Machine Learning and Multivariate

Techniques in HEP data Analyses

= What is: Machine Learning (ML) & Multivariate Analysis/Technique (MVA)
= Basics (classification, regression)
= ROC-curve
= Generative vs discriminative models
= MVA/ML algorithms
= Naive Bayesian, KNN,
= Linear discriminators, SVM
= Model fitting — gradient decent and loss function

= General comments about MVAs

Extracted from slides by:
G. Cowan’s lectures at RH London Univ., H. Voss at SOS 2016, K. Reygers lectures at Heilderbeg Univ.

Prof. dr hab. Elzbieta Richter-Was




HEP Experiments: Simulated Higgs event in CMS

® That's how a “typical” Higgs event looks
like: (underlying ~23 ‘minimum bias’ events)
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HEP Experiments: Event Signatures in the Detector

(Higgs-) particles need to be reconstructed from decay products
decay products need to be reconstructed from detector signatures

etc..
Key; Muon

Electron
Charged Hadron (e.g.Pion)
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HEP: Everything started Multivariate

= intelligent “Multivariate Pattern Recognition” used to identify particles
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What is Machine Learning

= “[Machine Learning is the] field of study that gives computers the

ability to learn without being explicitly programmed.” Arthur Samuel
(1959)

= “A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T,

as measured by P. improves with experience E.” Tom Mitchell, Carnegie
Mellon University (1997)

‘understanding/modeling your data’ ...
and if you cannot do it in multi-dimensions on “analytic first
principles” let the computer help ©



What are Multivariate Techniques

- Many things ... starting from “linear regression” ...

f(x) " to multivariate event classification
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— or w/o prior ‘analytic’ model T

- typically “multivariate” B R R
= Parameters depend on the ‘joint distribution’ f(x,, X,)

= ‘learning from experience’ - known data points



Multi-Variate Regression

®‘known measurements” = model “functional behaviour”

" e.g. : photon energy as function “D”-variables: ECAL shower parameters + ...

Energy

= known analytic model (i.e. nth -order polynomial) - Maximum Likelihood Fit)

* no model ?

Cluster Size

f(x/]

f(x))

< “draw any kind of curve” and parameterize it?

® seems trivial ?

" what if you have many input variables?

— human brain has very good pattern recognition capabilities!



Regression -> model functional behaviour
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" “standard” regression = fit a known analytic function
"eg. f(x)= ax2+bx,2+c

¥ BUT most times: don’t have a reasonable “model” ? - need something more general:
" e.g. piecewise defined splines, kernel estimators, decision trees to approximate f(x)

Note: we are not interested in the ‘fitted parameter(s)’, itis not: “Newton deriving F=m-a”
— just provide prediction of function values f(x) for new measurements x



Multi-Variate Classification

Consider events which can be either signal or background events.

Each event is characterized by n observables:

X = (X1, ..., Xn) "feature vector"

Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e.,
to scalar test statistic:

R" > R: y(X)

A cut vy > ¢ to classify events as signal corresponds to selecting a
potentially complicated hyper-surface in feature space. In general superior
to classical "rectangular” cuts on the x.

Problem closely related to machine learning (pattern recognition, data
mining, ... )
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Signal Probability Instead of Hard Decisions

Example: test statistic y for signal and background from a Multi-Layer
Perceptron (MLP):

| TMVA output for classifier: MLP | TMVA manual

E Slinglall T T | T T T | T T T | T T T |
7 Background

Normalized

11 il irrrndl
umD-flow (S,B): (0.0, 001 / (0.0, 0.0

0.2 0.4 0.6 0.8 1
MLP

Instead of a hard yes/no decision one can also define the probability of an
event to be a signal event:

pLy[S) - fs (o ns
(vI$) - fe+p(v[B)-(1—F)" 7 ne+np

Pi(y) = P(Sly) =
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Event Classification

" Each event, if Signal or Background, has “D” measured variables.

