Statistics and Data Analysis (HEP at LHC)

- ☐ Computing statistical results
 - Estimating the value of a parameter
 - Testing hypotheses
 - Discovery
 - Limits
 - Confidence intervals

Slides extracted from N. Berger lectures at CERN Summer School 2019

How to represent the data

Physics measurement data are produced through **random processes** Need to be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(n; S, B) = e^{-(S+B)} \frac{(S+B)^n}{n!}$
Binned shape analysis	n _i , i=1N _{bins}	Poisson product $P(\mathbf{n_i}; \mathbf{S}, \mathbf{B}) = \prod_{i=1}^{N_{bins}} e^{-(\mathbf{S} f_i^{sig} + \mathbf{B} f_i^{bkg})} \frac{(\mathbf{S} f_i^{sig} + \mathbf{B} f_i^{bkg})^{\mathbf{n_i}}}{\mathbf{n_i}!}$
Unbinned shape analysis	m _i , i=1n _{evts}	Extended Unbinned Likelihood $P(\mathbf{m_i}; \mathbf{S}, \mathbf{B}) = \frac{e^{-(\mathbf{S} + \mathbf{B})}}{\mathbf{n_{\text{evts}}}!} \prod_{i=1}^{\mathbf{n_{\text{evts}}}} \mathbf{S} P_{\text{sig}}(\mathbf{m_i}) + \mathbf{B} P_{\text{bkg}}(\mathbf{m_i})$

Model can include multiple categories, each with a separate description

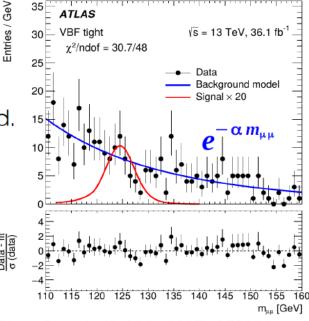
Model parameters

Model typically includes:

- Parameters of interest (POIs): what we want to measure
 - \rightarrow **S**, σ , m_w , ...
- Nuisance parameters (NPs): other parameters needed to define the model
 - \rightarrow B
 - → For binned data, f^{sig}, f^{bkg}
 - \rightarrow For unbinned data, parameters needed to define P_{bkg} e.g. exponential slope α of $H\rightarrow \mu\mu$ background.

NPs must be either

- → given a value "by hand" (possibly within systematics) or
- → constrained by the data (e.g. in sidebands)

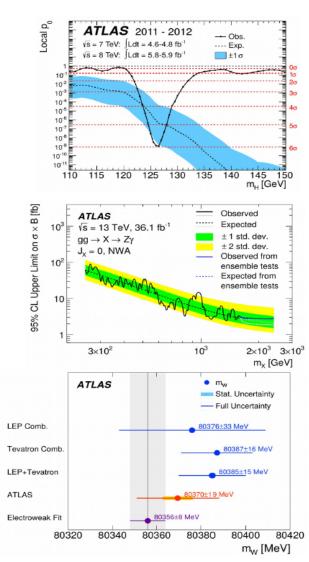


Phys. Rev. Lett. 119 (2017) 051802 4

Statistical computations

Now that we have a model, can use it to compute analysis results:

- Discovery significance: we see an excess –
 is it a (new) signal, or a background
 fluctuation?
- Upper limit on signal yield: we don't see an excess – if there is a signal present, how small must it be?
- Parameter measurement: what is the allowed range for a model parameter? ("confidence interval")
- → The Statistical Model already contains all the needed information – how to use it?

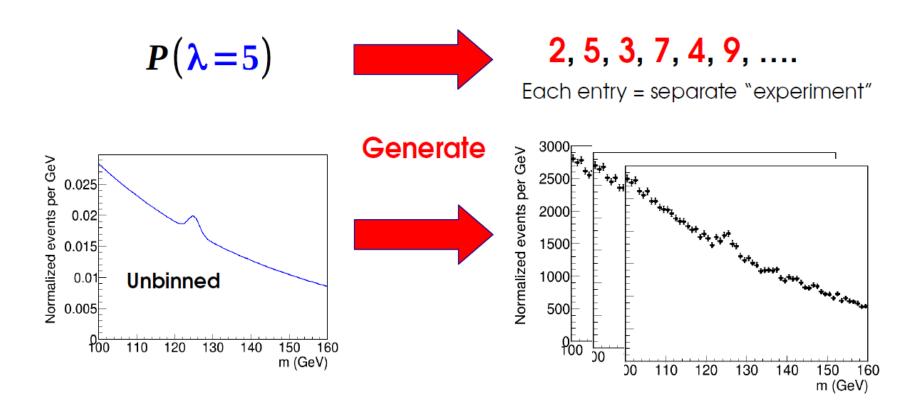


Using the PDF

Model describes the distribution of the observable: **P(data; parameters)**

⇒ Possible outcomes of the experiment, for given parameter values

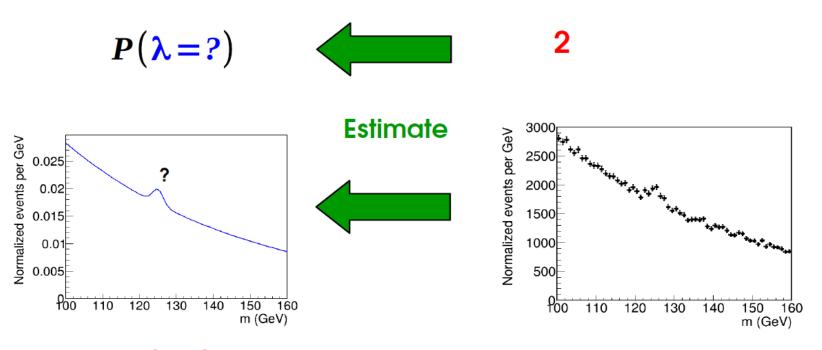
Can draw random events according to PDF: generate pseudo-data



Likelihood

Model describes the distribution of the observable: **P(n; λ), P(data; parameters)**⇒ Possible outcomes of the experiment, for given parameter values

We want the **other** direction: **use data to get information on parameters**



Likelihood: L(parameters) = P(data;parameters)

