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Monte Carlo method applications

Monte Carlo applications:

@ Physics: particle physics, astrophysics, o
nuclear physics, radiation damage,...

@ Medicine: radiation therapy, nuclear | =
medicine, computer tomography,...

@ Chemistry: molecular modeling,
semiconductor devices,...

@ Finance: financial market simulations,
pricing, forecast sales, currency,...

@ Optimization problems: manufacturing, o
. . ) 1
transportation, health care, agriculture,... e

@ Data production for neural nets slower but more

@ And much more! precise and controllable




The simplest MC example: probabilities of rulette

What is the probability of red?
@ Observe the result many times (it is not necessary to stake:)
@ Count the total of red wins: N4

@ Count the total of games: Nyg
@ The measured probability of red will be: P4 = N,oo/Noea
@ If Ny = ®© => Py = Prog e = 18/(18+18+1) = 0.486



MC example: Buffon’s Needle (1977)

* One of the oldest problems in the field of geometrical
probability, first stated in 1777.

* Drop a needle on a lined sheet of paper and determine
the probability of the needle crossing one of the lines

* Remarkable result: probability is directly related to the
value of &t

* The needle will cross the line if x < L sin(). Assuming L <
D, how often will this occur?

- do T Lsin6 do L o™ 2L
5 f(, ey /0 D = ap)y VT ap

* By sampling P_,, one can estimate 7.

r
Distance X Length of the
between 0 needle =L
lines =D




MC is a simple and a general method

Working on your
_Project Estimates

Il thought you guys were \

’ That’s Exactly what we're |

\

The Monte Carlo (MC)
method is a method to
obtain deterministic results
from random values

S

In other words, try many
times and count the total of
the outcomes you like

@ Generate N random points X; in the problem space
@ Calculate the score [,=f(X,) for the N points

@ Calculate the result of your average score:

@ According to the Central Limit Theorem, f  will approach

the true average value [(f)=1im f

N=>w

> f:%Zfl




Monte Carlo numerical integration:

extremely useful for multidimensional integrals!

A=[dx; d X.=dx,.dx,.dx,,...=dA

( Idea is exactly the same! )

@ Generate N random points in X,€A

@ Calculate the score f.=f(X.) for the N points
@ Calculate the result of your integral:

I=[f(X)dR~I,. Z f AA—N > f=Af

@ Following the Central Limit Theorem, I,,- will approach the true integral value:

I=[ f(X)d%=1im I ,,.=Alim f
A

N=w N= a0




MC example: Laplace’s method of calculting 7t (1886)

@ Side of the square =1
@ Area of the square=A =4

@ Area of the circle is integral we

calculating:

_p(z\—|LifREI
fi=f (%) .lo,ffffﬁl

. Everythlng we need is to count the number of g5}
points x_ inside the circle:
N >

Ax 4
Infczﬁsz: —N_ > 7

| N CN=w




History of MC methods

@ Fermi (1930): random method to calculate the properties @ @
of the newly discovered neutron

@ Manhattan project (40’s): simulations during the initial
development of thermonuclear weapons. Von Neumann
and Ulam coined the term “Monte Carlo”

@ Metropolis (1948) first actual Monte Carlo calculations
using a computer (ENIAC)

@ Berger (1963): first complete coupled electron-photon
transport code that became known as ETRAN

@ Exponential growth since the 1980's with the availability
of digital computers




Probability Density Function (PDF)

@ If we generate a set of random variables X, €A, ~ '
the probability of them is not necessarily equal. y U
In some zones of A we can find more random T
variables and some of them less. R R PO
s ® _‘.'.'."""?;b" »
--....' l:-': W .-.. :
@ However, we can define a function related to the '-"'3,".""*2'!;-. )
probability of the generated points, so called L e
probability density function (PDF). Tt
@ Probability Density Function (PDF) p(X;) of For simplicity let's
vector X, is a function that has three properties: switch to the 1D case:
1) belongs to some region A: X, €A asx<b
2) is non-negative in this region: P(Ef)éﬂ 0 p(x) =z 0
3) is normalized: AP b P ‘
{p(xf)dxi_l le(x)dle




Cumulative Distribution Function (CDF)

PDF IS NOT A PROBABILITY
It is a probability density

( Probability is the integral of PDF: )