" Find a mapping from D-dimensional input-observable ("feature” space)
to one dimensional output —> class label

Test statistic:
y(X): RP=>R; most general form

. P y =Y(x); x ePP
“faature X={Xy,....,Xp}: input variables
space’

ImEE T
3.5 7] Background 3

" plotting (histogramming)
the resulting y(x) values:
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Event Classification

® Each event, if Signal or Background, has “D” measured variables.

® Find a mapping from D-dimensional input/observable/"feature” space

- - T T e e
to one dimensional output i 3,,Bgckgmund -
> class labels g sorl y(B) =0, ¥(S) > 1 E

:
e
Test statistic: N

: PD > y()(): RP>R: 05 h

1 0 _'I.l : 0.2 0.4 0.6 0.8 -
o feature y(X)
. n
° SPAC® 1 = jistributions of y(x): PDFs(y) and PDFx(y)
@
® " used to set the selection cut! (> cut: signal
® Y(X): < = cut: decision boundary

.. : < cut: background
—> efficiency and purity \ J

" overlap of PDF¢(y) and PDFg(y) - separation power , purity

¥ y(x)=const: surface defining the decision boundary.
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Event Classification

PDFg(y). PDFg(y): y(x): RP>R:

3 _TIse T T
E 35 =1 Background
z

A

3 - Probability densities for y
' given background or signal

e.g.: for an event with y(x) =0.2
- PDFg(y(x)) = 1.5 and PDFg(y(x)) = 0.45

fq ,fz : fraction of S and B in the sample:

fS|::'|:)|=5 (y) s the probability of an event with

- — P(C =S | Y) measured X={x,,...., Xp} that gives y(x)
fSPDFS(y) + fBPDFB(y) to be of type sig1nal ’
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Receiver Operation Characteristic (ROC) curve

Signal(H,) /Background(H,)
discrimination:

Normalized

Signal = |
33 1) Background

nt 5

= s
15 g

g B i

-1

=
in -

which one of those

1 two blue ones is the better??

large purity
small efficiency

large efficiency
small purity
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Receiver Operation Characteristic (ROC) curve
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Receiver Operation Characteristic (ROC) curve

Signal(H,) /Background(H,)

[ MVA distributions |
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* Type 1 error: reject H (ie. the ‘is bkg’ hypothesis) although it would haven been true

* - background contamination
= Type 2 error: accept H; although false
= - |oss of efficiency
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Event Classification -> finding the mapping function y(x)

__ PDF(x|S)
"y() = PDF(x|B)

-2 but P(X|S), p(x|B) are typically unknown
- Neyman-Pearsons lemma doesn’t really help us directly

—> best possible classifier

® use already classified “events” (e.g. MonteCarlo) to:

estimate p(x|S) and p(x|B): (e.g. the differential cross section folded with the detector
influences) and use the likelihood ratio

— e.g. D-dimensional histogram, Kernel density estimators, ...
—> (generative algorithms)

OR
approximate the “likelihood ratio” (or a monotonic transformation thereof).
find a y(x) whose hyperplanes® in the “feature space”:

(y(x) = const) optimally separate signal from background
e.g. Linear Discriminator, Neural Networks, ...
- (discriminative algorithms)

* hyperplane in the strict sense goes through the origin. Here | mean “affine set” to be precise

18



Classification <-> Regression

Classification: F Hﬁif:gm'm;' | | | I—
" y(x): ROSR: “test statistic” in D- y(x): ROSR: : -, VB 20V =T g
dimensional space of input variables —_— 1% :
" y(x)=const: surface defining the decision " _ _
boundary. W 3
0.5 - ;
. _«\-I 02 04 0.6 0.8 .
y(x)
Regression:
" “D" measured variables + one function value
(e.g. cluster shape variables in the ECAL + particles F(X;.Xo)
1.X2

energy)
" y(x): RP>R “regression function”