→ same as the PDF, but seen as function of the parameters

Poisson example

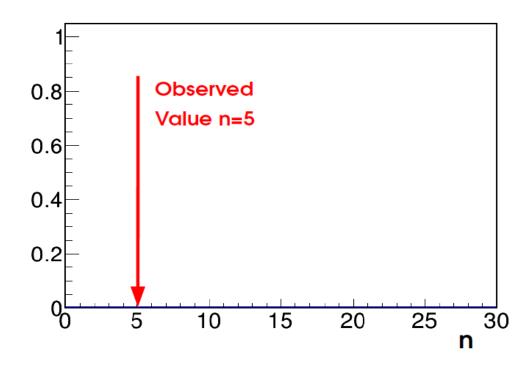
Assume **Poisson distribution** with B = 0:

$$P(n;S) = e^{-S} \frac{S^n}{n!}$$

Say we **observe** n=5, want to infer information on the parameter \$

- → Try different values of S for a fixed data value n=5
- → Varying parameter, fixed data: likelihood

$$L(S; n=5) = e^{-S} \frac{S^{5}}{5!}$$



Poisson example

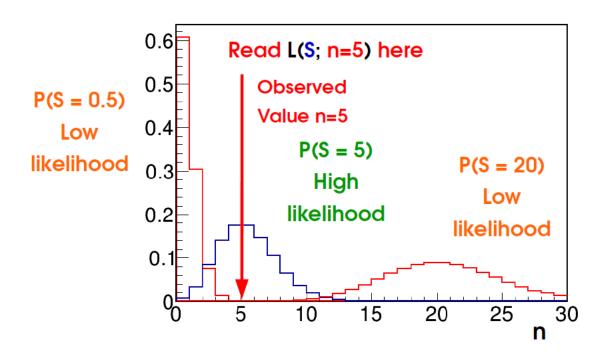
Assume **Poisson distribution** with B = 0:

$$P(n;S) = e^{-S} \frac{S^n}{n!}$$

Say we **observe** n=5, want to infer information on the parameter S

- \rightarrow Try different values of S for a fixed data value n=5
- → Varying parameter, fixed data: likelihood

$$L(S; n=5) = e^{-S} \frac{S^{5}}{5!}$$



Poisson example

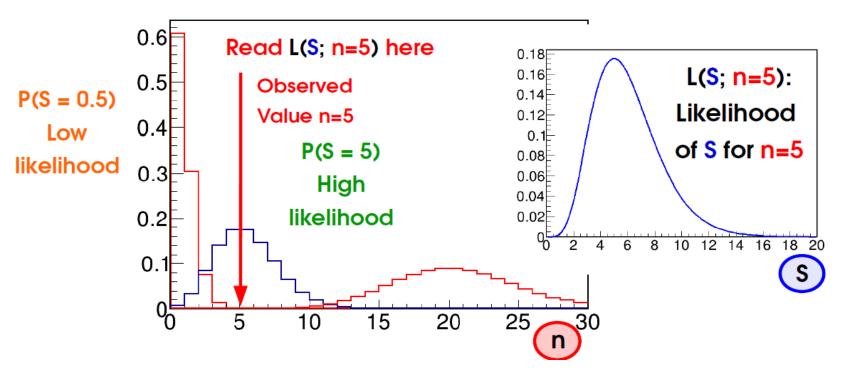
Assume **Poisson distribution** with B=0:

$$P(n;S) = e^{-S} \frac{S^n}{n!}$$

Say we **observe** n=5, want to infer information on the parameter S

- → Try different values of S for a fixed data value n=5
- → Varying parameter, fixed data: likelihood

$$L(S; n=5) = e^{-S} \frac{S^{5}}{5!}$$

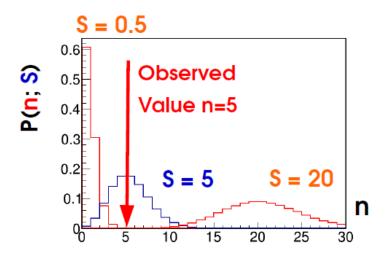


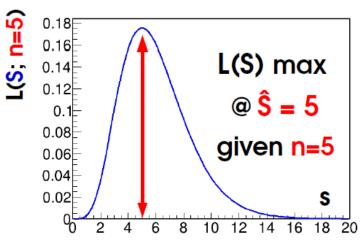
Maximum Likelihood Estimation

To estimate a parameter μ , find the value $\hat{\mu}$ that maximizes $L(\mu)$

Maximum Likelihood Estimator (MLE) µ :

$$\hat{\mu} = arg max L(\mu)$$





MLE: the value of μ for which this data was most likely to occur

The MLE is a function of the data – itself an observable

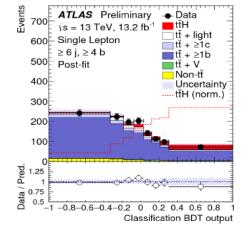
No guarantee it is the true value (data may be "unlikely") but sensible estimate

MLEs in shape analyses

Binned shape analysis:

$$L(\mathbf{S}; \mathbf{n_i}) = P(\mathbf{n_i}; \mathbf{S}) = \prod_{i=1}^{N} Pois(\mathbf{n_i}; \mathbf{S}f_i + B_i)$$

Maximize global L(S) (each bin may prefer a different S) In practice easier to minimize



$$\lambda_{\text{Pois}}(\mathbf{S}) = -2\log L(\mathbf{S}) = -2\sum_{i=1}^{N} \log \text{Pois}(\mathbf{n}_i; \mathbf{S}f_i + B_i)$$

Needs a computer...

In the Gaussian limit

$$\lambda_{\text{Gaus}}(\mathbf{S}) = \sum_{i=1}^{N} -2\log G(\mathbf{n}_i; \mathbf{S}f_i + B_i, \sigma_i) = \sum_{i=1}^{N} \left| \frac{\mathbf{n}_i - (\mathbf{S}f_i + B_i)}{\sigma_i} \right|^2 \quad \chi^2 \text{ formula!}$$

- ightharpoonup Gaussian MLE (min χ^2 or min λ_{Gaus}) : Best fit value in a χ^2 (Least-squares) fit
- ightharpoonup Poisson MLE (min λ_{Pols}): Best fit value in a likelihood fit (in R00T, fit option "L")

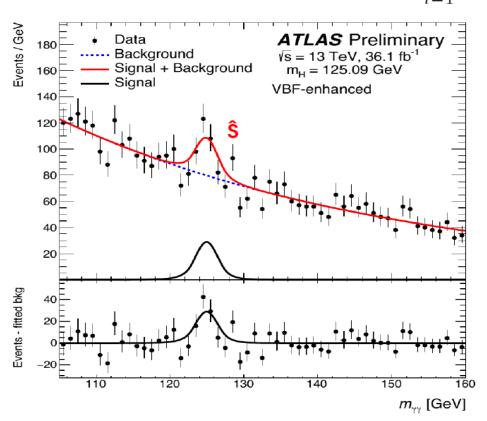
In RooFit, $\lambda_{Pois} \Rightarrow RooAbsPdf::fitTo(), \lambda_{Gaus} \Rightarrow RooAbsPdf::chi2FitTo().$

In both cases, MLE ⇔ Best Fit

MLEs in shape analyses

$H \rightarrow \gamma \gamma$

$$L(S, B; m_i) = e^{-(S+B)} \prod_{i=1}^{n_{\text{evts}}} S P_{\text{sig}}(m_i) + B P_{\text{bkg}}(m_i)$$



Estimate the MLE \$\hat{\mathbf{s}}\$ of \$\hat{\mathbf{s}}\$?