Pr'ob{xlﬂxﬂxz]-:f p(x)dx

@ Cumulative Density Function (CDF) is a direct measure of probability:

F(x):Prob{aﬂxix’}:f p(x')dx' \

@ CDF has the following properties:

Prob{x,<x<x,|=F(x,)—F(x,)

1) F(a) = 0, F(b) = 1:

2) F(x) is monotonically increasing, since p(x)=0.
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Some example distribution — Uniform PDF

@ The uniform (rectangular) PDF on the interval [a, b] and its CDF are given by

1 o1 X—da
P (X): Flix)= dx'=
b—a (x) ‘!; b—a b—a
012 T T T T T T T 12 | | | 1 1 ]
PDF p(x) CDF F(x)
— l\_‘\\\\,_‘\_\ = 1.0 ey
NN
0.080 | AR 1 080} -
%ﬁ CDF = jprobability of x
*ﬁ‘i‘f to be in this|area
0.040 F N 1 040f : :
= ;
- NN . - : -
N :
0.0 | ] AR I | 0.0 I I | ] | I
0 10 20 30 40 0 10 20 30 40
Random variable x Random variable x
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Where we use uniform distribution

@ Side of the square =1
@ Area of the square=A =4
@ Area of the circle is integral we

calculating:| I=m

_ (| LifXEI
fi=f(X) .t{),ifff%f

> Everythlng we need is to count the number of o5t
points x, inside the circle:
N >

@ This will give the value of our integral:

ANy, _[4
v E;f: EN"JN:)QCH
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Some example distributions — exponential PDF

@ The exponential PDF on the interval [0, «] and its CDF are given by

p(x)=p(xla)=ae™ F(X)ZIGe_axrdx':l—e_“X
0
0.30 . . . 1.2 . . .
PDF f(x) - 10k....Probability = 1 (x = ©) _

0.20 CDF = probabilityof x0-80 [ :

to be in this area

\{

0.10 - 0.40

CDF F(x)

15 20 0 10 15 20
Random variable x Random variable x

s
i E L LA AL

o
o

m--------

-
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Exponential distribution example: nuclear decay

@ The time of nuclear decay is a random value with probability density function

where T is the mean lifetime of the nucleus; the half-life time ty, = T In(2)

@ The probability of decay at time t is calculated using the CDF:

L i

t
P f% Tdt'=1—e "€[0,1]
0

decay

@ To use Monte Carlo to generate the decay time t one needs to replace P, (1)
by a random number ¢ € [0,1]:

t=—1In(1-&)=—1Iné

@ Nuclear decay applications: nuclear physics,
nuclear reactors, nuclear medicine, SPECT, PET, ...
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Mean, variance and standard deviation

@ Consider a function z(x), where x is a random variable described by a PDF p(x).

@ The function z(x) itself is a random variable Thus, the mean value of z(x) is
defined as:

(z)=plz fz
@ Then, variance of z(x) is given as this
b
o’ (z)={(z(x)—(2)) :?:f x)—(z)) p(x)dx=(z")—(z)

@ The heart of a Monte Carlo analysis is to obtain an estimate of a mean value
(a.k.a. expected value). If one forms the estimate

1 N 1 N VL . —
- EZ ﬁ; ::“Z’}:}.Jlﬂ.z

@ The variance of z is givenas |0°(z)=0"(
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Monte Carlo error

Q The Monte Carlo error is given by ' confidence coefficient confidence level
the standard deviation of the 0.25 0.1574 20%
expected value: 050 0.3829 38%

1.00 0.6827 68%
J( ] 1.50 0.8664 87%
U(E‘) Z)_\Z Z—\Z\ /N 2.00 0.9545 95%
SR ‘N’ =1 3.00 0.9973 99%

4.00 0.9999 99.99%

@ Since in Ml? *..:..fe don't know the Normal Distribution
true value ( z,, we should use 0.40
corrected (“unbiased”) sample 035
standard deviation: 2030

0 0.25
| - =
[ N £0.201
| _\2 . =
:\;Z(zi—z)f(N—l) go1s
- ‘ ' & 0.101
0.05 - 0.13% 2.14% 4 13.58% (34.13% | 34.13% | 13.59% .. 2.14% 0.13%
Q Confidence coefficient: O T4 30 u-20 p-0 4§ p+o p+20 pt3o ptdo
A
Z 1 i Higgs boson discovery:
Prob{z— 4 ( )<fz\<z+)‘. ( )}': _J'e ““du 9gs PO y
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Sometimes statistics is a problem