" y(x)=const —> hyperplanes where the
target function is constant

Now, y(x) needs to be build such that it

best approximates the target, not such

that it best separates signal from bkgr.
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Machine Learning Categories

supervised: - training “events” with known type (i.e. Signal or Backgr, target value)

un-supervised: - no prior notion of “Signal” or “Background”

- cluster analysis: if different “groups” are found = class labels
- principal component analysis:

find basis in observable space with biggest
hierarchical differences in the variance

- infer something about underlying substructure

reinforcement-learning:

- learn from “success” or “failure” of some “action policy”

(i.,e. a robot achieves his goal or does not / falls or does not fall/ wins
or looses the game)

This lecture: supervised learning

20



Kernel Density Estimator

“‘events” distributed according to P(x
" estimate probability density P(x) in D-dimensional space: d %)

A
. : . . X2 ° . » h
® The only thing at our disposal is our “training data” ‘.‘ : e o 0 * o .
e ¢ Yoo * o
L
" Say we want to know P(x) at “this” point “x” ‘.'.' : O 000" ¢
L L L ™
® One expects to find in a volume V around point “x” o o0 e
L L
N*[P(x)dx events from a dataset with N events * ' ee oo *; -
- K-events: >

N 1. -
K(x) = E I (x_x”), with k(u) = {1: lu;| < L= 1..D k(u): is called
=1

h . a Kernel function:
n= 0, otherwise

—=>K(x)/N: estimate of average P(x) in the volume V

. . . N l X T X?.?
" Classification: Determine P(X) = — E —k
N h” h
PDF¢(x) and PDF(x) n=l1

—> likelihood ratio as classifier! ) _ - _
- Kernel Density estimator of the probability density
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Kernel Density Estimator

“‘events” distributed according to P(x
" estimate probability density P(x) in D-dimensional space: d %)

A
. : . . X2 ° . » h
® The only thing at our disposal is our “training data” ‘.‘ : e o 0 * o .
e ¢ Yoo * o
L
" Say we want to know P(x) at “this” point “x” ‘.'.' : O 000" ¢
L L L ™
® One expects to find in a volume V around point “x” o o0 e
L L
N*[P(x)dx events from a dataset with N events * ' ee oo *; -
- K-events: >

N 1. -
K(x) = E I (x_x”), with k(u) = {1: lu;| < L= 1..D k(u): is called
=1

h . a Kernel function:
n= 0, otherwise

—=>K(x)/N: estimate of average P(x) in the volume V

" Reagression: If each events with (x4,X;) carries a “function value” f(x,X,) (e.g. energy of incident
particle) =

N n
%Z“I((S::'i —X)f(X") = jf(iP(i’)di i.e.: the average function value
i vV

22




Kernel Density Estimator

1 N
P(X) — L ZK} (X =X ) . a general probability density estimator using kernel K
1 n
=1 S E—e
" K or h: “size” of the Kernel -2 “smoothing”
" too small: overtraining/overfitting

" too large: not sensitive to features in P(x)

" Kernel types: window/Gaussian ...
" which metric for the Kernel ?
= normalise all variables to same range
= include correlations ?
= Mahalanobis Metric: x*x = xV-'x

(Elements of statistical learning)

" a drawback of Kernel density estimators:
Evaluation for any test events involves ALL TRAINING

DATA - typically very time consuming

Bayes® optimal decision boundary
23



K- Nearest Neighbour

“events” distributed according to P(x)

— kNN . K-Nearest Neighbours

relative number events of the various X) _
classes amongst the k-nearest neighbours

keep K fixed —> variable window size

- automatically ‘adapt’ resolution to the >
available data

- may replace “window” by “smooth” kernel function (i.e. weight events by
distance via Gaussian)

24



j J A Bellman, R. (1961), Adaptive

»Curse of Dimensionality” Etioegges

Tour, Princeton University Press.

We all know:

Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due
to lack of Monte Carlo events.