- → Perform (likelihood) best-fit of model to data
- \Rightarrow fit result for S is the desired \hat{S} .

In particle physics, often use the *MINUIT* minimizer within ROOT.

ATLAS-CONF-2017-045

MLE Properties

Asymptotically Gaussian and unbiased:

for large enough datasets

$$P(\hat{\mu}) \propto \exp \left(-\frac{(\hat{\mu} - \mu^*)^2}{2\sigma_{\hat{\mu}}^2}\right) \quad \text{for } n \to \infty$$

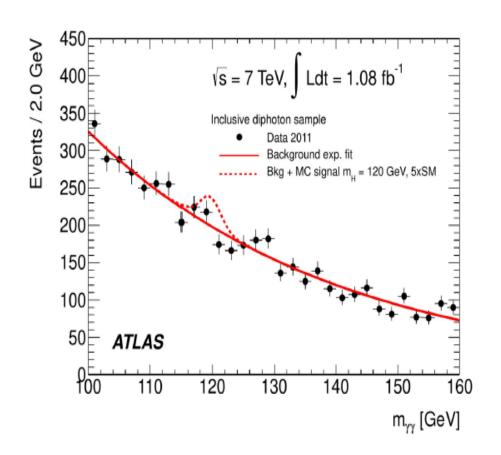
Standard deviation of the distribution of $\hat{\mu}$

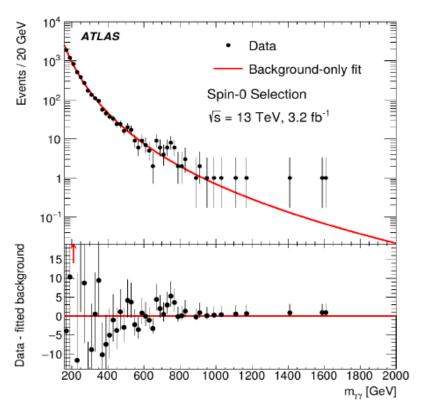
- **Asymptotically Efficient** : $\sigma_{\!_{\Omega}}$ is the lowest possible value (in the limit $n \rightarrow \infty$) among consistent estimators.
 - → MLE captures all the available information in the data
- Also **consistent**: û converges to the true value for large n,
- Log-likelihood: Can also minimize $\lambda = -2 \log L$
 - → Usually more efficient numerically

$$\rightarrow$$
 Usually more efficient numerically \rightarrow For Gaussian L, λ is parabolic: $\lambda(\mu) = \left(\frac{\hat{\mu} - \mu}{\sigma_{\mu}}\right)^{2}$

Can drop multiplicative constants in L (additive constants in λ)

Hypothesis testing and discovery

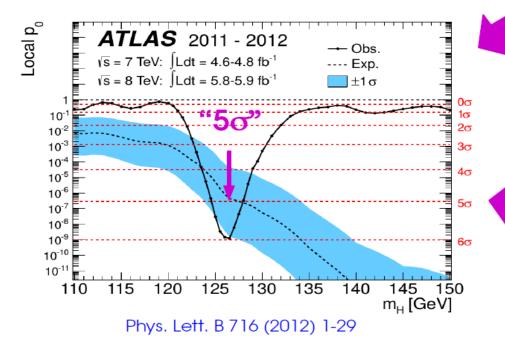


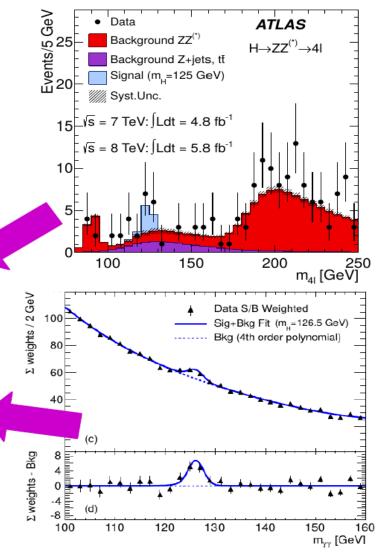


Discovery testing

We see an unexpected feature in our data, is it a signal for new physics or a fluctuation?

e.g. Higgs discovery: "We have 5σ"!





Discovery testing

Say we have a Gaussian measurement with a background **B=100**, and we measure **n=120**

Obs: 120

T
B=100

Did we just discover something? Maybe:-) (but not very likely)

The measured signal is S = 20.

$$S = n_{obs} - B$$

Uncertainty on B is $\sqrt{B} = 10$

- ⇒ Significance Z = 2
- \Rightarrow we are ~2 σ away from S=0.

$$Z = \frac{S}{\sqrt{B}}$$

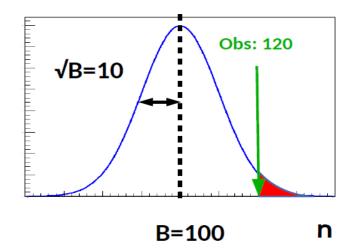
Gaussian quantiles:

Z = 2 happens $p_0 \sim 2.3\%$ of the time if S=0

P-value:

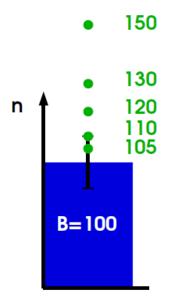
$$p_0 = 1 - \Phi(Z)$$

⇒ Rare, but not exceptional

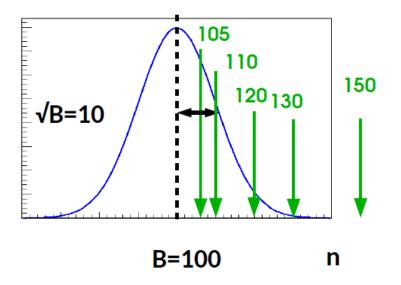


$$\Phi(Z) = \int_{-\infty}^{Z} G(u; 0,1) du$$

Discovery testing



n _{obs}	S	Z	p _o
105	5	0.5σ	31%
110	10	1σ	16%
120	20	2σ	2.3%
130	30	3σ	0.1%
150	50	5σ	3 10 ⁻⁷



Straightforward in this Gaussian case

Need to be able to do the same in more complex cases:

Evidence

Discovery

- Determine S
- Compute Z and p₀

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H_0 : S=0)

 \rightarrow **Goal**: decide if H₀ is favored or disfavored using a test based on the data

Possible outcomes:	Data disfavors H ₀ (Discovery claim)	Data favors H ₀ (Nothing found)
H ₀ is false (New physics!)	Discovery!	Missed discovery Type-II error (1 - Power)
H ₀ is true (Nothing new)	False discovery claim Type-I error (→ p-value, significance)	No new physics, none found

[&]quot;... the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation. Every experiment may be said to exist only to give the facts a chance of disproving the null hypothesis." – R. A. Fisher

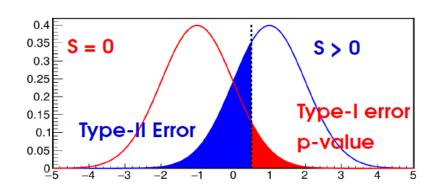
Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H_0 : S=0)

	Data disfavors H ₀		Data favors H ₀	
	(Discovery claim)		(Nothing found)	
H ₀ is false (New physics!)	Discovery!		Type-II error (Missed discovery)	
H ₀ is true (Nothing new)	Type-I error (False discovery)	The state of the s	No new physics, none found	

Lower Type-I errors ⇔ **Higher Type-II errors** and vice versa: cannot have everything!

