

- = E: | [ L ] :_

5 g @ - —2

B " 2 20 18
- 3 - ]

L = s

ol : S 0 Lot i A3

0.2 0 0.2 0.4 0.6 0.8 1 -0.4 -0.2 0 0.2 04

MLP response BDT response
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Neural network: performance

Usual figure of merit to check the performance :

- Scan the performance varying the cut on the network output

- Plot the signal efficiency versus background efficiency (or background
rejection). Each cut on the NN output is one point on the figure.

- The NN performs (almost all the time) better than the rectangular cut

Background rejection versus Signal efficiency Background rejection versus Signal efficiency TMVA

1_I|||I | ";JIIIJI__I_ IIIIII lIIII!IIII.IIII|IIII_

1_|||||||||||||—|—|—|||.|..'i"":|III|IIIIIIII|IIII

Example WIthOUt t Example Wlth N

07T

Background rejection
Background rejection

[ : : : : : : ; : . ] -

04— “m mmau _; 0.4 :—MVAMethﬁd |
- MLP . - j . MLP : : .

ﬂ_z"'i | | i""i""i""i""i""i""_ uzzl|||i||||i||||i||||i||||il|||i||||i||||i||||i||||:
0 0.1 0.2 0.3 0.4 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08B 09 1

Signal efficiency

Signal efficiency
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Neural network: example in HEP

Photon identification at DO and applications

TRK ECAL HCAL

DO, 4.2 fb™

0.35
0.3
0.25
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« Z->5ITy (1 =e,u) data ! -«

o

jet |

Fraction of events

n

. | ! P A I S A B I SR A
0 010203040506070809 1 e A
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NN

}

Goal : discriminate photons against neutral mesons in jets

Neural network input variables :

- Shape of the calorimeter energy deposit

- Track variables in an isolation cone around the photon Yo
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The package TMVA

IMVA
- Package widely used in HEP

- Root-based implementation (included in every recent ROOT release)

TMVA functionalities :
- Allows to check input variables, correlations, overtraining, performance
- Many multivariate methods available : rectangular cuts, likelihood,
various decision trees, SVM...
- Classification and regression
- Tuning of parameters relatively easy
- Training is user-friendly and fast enough to be manageable on a laptop
- Application is less user friendly : basically have to do it by hand in ROOT
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Available classifiers

ff —— Cut optimisation
Use["Cuts™]
Use["CutsD"]
Use["CutsPCA™]
Use["CutsGA™]

Use ["CutsSA™]

i

ff —— 1-dimensional likelihoed ("naive Bayes estimator™)
Use["Likelihood™]
Use["LikelihoodD"]
Use["LikelihoodPCA"™]
Use["LikelihoodKDE"]
Use["LikelihoodMIX"]
i

/! —— Mutidimensional
Use["PDERS"]

Use ["PDERSD"]

Use ["PDERSPCA"]

Use ["PDEFoam"]
Use["PDEFoamBoost"]
Use [“KNN"]

L

/f —— Linear Discriminant Analysis

Use["LD"] @; 7/ Linear Discriminant identical to Fisher
Use["Fisher"
Use["Fisherc"]

Use ["BoostedFisher™]
Use ["HMatrix"]

i

// —— Function Discriminant analysis

Use ["FDA_GA™] @; /f minimisation of user—defined function using Genetics Algorithm

LI T
[-=J-= -~y

TR IR

=

£ the "D" extension indicates decorrelated input wvariasbles (see option strings)
£ the "PCA" extension indicates PCA-transformed input wariables (see eoption strings)

LI I |
coooooo

me s me me

11hoad and Nearest—-Neighbour methods

/f uses generalised MVA method boosting
/f k-nearest neighbour metheod

LI 1 | I T | Ilr—‘

£ uses generalised MVA method boosting

Use["FDA_SA™] = B;

Use ["FDA_MC"] = 0;

Use ["FDA_MT"] = 0;

Use ["FDA_GAMT™] = 0;

Use ["FDA_MCMT™] = 0;

i

/f —— MNeural Networks (all are feed-forward Multilayer Perceptrons)

Use ["MLP"] = 1; // Recommended ANMN

Use ["MLPBFG5™] = 0; // Recommended ANM with optional training method
Use ["MLPBNN"] = 0; // Recommended ANM with BFGS training method and bayesian regulator
Use ["CFMLpANN"] = 0; // Depreciated ANM from ALEPH

Use ["TMLpAMNN™] = @; // ROOT's owm AMN

i

f# —— Support Wector Machine

Use["SVM"] = @;

i

/! —— Boosted Decision Trees

Use ["BDT"] 8; /S uses Adaptive Boost

G: ff uses Gradient Boost
@; 7/ uses Bagging
@; // decorrelation + Adaptive Boost

Use["BDTG"]
Use["BDTE"]
Use["BDTD"]

Iz
/f ——— Friedman's RuleFit method, ie, an optimised series of cuts ("rules")
Use["RuleFit™] = a;
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Functionalities: correlations

- Linear correlations are easily investigated via the GUI :
- (Here, no correlation)

oy AL A S A A A A T L L AL A A A M A
8 - 8 -
6f & 6f
5 3 g
4k - af
2f E 2 E
1 = 1— -

Fov i benalinel | | Logaaloinld | S | | Logaalorld |
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
X1 [F] X1 [F]
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Functionalities: correlations

- Linear correlations are easily investigated via the GUI ;
- Signal and background input variables can be correlated differently

Correlation Matrix (signal) Correlation Matrix (background)

Linear correlation coefficients in % Linear correlation coefficients in %

100 100
80
60
40
20
0

=20

lil_sumiso04 1il_sumiso04

1il_sumisoD3

1il_sumisoD3

hotrail_brem hotrail_brem

=40

-60
=80
-100

photrail_r3 photrail_r3

g L, re..ﬂ? L somfs
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Functionalities: performance

- Many classifiers can be trained in one shot
- Useful for performance comparison

Background rejection versus Signal efficiency TMVA

1||||!||||!....!...! —— LI T1 ! IIIII-IIII=IIII
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:_ : |_||(9||h.u.gd

————  MLP .
— SVM .
0.3 I ................. cuts ............... A ............. ............. ................ ........... _:
02 :I 1 11 | L1111 | 1111 | 1111 | L 11| | 1111 | | | L 111 | | I I 111 I:

"0 01 02 02 04 05 06 07 08 09 1
Signal efficiency
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Advantages and draw backs of different classifiers.

From TMVA manual

MVA METHOD

CRITERIA Cuts Likeli- PDE- PDE- H- Fisher MLP BDT Rule- SVM
hood RS / Foam Matrix /LD Fit
k-NN
No or linear * ok * * * ok ok * ok *

Perfor- correlations

mance  Nonlinear o o Hok Hok o o Hok Hok Hox Hok

correlations

Training o Fok Fok Fok ok Hok * 0 * 0
Speed

Response Hok Hok o * Hok Fok Hok - Hok *
Robust- Overtraining Hox . * Fok *ok * 0 * ok
ness Weak variables * 0 0 Hok Hok * Hok * *
Curse of dimensionality o Hok o o Hok Hok - * *
Transparency Hok Hok B - Hok Aok o 0 o 0
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