Shortcoming of nearest-neighbour strategies: g
21
5 T
_:,'-“IJ,B:—
® higher dimensional cases K-events often are not in o6l /'/r E—
a small “vicinity” of the space point anymore: Mr_ f_,,.—""_[’:z -
uz:— /H _sj: B
oL %/—0-10 B
consider: total phase space volume \VV=1P "o ooz 004 005 008 o

Volume fraction
for a cube of a particular fraction of the volume:

edge length=(fraction of volume)"”

" 10 dimensions: capture 1% of the phase space
- 63% of range in each variable necessary - that's not “local” anymore..®

édevelop all the alternative classification/regression techniques
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Naive Bayesian Classifier

Projective Likelihood Classifier

Multivariate Likelihood (k-Nearest Neighbour)
- estimate the full D-dimensional joint probability density

Naive Bayesian
- ignore correlations

D .
N product of marginal PDFs
P(x) =] [R(x)
i=0

(1-dim “histograms”)

pdf: histogram + smoothing

T ot data (dgnan T " No hard cuts on individual variables = “fuzzy”,

Estimated PDF (norm. signal) | -

600 .
= X3

(a very signal like variable may
counterweigh another, less signal
like variable)

“fuzzy cuts” X

" optimal method if correlations ==

" try to “eliminate” correlations
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De-Correlation

= Find variable transformation that diagonalises the covariance matrix
® Determine square-root C ' of correlation matrix C, i.e., C=C'C"’

=compute C ' by diagonalising C: D=S'CS = C'= SDST

" transformation from original (x) in de-correlated variable space (x') by: x' = C "—1x

e |

LiE.] i%ﬂﬂl‘lﬁl T T T T
Backgraund

Hormalized 5

- (5,51 (0.0, 007 0. 0%

Lo (3, B 000, 0075, 000

& - 200 = 4 BB ".4.3.1.1n1:s

varl+vard varl-var2

&
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i
Ll
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j
El
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o T

5
1
§
g
2
:

Liaibinalossslasialosondesial aal
UrC-Hen 1501 {00 oS

E
Vil

Attention: eliminates only linear correlations!!
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De-Correlation via PCA

= PCA (unsupervised learning algorithm)
= reduce dimensionality of a problem
= find most dominant features in a distribution

= Eigenvectors of covariance matrix = “axes” in transformed variable space
= large eigenvalue = large variance along the axis (principal component)

- PCA eliminates correlations!

28



Decorrelation at Work

" Example: linear correlated Gaussians = de-correlation works to 100%
— 1-D Likelihood on de-correlated sample give best possible performance

4 compare also the effect on the MVVA-output variablel

correlated variables: after decorrelation
TMVA response for classifier: Likelihcod

-E gi'5|'gnh| T T T | T T T | T T T T T T -E gilsllgnhl T T T | T T T | T T T E
z 8 Background z B8 Background -
k-] — - ~ .
g 75 g 7C E
bt 6 2 - s E

2 s - 13

= -

4 ? = =

2 £ &

3 s <

: :

3 ]

& £

g ¢
0 0.2 0.4 0.6 0.5 1 0 0.2 0.4 0.6 0.5 1

Likelihood response LikelihoodD response

Watch out! Things might look very different for non-linear correlations!
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Correlation Coefficients

‘correlations’ | ‘linear-correlations’, ‘interaction/dependence’

—> phsicist’s slang often different from statistitans’ |
1 . 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 1 B .
/_- i T
s ~ - — — T~ \\.
g 0
L %‘s‘e &

http: Hen W|k|ped|a erga’mkn’(}errelatlen and dependence

= to capture “non-linear correlations” - mutual information

Pxy(x,y)
“I(x,y) = [ [ pry(x,¥)log (m) dxdy

= I(x,y) =0 only if x, y are really statistically independent !
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Discriminative Classifiers

= KNN and Naive Bayesian (Multi-dimensional and Projective Likelihood)

= generative methods - estimate the pdf
= discriminative methods
= impose model-specific restrictions (i.e. linear decision boundaries)