→ Goal: test that minimizes Type-II errors for given level of Type-I error.



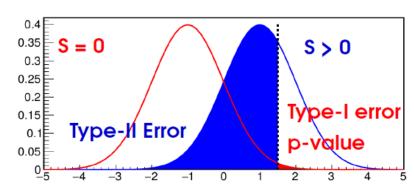
Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H_0 : S=0)

	Data disfavors H ₀		Data favors H ₀	
	(Discovery claim)		(Nothing found)	
H ₀ is false (New physics!)	Discovery!		Type-II error (Missed discovery)	
H ₀ is true (Nothing new)	Type-I error (False discovery)		No new physics, none found	

Lower Type-I errors ⇔ **Higher Type-II errors** and vice versa: cannot have everything!

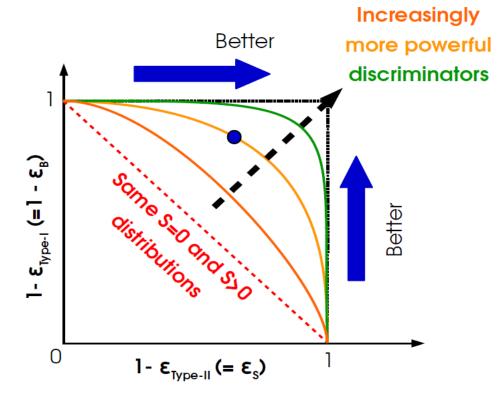
→ Goal: test that minimizes Type-II errors for given level of Type-I error.



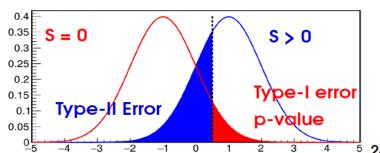
ROC Curves

"Receiver operating characteristic" (ROC) Curve:

- → Plot Type-I vs Type-II rates for different cut values
- \rightarrow All curves monotonically decrease from (0,1) to (1,0)
- → Better discriminators more bent towards (1,1)



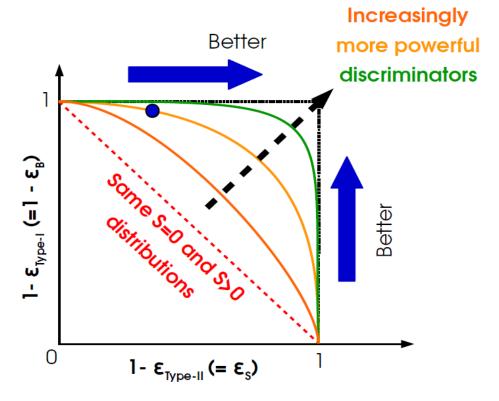
- → Goal: test that minimizes Type-II errors for given level of Type-I error.
- → Usually set predefined level of acceptable Type-I error (e.g. "50")



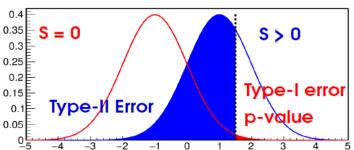
ROC Curves

"Receiver operating characteristic" (ROC) Curve:

- → Plot Type-I vs Type-II rates for different cut values
- \rightarrow All curves monotonically decrease from (0,1) to (1,0)
- → Better discriminators more bent towards (1,1)



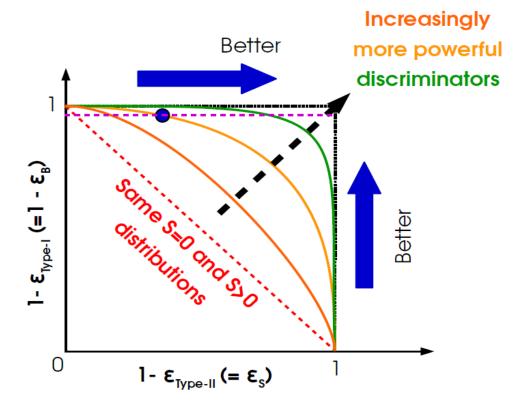
- → Goal: test that minimizes Type-II errors for given level of Type-I error.
- → Usually set predefined level of acceptable Type-I error (e.g. "5σ")



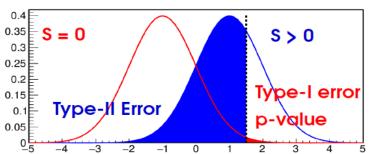
ROC Curves

"Receiver operating characteristic" (ROC) Curve:

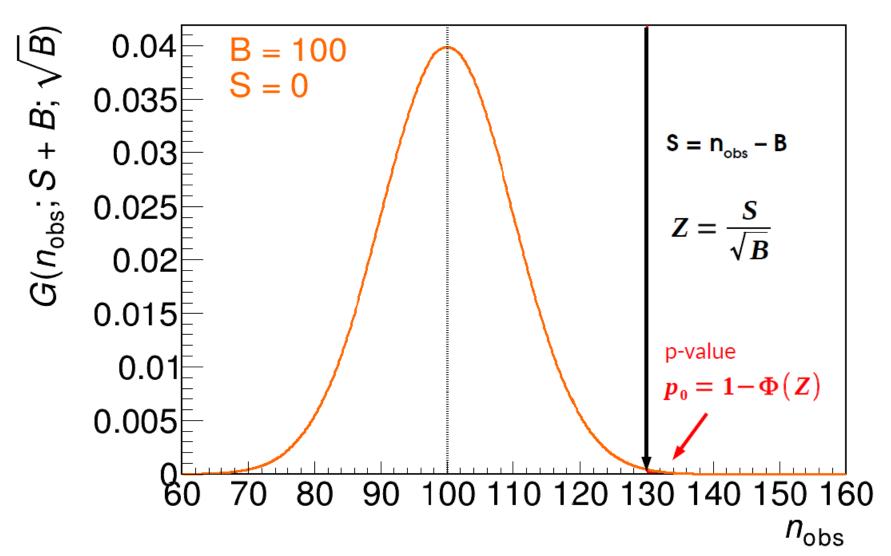
- → Plot Type-I vs Type-II rates for different cut values
- \rightarrow All curves monotonically decrease from (0,1) to (1,0)
- → Better discriminators more bent towards (1,1)



- → Goal: test that minimizes Type-II errors for given level of Type-I error.
- \rightarrow Usually set predefined level of acceptable Type-I error (e.g. "5 σ ")



Discovery testing in Gaussian counting



Hypothesis testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses H_0 and H_1 , the optimal discriminator is the **Likelihood ratio** (LR)

$$\frac{L(\mathbf{H}_{1}; data)}{L(\mathbf{H}_{0}; data)}$$

e.g.
$$\frac{L(S=5;data)}{L(S=0;data)}$$

As for MLE, choose the hypothesis that is more likely **given the data we have**.