@ Decay of an unstable particle itself is a random process

@ This decay may happen through different channels =>
Branching ratio:

DUt v, (99.9877 %)
T2 Ut v,y (2.00 x 10* %)
T > et v, (1.23 x 10 %) Ny Very low { evek:]lg%seffjfbnars J
D et vey (7.39x 107 %) probability
2> et v, (1.036 x 108 %) e =
Tt etv,ete (3.2 x 10° %) & | ATLAS Preliminary = D
¢ 2 [ s-13TeV,36.1 b’ — Fit
~ 20 7z s ay [ ] Background ]
@ The statistical error of decay events in a decay ,jgj = b
channel or of the errorbars in any histogram can - i
be estimated using the same formula: 100 ]
\_ I:'p(l—p) for 3¢ multiply it by 3, 5‘ 2
Error (1 G»)_'\! N confidence level 99% - 1T

i i i 1 1 i i i I i i i i I i i i 1 i i
Pio 115 120 125 130 135
m,, [GeV]
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Geantd*: a Monte Carlo simulation toolkit

@ Geant4 generates primary beam of particles randomly according the distribution
set up.

@ All the Geant4 primary particles are simulated independently.

@ Primary particles are tracked in the material, can decay and produce secondary
particles, for instance radiation. This is simulated using various Geant4
processes most of which are random, which is also illustration of Monte Carlo.

@ The Geant4 output is some distribution of particles as well as scoring of
interesting events.

In Positron Emission Tomography (PET)
we have (picture from **):

@ a source of gamma-rays distributed in some
space randomly emitting the photons and
surrounded by some material

@ A detector to score these gamma-rays

*https://geant4.web.cern.chl/
**D. P. Watts et al. Nature Communications, 12, 2646 (2021

18



Monte Carlo parallelization => supercomputing

@ All Monte Carlo points are independent => simple parallelization

@ In Geant4 all primary particles are automatically distributed between different cores
of the CPU using multithreading

@ Geant4 includes also MPI parallelization to parallelize across on multiple nodes

( Linear scaling on physical cores* )

600 ThTroughpyt _.

500

400
2threads/core

NURION@KISTI (Korea)

61 Physical cores

Events/minute
2]
o

200 |

o—e Intel Xeon Phi||

0 50 100 150 200
Number Threads
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Monte Carlo methods

Monte-Carlo methods generally follow the following steps:

1. Determine the statistical properties of possible inputs

2. Generate many sets of possible inputs which follows
the above properties

3. Perform a deterministic calculation with these sets
4. Analyze statistically the results

The error on the results typically decreases as 1/v/N

20



Numerical integration

L/

H"‘-\-—P"f

Most problems can be solved by integration

Monte-Carlo integration is the most common application
of Monte-Carlo methods

Basic idea: Do not use a fixed grid, but random points,
because:
1. Curse of dimensionality: a fixed grid in D dimensions
requires NP points
2. The step size must be chosen first

21



Given any arbitrary probability distribution and provided
one is able to sample properly the distribution with a
random variable (i.e., x ~ f(x)), Monte-Carlo simulations

can be used to:

» determine the distribution properties (mean,
variance,...)

» determine confidence intervals, i.e.
P(x > a) = [7° f(x)dx
» determine composition of distributions, i.e. given
P(x), find P(h(x)), h(x) = x2; cos(x) — sin(x); . ..
Note that these are all integrals!

=

22



Optimisation problems

Numerical solutions to optimization problems incur the
risk of getting stuck in local minima.