= fit directly the decision boundaries

Neyman-Pearson Lemma: in the limit, a ‘perfect’ discriminative
“limit” in ROC curve is given by » _
PDF(x|S) classifier y(x) parametrizes the
y(x) = PDF(x|B)’ L :
Bayes, optlmal the likelihood ratio likelihood ratio (or a monotonic function thereof)
(or any monotonous function - use as ‘event weights’

thEl’EOf} arXiv:1506.02169 for a ‘more theoretical’ analysis
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Linear Discriminant

M
General Y = (g, 2p)) = ) wiki()
i=0
D
Linear Discriminant: y(x ={xq, ...,xp}) = wy + Z W; X
i=1

i.e. any linear function of the input variables: - linear decision boundaries

X’s}f .| PDF of the test statistic y(x)
S - determine the “weights” w that separate “best”
PDFg from PDFg

32



Fisher’s Linear Discriminant

V(X,W) = wq + Zw,x,

E"‘niSigﬁa‘ B L-l-l | | IIIII'_: 7 i F n i n
s usackgmund — 4 determine the “weights” w that do “best

" Maximise “separation” between the S and B

- minimise overlap of the distributions of y and vy,
" maximise the distance between the two mean
values of the classes
" minimise the variance within each class

1-E[ys)? _ wliBw _ "in between" variance

- =T — T " - =" =
C}'},B +{}'};S w Ww within" variance

- maximise J(w) = (E

U, (W) =0= wWo W (%) — (¥)p) the Fisher coefficients

L=

note: these quantities can be calculated from the training data
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Linear Discriminant and non linear correlations

assume the following non-linear correlated data:
" the Linear discriminant obviously doesn’t do a very good job here:

| 2 2
" Of course, these can easily be de- var0' =yvar0’ +var1
correlated: | var(O
var1 =atan
— here: linear discriminator works var

perfectly on de-correlated data

—
o L : L - Signal
S 14
T T T T T T T Signal = R Background
™ s R SRR
1.2 : - Eackground ."i’.' L
1 _: ?12_
E
0.8 > 1—_
0.6 =
o L
0.4 w
0.2 08—
0 L
0.2 0.6
0.4 L
0.6 : ] 04— , .
|~ I T DR B TS P P BN DI R P P I I B P
08060402 0 0204 0608 1 1.2 14 -3 -2 -1 0 1 2 3
var0 atan(varO/var1)
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Classifier Training and Loss Function

What about a more ‘general approach’ than ‘constructing J(w)’ ?

> minimize the expectation value of a “Loss function” L(y*"%", y(x))

L(y train’ y(x)) . penalizing prediction errors for training events

* Regression:

_ 2
2 E[L=E E (ytram — y(x )) ]  squared error loss
* Classification:

—E[L] = E[yframn log(y(x;)) + (1 — yi”'“i") log(1 — y(x;))] binomial loss

regression: yfrem = the functional value of training event i which
happens to have the measured observables x;

classification: v =1 for signal, =0 (-1) background
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Classifier Training and Loss Function

* Regression: y_{?-?‘aia-l . Gaussian distributed around a mean v | ' .,?f/::j
1o II .‘."f":;';f‘d .
* Remember: Maximum Likelihood estimatior . %’
I
* Maximise: log probability of the observed training data ,f::-:"’?f: ' //
20 10 10 20 30 a0 50 ]

events events events

L==log [ | POIye0) == Y logPOI lyGi) = D (57 = yx))

i
_ 2
- E[L]=E E (ytran—y(x )) ]  squared error loss (regression)

* Classification: now: y"" (i.e. is it ‘signal’ or ‘background’) is Bernoulli distributed

events
train

L== ) log(POI"ly(x)) = = ) log(P(Slx)*" " P(Blx """
3 3
If we now say y(x) should simply parametrize P(S|x); P(B|x)=1- - P(S[x) =2