- → Minimizes Type-II uncertainties for given level of Type-I uncertainties
- → Always need an alternate hypothesis to test against.

Caveat: Strictly true only for *simple hypotheses* (no free parameters)

→ In the following: all tests based on LR, will focus on p-values (Type-I errors), trusting that Type-II errors are anyway as small as they can be...

Discovery: Test Statistic

Cowan, Cranmer, Gross & VItells, Eur.Phys.J.C71:1554,2011

Discovery:

- H₀: background only (S = 0) against
- H₁: presence of a signal (\$ > 0)

 \rightarrow For H₁, any S>0 is possible, which to use ? The one preferred by the data, \hat{S} .

$$\Rightarrow \text{Use LR} \quad \frac{L(S=0)}{L(\hat{S})}$$

→ In fact use the **test statistic**

$$q_0 = \begin{vmatrix} -2\log\frac{L(S=0)}{L(\hat{S})} & \hat{S} \ge 0\\ 0 & \hat{S} < 0 \end{vmatrix}$$

- \rightarrow Set $q_n=0$ for $\hat{S} < 0$, same as for $\hat{S}=0$: negative signal is same as no signal
- → one-sided test statistic

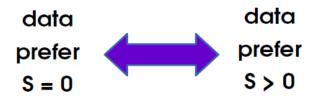
Discovery: p-value

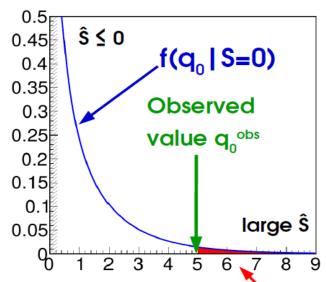
Large values of
$$-2\log\frac{L(S=0)}{L(\hat{S})}$$
 if:

- ⇒ observed Ŝ is far from 0
- \Rightarrow $H_0(S=0)$ disfavored compared to $H_1(S\neq 0)$.

How large q_0 before we can exclude H_0 ? (and claim a discovery!)

- → Need small Type-I rate (falsely accepting H₀)
- \rightarrow Type-I rate also known as the **p-value** p_a :





Fraction of outcomes that are **at least as extreme** (signal-like) **as data**, when H_0 is true (no signal present).

- \rightarrow Compute from the distribution $f(q_0|S=0)$: $p_0 = \int_{q_0}^{\infty} f(q_0|S=0) dq_0$
- → Smaller p-value ⇒ Stronger case for discovery

 q_0

Asymptotic distribution of q₀

Cowan, Cranmer, Gross & VItells Eur. Phys. J. C71: 1554,2011

- → Assume **Gaussian regime for \$** (e.g. large n_{evts}, Central-limit theorem)
- \Rightarrow \mathbf{q}_0 is distributed as a $\mathbf{\chi}^2$ under $\mathbf{H}_0(S=0)$, for $\hat{S} \ge 0$: Wilk's Theorem (*)

$$f(q_0 \mid H_0, \hat{S} \ge 0) = f_{\chi^2(n_{dof}=1)}(q_0)$$

⇒ Can compute p-values from Gaussian quantiles

$$p_0 = 1 - \Phi(\sqrt{q_0})$$
 By definition, $q_0 \sim \chi^2 \Rightarrow \sqrt{q_0} \sim G(0,1)$

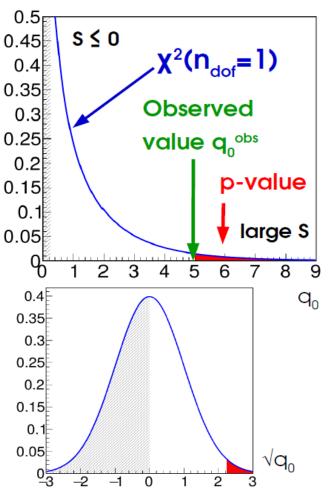
⇒ Even more simply, the significance is:

$$Z = \sqrt{q_0}$$

Typically works well already for for event counts of O(5) and above ⇒ Widely applicable

(*) 1-line "proof": asymptotically L and S are Gaussian, so

$$L(S) = \exp\left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^2\right] \Rightarrow q_0 = \left(\frac{\hat{S}}{\sigma}\right)^2 \Rightarrow \sqrt{q_0} = \frac{\hat{S}}{\sigma} \sim G(0,1) \Rightarrow q_0 \sim \chi^2(n_{\text{dof}} = 1)$$



Discovery Thresholds

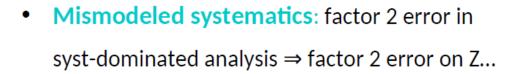
Evidence : $3\sigma \Leftrightarrow p_0 = 0.3\% \Leftrightarrow 1$ chance in 300

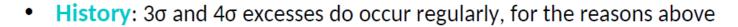
Discovery: $5\sigma \Leftrightarrow p_0 = 3 \cdot 10^{-7} \Leftrightarrow 1 \text{ chance in } 3.5\text{M}$

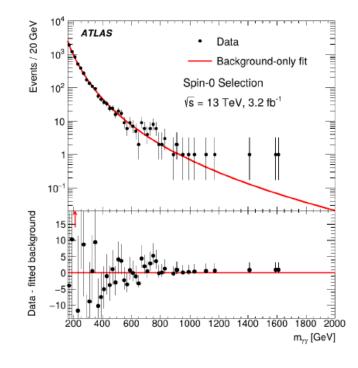
Why so high thresholds? (from Louis Lyons):

 Look-elsewhere effect: searches typically cover multiple independent regions ⇒ Higher chance to have a fluctuation "somewhere"

 $N_{trials} \sim 1000 : local 5\sigma \Leftrightarrow O(10^{-4})$ more reasonable





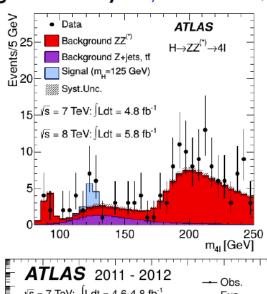


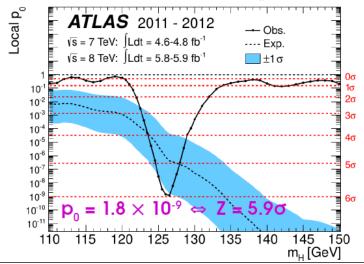
Extraordinary claims require extraordinary evidence!