/
\ﬁ%ﬁ
Monte-Carlo approach can alleviate the problem by

permitting random exit from the local minimum and find
another, hopefully better minimum

23



Numerical simulations

» Radiation transfer is Google-wise the main
astrophysical application of Monte-Carlo simulations
In astrophysics

» |n particle physics and high-energy astrophysics,
many more physical processes can be simulated

Some physical processes are discretized and random by
nature, so Monte-Carlo is particularly adapted

24



Numerical simulations

GEANT4 is also used to determine the performance of
X-ray and gamma-ray detectors for astrophysics




Random numer generators

Basic principles

» We want to draw many random variables
N; ~U(0,1), /1 =1.... which satisfy (or approximate
sufficiently well) all randomness properties

» N; ~U(0,1), Vi is not sufficient. We also want that
f(Ni.N;....)¥i,j,... has also the right properties

» Correlations in k-space are often found with a bad
random-number generators

» Another issue is the period of the generator

» The ran () function in 1ibc has been (very) bad.
Do not use this function in applications when good
randomness is needed says man 3 rand

26



Random numer generators

Basic algorithm

» Many random number generators are based on the
recurrence relation:

Niy1 = a-Nj+ ¢ (mod m)

These are called linear congruential generators. c is
actually useless.

» “Divide” by m + 1 to get a number in the range [0; 1]

» Choices of a. min standard libraries are found to
range from very bad to relatively good

» A “minimal standard” setis a =7°> = 16807, ¢ = 0,
m =231 _ 1 =2147483647. This is RANO

» Note that the period is at most m

27



Random numer generators

Improvements on RANO

1.

Multiplication by a doesn’'t span the whole range of
values, i.e. if N; = 10=%, Nj,; < 0.018, failing a
simple statistical test

» Swap consecutive output values: Generate a few

values (~ 32), and at each new call pick one at
random. This is RAN1

. The period m = 23" — 1 might be too short

» Add the outcome of two RAN1 generators with
(slightly) different m’'s (and a's). The period is the
least common multiple of my and ms ~ 2 - 10", This
is HANZ2

. The generator is too slow

» Use in Cinline N;_ 4 = 1664525 .- N; + 1013904223
using unsigned long. Patch the bits into a real
number (machine dependent). This is RANQD2

28



Implementations and recommendations

NR: Numerical Recipes
GSL: GNU Scientific Library

Random numer generators

Library | Generator | Relative speed | Period
NR RANO 1.0 ~ 231
NR RAN1 1.3 ~ 236
NR RAN2 2.0 ~ 262
NR RANQD2 0.25 230
GSL MT19937 0.8 219937
GSL TAUS 0.6 ~ 288
GSL RANLXD2 8.0 ~ 2400

Always use GSL! See the GSL doc for the many more

algorithms available

29



Transformation method

The method

The transformation method allows in principle to draw
values at random from any distribution

LT T 1) -
dewviaie in

0

1. Given a distribution p(y), the cumulative distribution
function (CDF) of p(y) is F(y) = fd"' p(w) dw

2. We want to draw y uniformly in the shaded area, i.e.
uniformly over F(y); by construction 0 < F(y) <1,

3. We draw x ~ U(0,1) and find y so that x = F(y)
4. Therefore y(x) = F'(x), x ~U(0.1)

30



Transformation method

Example

Exponential deviates: p(y) = Ae™
Fly)=1—e =
1
y(x) = —Zln(1 — X)

Note: this is equivalent to

:
y(X) = —~In(X).
since, if x ~ 4(0,1), then 1 — x ~ (0, 1) as well

Note also that it is rather uncommon to be able to
calculate F~1(x) analytically. Depending on accuracy, it is
possible to calculate an numerical approximation

31



Transformation method

A point in space

To draw a point in a homogeneous sphere of radius R:

1. ¢ can be drawn uniformly from 2£(0, 2m)

2. 0 has a sine distribution p(#) = sin(#)/2, 0 < [0; 7|
Transformation: / = 2 arccos(x)

3. Each radius shell has a volume f(R) ~ R? dR, so
R o~ 3/x

4. Alternatively, draw a point at random on the surface
of a sphere (x, y, 2)/\/Xx2 + y2 + z2 with
X, ¥y, Z~N(0,1) 32




Rejection method

The method
If the CDF of p(x) is difficult to estimate (and you can

forget about inversion), the rejection method can be used

A

first random
deviatein - "

-+ lag)

secomd random
dewinte in

-1

}] Xn

1. Find a comparison function f(x) that can be
sampled, so that f(x) = p(x), ¥x

Draw a random deviate xp from f(x)

Draw a uniform random deviate yp from 44(0, f(Xxg))
If Vo < p(xp), accept xp, otherwise discard it