—E[L] = E[yframn log(y(xl-)) +(1- yi”'“'i") log(1 — y(x;))] binomial loss
36



Logistic Regression 2

*

Fisher Discriminant:
- equivalent to Linear Discriminant with ‘squared loss function’

- build a linear classifier that maximizes ‘binomial loss’:
= y(x) to parameterize P(S|x), we clearly cannot ‘use a linear function for ‘y(x)’
- ‘squeeze’ any linear function wy + ijxf = Wx into the proper interval
0 < y(x) < 1 using the ‘logistic function’ (i.e. sigmoid function)

Logistic Regression i
. . 1
y(x) = P(S|x) = sigmoid(Wx) = ——= -
PG _ 17 i ]
- Log (P(le)) = Wx s linear! [

Note: Now y(x) has a ‘probability’ interpretation. y(x) of the Fisher discriminant was ‘just’ a
discriminator.
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Logistic Regression

1
1+e-Wx

y(x) = P(S|x) = sigmoid(Wx) =

1 D example: Logistic Regression: 1 Feature

1.5

y(x) =sigm(wx)

1

y(x) =wx

-0.5

Feature x

Note: decision boundaries are still ‘linear’, just the ‘contour lines’ (y(x)=const)

are non-linear, parametrizing the probability of the event being y=0 or y=1 as

‘distance’ from the boundary. ...
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Logistic Regression

Difference between ‘linear classifier’ and ‘logistic regression’

- distribution of decision boundaries

4 i - 0_
. . ‘-;j::—*.";::-;.-f
Na LT
2k g = LS
| ( 7 SR
== £
.5 . ~
O =5 1 a ‘monotonous’ transformation of y(x)
% — does not change ‘relative overlap’
=2t
for pdfs of y5 and yg

- Does not change performance
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(Stochastic) Gradient Decent SDG

minimize the “loss function” - “W” ?

e.g. E[L(W)] = E[y{"" log(y(x)) + (1 — y{"*") log(1 — y(x))]

1
1+e~Wx 7 learning rate

o

W - W-— HW) - gradient decent

and if you don’t want to evaluate the
expectation value every time for the whole
sample:

with y(x) =

aL
W - W-— 15— stochastic gradient decent

mostly: something in between - mini-batches
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Overtraining

A
& A
o - . .
5 Classifier is too flexible
S - overtraining
% True performance
g (independent test sample)
© 5, training sample
> 94
X \aoptim
Or ?
A Bias if ‘performance’ is estimated
2

from the training sample

- possible overtraining is concern for
every “tunable parameter” o of classifiers:
Smoothing parameter, n-nodes...

- verify on independent “test” sample
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Regularisation

Minimize loss function: e.g. via W — W—ng—iz SDG

Include prior distribution on ‘weights’/ parameters’ w:
events

L =log( n P(y{ " y(x;)) *pw))

= 3" log(P O y(x) +log(p(w))

often (e.g iIf y = polynomial or y = neural network)
w “small” =2 model is less ‘flexible’
—> reasonable prior p(w) would be: Gaussian with mean zero

2> L=L+ %asz a: factor of ‘how much you want to penalize”
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Cross-Validation

" parameters “a” = control performance

" #training cycles, #nodes, #layers, regularisation parameter (neural net)
" smoothing parameter h (kernel density estimator)

" more training data = better training results
" division of data set into “training” and “test” and “validation” sample? ®

Cross Validation: divide the data sample into say 5 sub-sets

Train Train Train Train Test

" train 5 classifiers: y;(x,a) : i=1,..5,
" j-th classifier is trained without the i-th sub sample = used as ‘test/validation’

1 events _
= calculate the test error: CV(a)=—— > L(y,(X,«)) L:loss function
events K

" use a for which CV(a) is minimum - train the final classifier using all data
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General Advice for (MVA) Analyses

no magic in MVA- or ML-Methods:

» no “artificial intelligence” @ ... just “fitting decision boundaries” in a given
model

- most important. finding good observables

» good separation power between S and B
» little correlations amongst each other = have ‘new information’
» no correlation with the parameters you try to measure in your signal samplel

- combination of variables - feature engineering !
» eliminate correlations: you are MUCH more intelligent than the algorithm

= scale features to similar numeric range
- apply pure pre-selection cuts yourself.