Some examples

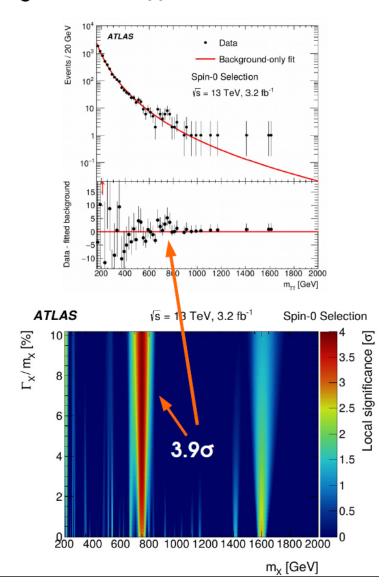
Some Examples

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29





High-mass X→γγ Search: JHEP 09 (2016) 1



Highlights: Hypothesis Tests and Discovery

Given a PDF $P(data; \mu)$, define likelihood $L(\mu) = P(data; \mu)$

To estimate a parameter, use the value $\hat{\mu}$ that maximizes $L(\mu) \rightarrow$ best-fit value

To decide between hypotheses H_0 and H_1 , use the likelihood ratio $\frac{L(H_0)}{L(H_1)}$

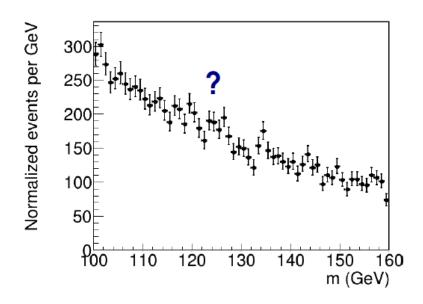
To test for **discovery**, use
$$q_0 = -2 \log \frac{L(S=0)}{L(\hat{S})}$$
 $\hat{S} \ge 0$

For large enough datasets (n >~ 5), $Z = \sqrt{q_0}$

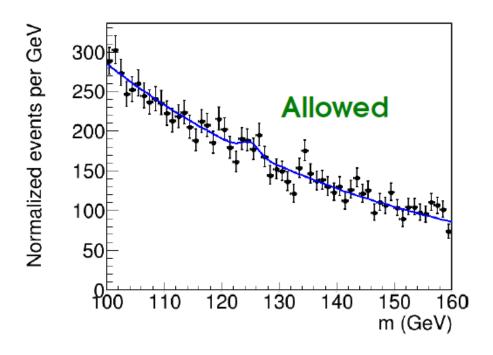
For a single **Gaussian** measurement, $Z = \frac{\hat{S}}{\sqrt{B}}$

For a single Poisson measurement, $Z = \sqrt{2\left[(\hat{S} + B) \log \left(1 + \frac{\hat{S}}{B} \right) - \hat{S} \right]}$

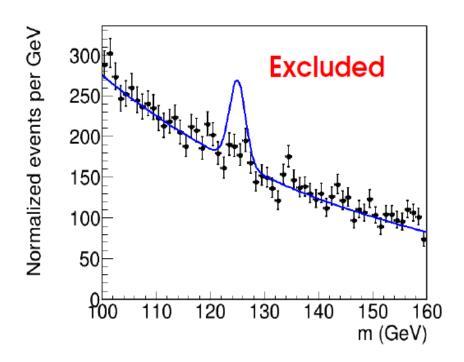
- → More interesting to exclude large signals
- ⇒ Upper limits on signal yield
- \rightarrow Typically report 95% CL upper limit (p-value = 5%) : "S < S₀ @ 95% CL"



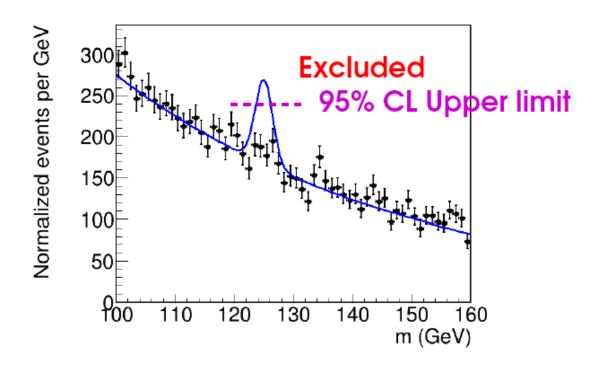
- → More interesting to exclude large signals
- ⇒ Upper limits on signal yield
- \rightarrow Typically report 95% CL upper limit (p-value = 5%) : "S < S₀ @ 95% CL"



- → More interesting to exclude large signals
- ⇒ Upper limits on signal yield
- \rightarrow Typically report 95% CL upper limit (p-value = 5%) : "S < S₀ @ 95% CL"



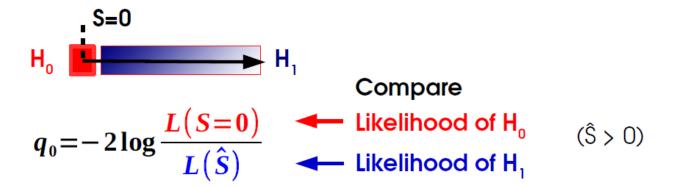
- → More interesting to exclude large signals
- ⇒ Upper limits on signal yield
- \rightarrow Typically report 95% CL upper limit (p-value = 5%) : "S < S₀ @ 95% CL"



Test Statistic for Limit-Setting

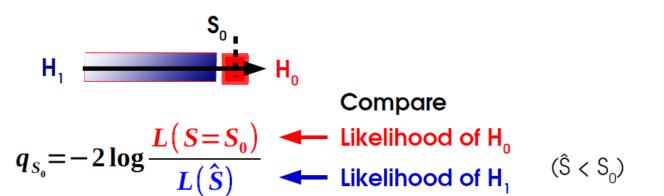
Discovery:

- $H_0: S = 0$
- H₁: S > 0



Limit-setting

- $H_0 : S = S_0$
- H₁: S < S₀



Same as q_0 :

- \rightarrow large values \Rightarrow good rejection of H_0 .
- \Rightarrow Can compute p-value from q_{so} .