5. Repeat 2.—4. until you have enough values

The rejection method can be very inefficient if f(x) is very
different from p(x) 33
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Rejection method

Example
0 1 T!- 4 5
The Poisson distribution is discrete: P(n; o) = ﬂ’”;ﬁ_“
Make it continuous:
[x] @—
¥ e
P(Xx, ) = X7

A Lorentzian f(x) o (x—a1]2+c2 IS a good comparison
function

34



Distributions

GNU Scientific Library implements (not exhaustive!):

Gaussian Binomial
Correlated bivariate Gaussian Poisson
Exponential

Laplace

Cauchy Spherical 2D, 3D
Rayleigh

Landau

Log-normal

Gamma, beta

x2, F t

35



Quasi-random numbers

What is random?

.
.......
1

All sets of points fill “randomly” the area [[0; 1]; [0; 1]]

The left and center images are “sub-random” and fill more
uniformly the area

These sequences are also called low-discrepancy
sequences

These sequences can be used to replace the RNG when

X ~U(a,b)is needed
36
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Quasi-random numbers

Accuracy

fractiomal accuracy of integral
=

pacndo-randodan, hard boundary seeas
pseudo-random, soft boandary === -
guasi-random., bard boundary s
quasi-randaom, solft boundory —

g
I

i i |- i sl
1) 100

num ber of pointa WV

Convergence in some cases of numerical integration can
reach ~ 1/N
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Big picture: turning collision into publication

* What we want: statements about physical parameters ¢, given data x; collected by an experiment
* connection: the likelihood L (¢) = p(x | ¢) — key ingredient for all subsequent statistical inference

*p(x | ¢) means: pick a ¢ and you get a probability density function over x

observations ; statements about parameters ¢
I ST R R I -
115 ATLAS Run2 B Csenes 696 3 |-
F Observed 95%CL 7 |=
1.10F X SMpredicion |
<4 |~
.05 1k
1,005 3l
0.95- 1B
0.90" 3!

0.85- i

0.80" :
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An antractable likelihood function

» We need p(x | ¢) — unfortunately this very high-dimensional integral is intractable, cannot evaluate this

P (x | (f)): dzpdzedzp p (X- | ZD)P (ZD | ZS)P (ZS | ZP)P (ZP | (f))

observables x detector interaction 7, parton shower 7 parton level 7,

The dependence on
parameters ¢ is here.

40



Simulation to approximate nature

» We wrote down p(x | ¢), yet cannot evaluate it directly

* Have a set of simulators for all steps involved and can draw samples X; ~ p(x | ¢), which approximate nature

» another way to say this: we can “run Monte Carlo”

PATLAS

EXPERIMENT
nature .
% events X
true ¢ ’

simulation

41



Simulation-based density estimation

* Given simulated events X; ~ p(x | ¢) we can construct the density p(X | ¢')

> this is an approximation of what we are after, the true p(x | ¢)

* Think of this as MC integration: with enough simulated events can construct approximate probability density

42



Histograms & summary statistics

* Use MC samples to estimate the density p(x | ¢), e.g. by filling histograms with the samples x; /

* histograms are a convenient method for density estimation

 Hist ity the curse ofdimensionay €Y oA A
istograms are hit by the curse of dimensionality ez
. . i . . E 16:_ I-E+jats.ll
* number of samples x. needed scales exponentially with dimension of observation 2 44- g

» We use summary statistics to reduce dimensionality of our measurements J

- 1 | Y L8 1 1 sl 1 1 1
87 (rc0c) ¥8 O T SAUd Jn3

* operate on objects like jets instead of detector channel responses

* use physicists & machine learning to efficiently compress information o0 10 M) 15 e
m, [GeV]

 Challenge: finding the right low-dimensional summary statistic — crucial for sensitivity
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The statistical framing

/ prediction \

parameters of interest observed data x
0] px | ¢) simulated data x

\ inference /

44



LHC collision event

ATLAS

EXPERIMENT
http://atlas.ch

Run: 203602

Y A A et
/ T 0 & clearly visible.

Maybe
H — 72°Z° —
LT

‘;-7\ N
N o >‘."’<; ‘ )
\
\ h \

But what about
rest of tracks?

Why and how are
they produced?