- avoid “sharp features” 2 numerical problems, binning loss
» often simple variable transformations (i.e. log(variable) ) do the trick

- treat regions with different features “independent”
» [ntroduces unnecessary correlations, ‘kinks’ in decision boundaries
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MVA Categories

- one classifier per ‘region’
- ‘regions’ in the detector (data) with different features treated independent
» improves performance

» avoids additional correlations where otherwise the variables would be
uncorrelated!

Recover optimal performance after
splitting into categories

| TMVA Input Variables: vard |
T

o & 045
. ; 0.4 5
% o3 ;:' Background rejection versus Signal efficie
0 AES e e s
g:m E"’n"uzz %E .g E|||!| — L l iIIIEIIII:IIIIEIIIE T
: 12 —
[4)] E -"q—j 015 15 2 0.9 -
O = — 0.1 :E e C
) Q 0.05 fg B2 0.8 =3
© e 0 i 3 -
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— — 3 st 17 1g o — FnsherCat
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About Systematic Errors

" Typical worries are:
" What happens if the estimated “Probability Density” is wrong 7
® Can the Classifier, i.e. the discrimination function y(x), introduce systematic uncertainties?
" What happens if the training data do not match “reality”
P(x|S)

P(x|B)

- Imperfect (calling it “wrong” isn’t “right”) y(x) —> loss of discrimination power
that’s all!

—> Classical cuts face exactly the same problem, however:

—> Any wrong PDF leads to imperfect discrimination function y(X) =

in addition to cutting on features that are not correct, now you can also “exploit”
correlations that are in fact not correct

" Systematic error are only introduced once “Monte Carlo events” with imperfect modeling are

used for
" efficiency; purity " same problem with classical “cut” analysis
=#expected events " use control samples to test MVA-output distribution (y(x))

" Combined variable (MVA-output, y(x)) might “hide” problems in ONE individual variable more
than if looked at alone - train classifier with few variables only and compare with data
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MVA and Systematic Uncertainties

» Multivariate Classifiers THEMSELVES don’t have systematic uncertainties

— even if trained on a “phantasy Monte Carlo sample”
= there are only “bad” and “good” performing classifiers |
= OVERTRAINING is NOT a systematic uncertainty Il
= difference between two classifiers resulting from two different training runs
DO NOT CAUSE SYSTEMATIC ERRORS
= same as with “well” and “badly” tuned classical cuts
= MVA classifiers: =2 only select regions in observable space

= Efficiency estimate (Monte Carlo) = statistical/systematic uncertainty
= involves “estimating” (uncertainties in ) distribution of PDF.

Ys(B)
= statistical “fluctuations” = re-sampling (Bootstrap)
= “smear/shift/change” input distributions and determine PDE.

YS(B)
- estimate systematic error/uncertainty on efficiencies

= Only involves “test” sample..
= systematic uncertainties have nothing to do with the training !l
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Classifiers and Their Properties

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics
http://tmva.sourceforge.net/talks.shtml

Classifiers

criens Cuts I;Tlgi::li ﬁEFNRh? H-Matrix Fisher MLP BDT RuleFit SVM
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Training ® © © © © 6 6 © @
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= MVA or ML algorithms
-> parametrize likelihood ratio (or a monotonic function thereof)
— decision boundaries or ‘event weights’
— Parametrize the ‘target function’
- ‘regression’
- Generative or discriminative algorithms
— Multidimensional/projective Likelihood (rec. pdf)
— (Linear) discriminators etc. 2 minimize a loss function
— Take care in training, validation and testing

- Don’t want over/’under’-training but the best classifier!
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