Inversion: Getting the limit for a given CL

Procedure:

 \rightarrow Compute q_{so} for some S_{o} , get the exclusion p-value p_{so} . Asymptotic case: can use $p_{S_o} = 1 - \Phi(\sqrt{q_{S_o}})$

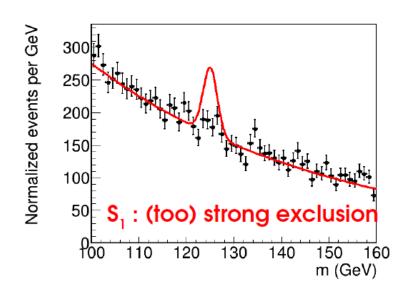
 \rightarrow Adjust S₀ until 95% CL exclusion (p_{s0} = 5%) is reached

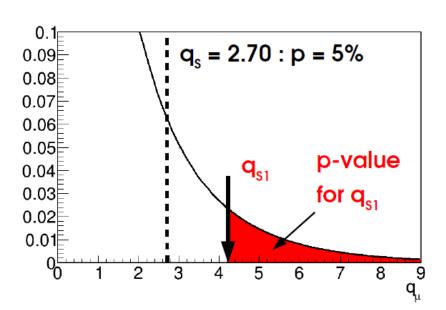
Asymptotic case: need $q_{so} = 2.70$

Asymptotics

$$\sqrt{q_{S_0}} = \Phi^{-1}(1-p_0)$$

CL	Region
90%	$q_s > 1.64$
95%	$q_{s} > 2.70$
99%	$q_{s} > 5.41$





Inversion: Getting the limit for a given CL

Procedure:

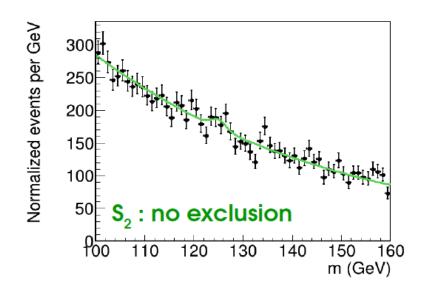
 \rightarrow Compute q_{so} for some S_{0} , get the exclusion p-value p_{so} . Asymptotic case: can use $p_{so} = 1 - \Phi(\sqrt{q_{so}})$

 \rightarrow Adjust S₀ until 95% CL exclusion (p_{s0} = 5%) is reached Asymptotic case: need q_{s0} = 2.70

Asymptotics

$$\sqrt{q_{S_0}} = \Phi^{-1}(1-p_0)$$

CL	Region
90%	$q_{s} > 1.64$
95%	$q_{s} > 2.70$
99%	$q_{s} > 5.41$





Inversion: Getting the limit for a given CL

Procedure:

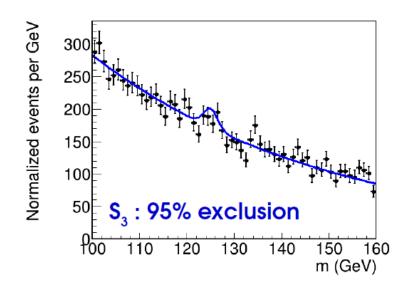
 \rightarrow Compute q_{s0} for some S_{0} , get the exclusion p-value p_{s0} . Asymptotic case: can use $p_{S_0} = 1 - \Phi(\sqrt{q_{S_0}})$

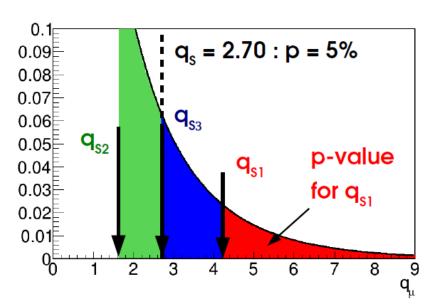
 \rightarrow Adjust S₀ until 95% CL exclusion (p_{s0} = 5%) is reached Asymptotic case: need q_{s0} = 2.70

Asymptotics

$$\sqrt{q_{S_0}} = \Phi^{-1}(1 - p_0)$$

CL	Region
90%	$q_s > 1.64$
95%	$q_{s} > 2.70$
99%	$q_{s} > 5.41$





Upper Limit Pathologies

Upper limit: $S_{up} \sim \hat{S} + 1.64 \sigma_{s}$.

Problem: for negative \$, get **very** good observed limit.

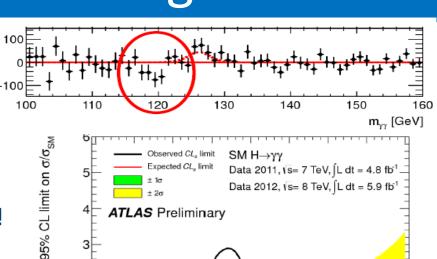
 \rightarrow For \hat{S} sufficiently negative, even $S_{up} < 0$!

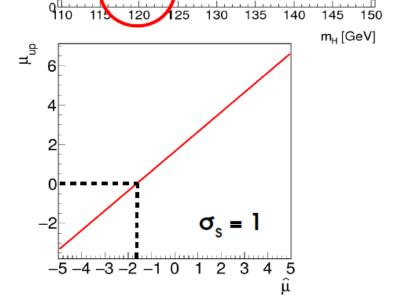
How can this be?

- → Background modeling issue ?... Or:
- → This is a 95% limit ⇒ 5% of the time, the limit wrongly excludes the true value, e.g. $S^*=0$.

Options

- → live with it: sometimes report limit < 0</p>
- → Special procedure to avoid these cases, since if we assume S must be >0, we know a priori this is just a fluctuation.





CL

A. Read, J.Phys. G28 (2002) 2693-2704

The p-value computed

Usual solution in HEP: CL_s.

→ Compute modified p-value

 $p_{CL_s} = \frac{p_{S_0}}{1 - p_B}$ The usual p-value under H(S=S₀) (=5%)

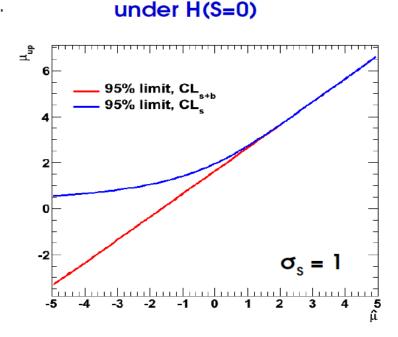
- \Rightarrow **Rescale** exclusion at S₀ by exclusion at S=0.
- → Somewhat ad-hoc, but good properties...

\$ compatible with 0: $p_B \sim O(1)$ $p_{CLs} \sim p_{so} \sim 5\%$, no change.