A collected event view

(O Hard Interaction
® Resonance Decays

B MECs, Matching & Merging
M FSR
M ISR*
QED
I Weak Showers
M Hard Onium

(O Multiparton Interactions

[0 Beam Remnants*
Strings
Ministrings / Clusters

Colour Reconnections
String Interactions
Bose-Einstein & Fermi-Dirac
M Primary Hadrons
M Secondary Hadrons

A Baryon M Hadronic Reinteractions
W Antibaryon

© Heavy Flavour (*:incoming lines are crossed)
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Monte Carlo events

s

\

\
Background
subtraction

J

/

Analysis
design

\

y,

(

-
Detector

calibration

\

\

/

Unfolding

\.

\
Background
subtraction

y,

Theory

\.

comparisons

/
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General 2->n scattering cross-section

!

N = H d’[]
i dé :/ I ot + Py — g; | (M(py,p2,01,. ., )2
. cuts N cuts [i 1 (27r)32E,-] (Pl P2 Z ]) (Pl P2, q1 qN |

® Hard scattering matrix element
® Phase space integration including cuts

Monte Carlo task

Numerical integration for total cross section
- Needs MC methods due to high dimensionality D > 4

Event generation

- (3: N —4) random numbers
— N final state momenta
— natural “event” for 2 — n scattering

= Simply histogram any observable of interest
= No need for dedicated calculations for observable

48



A tour to Monte Carlo

... because Einstein was wrong: God does throw dicel!
Quantum mechanics: amplitudes = probabilities
Anything that possibly can happen, will! (but more or less often)

Event generators: trace evolution of event structure.
Random numbers &~ quantum mechanical choices.

49



The Monte Carlo method

Want to generate events in as much detail as Mother Nature
— get average and fluctutations right
— make random choices, ~ as in nature
Ofinal state — Ohard process ’Ptot.?harc:l process—final state
(appropriately summed & integrated over non-distinguished final states)
where Ptot- — PI‘GH PISR PFSR PMPIP1*o.1‘1‘11‘1z:u1t$ Pl‘la.clr(:mizat101'1 P{ileca}-’s
with P; = [ [, Py = [[; [, Pijk = ... inits turn
— divide and conquer

an event with n particles involves O(10n) random choices,
(flavour, mass, momentum, spin, production vertex, lifetime, ...)
LHC: ~ 100 charged and ~ 200 neutral (+ intermediate stages)
—> several thousand choices

(of O(100) different kinds)

50



Why generators?

@ Allow theoretical and experimental studies of
complex multiparticle physics

@ Large flexibility in physical quantities that can be addressed

@ Vehicle of ideology to disseminate ideas
from theorists to experimentalists

Can be used to

@ predict event rates and topologies
— can estimate feasibility

@ simulate possible backgrounds
—- can devise analysis strategies

@ study detector requirements
= can optimize detector/trigger design

@ study detector imperfections
= can evaluate acceptance corrections

51



Few generic ones: Pythia, Sherpa, Herwig

+ other relevant packages

ME Generator

Put together for maximum effect

Process Selection

ME Expression

Resonance Decays

Phase Space
Generation

A

SUSY/...
spectrum

calculation

Parton Showers

Multiple Interactions

PDF Library

Beam Remnants

Hadronization

7 Decays

Ordinary Decays

[\

B Decays

Detector Simulation

Standardized interfaces essential!
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PDG particle codes

Fundamental objects

d| 11 e |21 g |32 7° | 39 G
12 v |22 ~ |33 7" | 41 R°

A.

1

2 U

3 s |13 |23 Z° |34 WP 42 LQ
4 c |14 vy, | 24 W7 | 35 H° 51 DMg
5 b |15 + | 25 ho 36 A°

6 t | 16 Uy 37 HT

B. Mesons

100 [qu| +10ga| + (25 + 1) with |q1| > [
particle if heaviest quark u, s, ¢, b; else antiparticle

111 7% | 311 K° | 130 K{ | 221 4° | 411
211 7 | 321 K* | 310 K% |331 ¢° | 421
C. Baryons
1000q1 + 100¢q> + 10g3 + (25 + 1)
with g1 > g» > g3, or A-like g1 > g3 > @
2112 n | 3122 A% | 2224 A*t | 3214 X*O
2212 3212 ¥° | 1114 A~ | 3334 Q~

add — sign for
antiparticle,
where appropriate

+ diquarks, SUSY,

technicolor, ...
DT | 431 D7
D° | 443 J/¢

53



Les Houches LHA/LHEF event record

At initialization: Per process in initialization:
@ beam kinds and E's ® integrated o
@ PDF sets selected @ error on o
e weighting strategy @ maximum do/d(PS)

@ number of processes @ process label

Per event: Per particle in event:
@ number of particles @ PDG particle code
@ process type @ status (decayed?)
@ event weight @ 2 mother indices
@ process scale @ colour & anticolour indices
® Qe ® (Px: Py, Pz, E),m
@ (v @ lifetime 7
e (PDF information) @ spin/polarization
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Monte Carlo techniques

“Spatial” problems: no memory/ordering

@ Integrate a function

© Pick a point at random according to a probability distribution
“Temporal”’ problems: has memory

@ Radioactive decay: probability for a radioactive nucleus
to decay at time t, given that it was created at time O

In reality combined into multidimensional problems:
© Random walk (variable step length and direction)

© Charged particle propagation through matter
(stepwise loss of energy by a set of processes)

© Parton showers (cascade of successive branchings)
© Multiparticle interactions (ordered multiple subcollisions)

Assume algorithm that returns “random numbers’ R,
uniformly distributed in range 0 < R < 1 and uncorrelated.
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Integration and selection

Assume function f(x),
studied range Xpin < X < Xmax, f(z)
where f(x) > 0 everywhere

»

Two connected standard tasks: 01— —T

1 Calculate (approximatively) Tmin Tmax

/ L f(x")dx’

min

2 Select x at random according to f(x)

In step 2 f(x) is viewed as “probability distribution”
with implicit normalization to unit area,
and then step 1 provides overall correct normalization.
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Integral as an area/volume

An n-dimensional integration = an n + 1-dimensional volume

f(Xx1,...,Xn)
// 1dxy...dx,dx,1
0
since fof{x} Ldy = f(x).

So, for 1 + 1 dimension, selection of x according to f(x) is
equivalent to uniform selection of (x, y) in the area

=
=
g
o,
x
o,
3
I

Xmin < X < Xmax, 0 < y < f(x). :t‘;‘r
Therefore o WAC)
(X5
9395909,
. i RN
>
/ f(x")dx" = R/ f(x")dx’ Sesetetes
LA D
Xmin Xmin 0:0:0:0:0:‘
LA
: : SSatetatetetets
(area to left of selected x is uniformly 0 RS .

distributed fraction of whole area) Zmin T Tmax
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Analytical solution

If know primitive function F(x) and know inverse F~*(y) then

F(X) - F(Xmin) = R (F(Xma.x) - F(Xmin)) — RAtot
—= X = F_I(F(Xmin) + RAtot)

Proof: introduce z = F(xyi,) + R Aot Then

P dpdr 1 11 TR gy
o T dx o dx dz o dF-Yz) gz 00 dz
dx dR dx o e df dz( ) SR Z o A
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Hit-and-miss solution

f f(X) < finax 1N Xmin < X < Xmax 3{
use Interpretation as an area fmax N\
Y2 jegted
1 select
X = Xpmin T R (Xma.x — Xmin)
2 select y = R fax (new RI) y1 pted
. 0 - x
3 while y > f(x) cycle to 1 Tmin T Tmax
Integral as by-product:
Xmax N N
| = / f(X ) dx = finax (Xmax — Xmin) e = Aot o
Xmin Ntn N‘[rx
Binomial distribution with p = Nco/Niyy and g = Neaiy/ Ny,

SO error

ol _ Aiot /P Q/Nt.n f 1
/ Atot P P Ntly aCC ICC
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Importance sampling

Improved version of hit-and-miss: Y
If £(x) < g(x) in 4
Xmin < X < Xmax

and G(x) = [ g(x')dx"is simple Y2+
and G~Y(y) is simple

(7275
[ l,'j

%
1 select x according to g(x) Y11 ?,;i,:%;?i,%'v,‘;";
distribution 0- R
2 select y = Rg(x) (new R!) Lmin T Tmax

3 while y > f(x) cycle to 1

-
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If f(x) < g(x) =3, &i(x), Y

where all g; “nice” (Gj(x) invertible)
but g(x) not

1 select i with relative probability _
9(z)/

A= /'Xmax gi(x)dx’
N7

min

7

0

2 select x according to gi(x)

3 select y=Rg(x)=R > gi(x)

4 while y > f(x) cycle to 1
Works since

[regax= [ 2% 280 ZA"/ a0

g(x)
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Temporal methods: radioactive decays

Consider “radioactive decay”:

N(t) = number of remaining nuclei at time t

but normalized to N(0) = Np = 1 instead, so equivalently

N(t) = probability that (single) nucleus has not decayed by time t
P(t) = —dN(t)/dt = probability for it to decay at time t

N(t) Naively P(t) = c = N(t) =1 — ct.
A Wrong! Conservation of probability
No driven by depletion:

a given nucleus can only decay once

Correctly
P(t) = cN(t) = N(t) = exp(—ct)

> 1
\ I.e. exponential dampening
P(t) = c exp(—ct)

There is memory in time!
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Temporal methods: radioactive decays

For radioactive decays P(t) = cN(t), with ¢ constant,
but now generalize to time-dependence:
dN(t)

P(t) = T = f(t)N(t); f(t)>0

Standard solution:

d[z(tt)——f(t)f\!(t) — dN

In N(t)—In N(0) = — /Ot f(t')dt' = N(t) = exp (— /Ot f(t’)dt’)

F(t) / f(t")dt' == N(t)=exp(—(F(t)— F(0)))
Assuming F(o0) = oo, i.e. always decay, sooner or later:
Nt)=R = t=F YF(0)—-InR)
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The veto algorithm: problem

What now if £(t) has no simple F(t) or F~17?
Hit-and-miss not good enough, since for f(t) < g(t), g "nice”,

t =G (G(0)—InR) = N(t)=exp (—/(;tg(t")dt’)
P(t) = —d{z(tt) = g(t) exp (—/Otg(f’)dt’)

and hit-or-miss provides rejection factor f(t)/g(t), so that

P(t) = f(t) exp (— /Org(r’)dtf)

(modulo overall normalization), where it ought to have been

P(t) = f(t) exp (— /Ot f(t’)dt")
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The veto algorithm: solution

The veto algorithm

1 start with i =0 and tg =0
2 1=1+1

3 t=t;=G YG(ti_1)—InR),ieti>ti_1
4 y=Rg(t)

5 while y > f(t) cycle to 2

to t1 otz Tt =14

0 t

That is, when you fail, you keep on going from the time when you
failed, and do not restart at time t = 0. (Memory!)
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The winners take all

Assume “radioactive decay” with two possible decay channels 1&:2

~dN(¢)
dt

P(t) =

Alternative 1:
use normal veto algorithm with f(t) = fi(t) + fo(t).
Once t selected, pick decays 1 or 2 in proportions fi(t) : f2(t).

= A(t)N(t) + R(t)N(z)

Alternative 2:

The winner takes it all

select t; according to Py(t1) = f1(t1)Ny(t1)

and tp according to P(t2) = fo(t2) Na(t2),

l.e. as if the other channel did not exist.

If t; < t» then pick decay 1, while if to, < t; pick decay 2.

Equivalent by simple proof.
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Radioactive decay as perturbation theory

Assume we don't know about exponential function.
Recall wrong solution, starting from N(t) = Np(t) = 1:

% — N = —cNo(t) = —c = N(t) = Ny(t) = 1 — ct
C

Now plug in N;i(t), hoping to find better approximation:

t
% = —cNy(t) = N(t) = Ny(t) = 1—c/ (1—ct’)dt’ = 1—ct+
C 0

(ct)?

and generalize to

t i+1 (—Ct)k
Nioy(t) = 1— c/ N(#) e = Nia () = S
0 k=0

which recovers exponential e~ for i — oo.

Reminiscent of (QED, QCD) perturbation theory with ¢ — af. 67



Main event components: Main Monte Carlo methods:
e parton distributions e integration as an area
e hard subprocesses e analytical solution
e initial-state radiation e hit-and-miss
e final-state interactions e importance sampling
e multiparton interactions o multichannel
¢ beam remnants e the veto algorithm
e hadronization e the winner takes it all
e decays

e total cross sections
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