Far-negative $\hat{\mathbf{s}}$: 1 - $p_{B} \ll 1$

 $p_{\scriptscriptstyle CLs} {\sim p_{\scriptscriptstyle S0}/(1{\text -}p_{\scriptscriptstyle B})} \gg 5\%$

→ lower exclusion ⇒ higher limit, usually >0 as desired

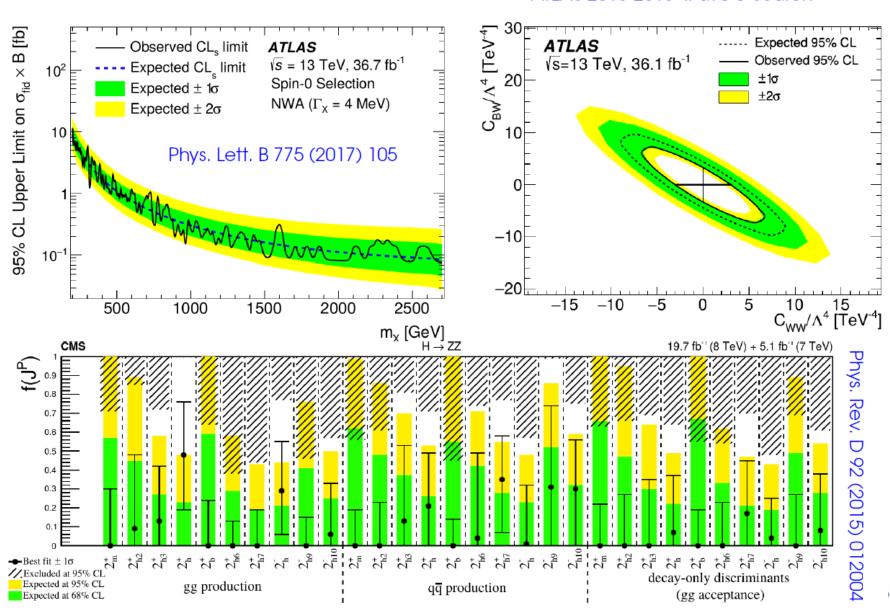


Drawback: overcoverage

 \rightarrow limit is claimed to be 95% CL, but actually >95% CL for small 1-p_R.

Upper Limit Examples

ATLAS 2015-2016 4I aTGC Search



Gaussian Intervals

If $\hat{\mu} \sim G(\mu^*, \sigma)$, known quantiles :

$$P(\mu^* - \sigma < \hat{\mu} < \mu^* + \sigma) = 68\%$$

This is a probability for $\hat{\mu}$, not $\frac{\pi}{2}$!

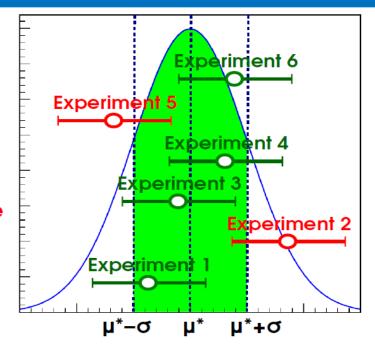
 $\rightarrow \mu^*$ is a fixed number, not a random variable

But we can invert the relation:

$$P(\mu^* - \sigma < \hat{\mu} < \mu^* + \sigma) = 68 \%$$

$$\Rightarrow P(|\hat{\mu} - \mu^*| < \sigma) = 68 \%$$

$$\Rightarrow P(\hat{\mu} - \sigma < \mu^* < \hat{\mu} + \sigma) = 68 \%$$



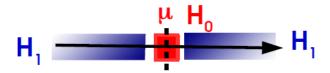
 \rightarrow This gives the desired statement on μ^* : if we repeat the experiment many times, $[\hat{\mu} - \sigma, \hat{\mu} + \omega]$ contain the true value 68.3% of the time: $\mu^* = \hat{\mu} \pm \sigma$ This is a statement on the interval $[\hat{\mu} - \sigma, \hat{\mu} + \omega]$ abotained for each experiment

Works in the same way for other interval sizes: $[\hat{\mu} - Z\sigma, \hat{\mu} +]Z\sigma$ ith

Z	1	1.96	2
CL	0.683	0.95	0.955

Likelihood Intervals

 $t_{\mu_0} = -2\log\frac{L(\mu = \mu_0)}{L(\hat{\mu})}$



Confidence intervals from L:

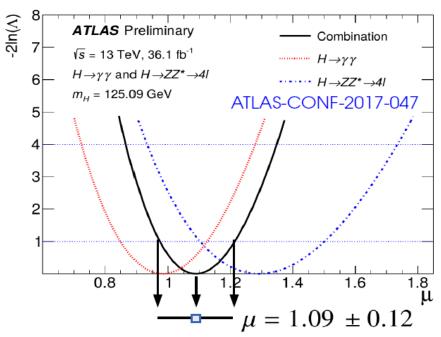
- Test $H(\mu_0)$ against alternative using
- Two-sided test since true value can be higher or lower than observed

Gaussian L:

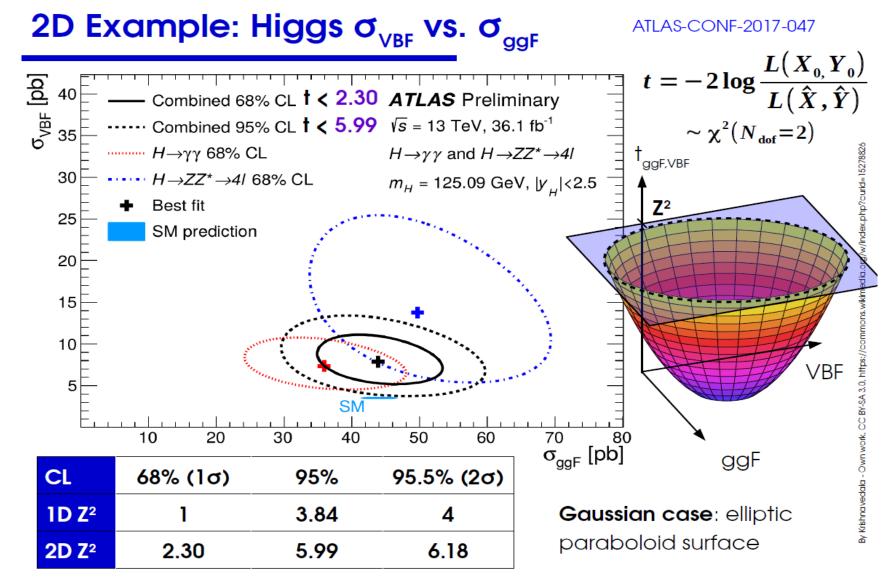
- $t_{\mu_0} = \left(\frac{\hat{\mu} \mu_0}{\sigma_{\mu}}\right)^2$: parabolic in μ_0 .
- Minimum occurs at $\mu = \hat{\mu}$
- Crossings with t_{μ} = 1 give the 1 σ interval

General case:

- Generally not a perfect parabola
- Minimum still occurs at µ = û
- Still define 1σ interval from the $t_u = \pm 1$ crossings



2D examples



Takeaways

Limits: use LR-based test statistic:

$$q_{S_0} = -2\log\frac{L(S=S_0)}{L(\hat{S})} \qquad \hat{S} \leq S_0$$

→ Use CL_s procedure to avoid negative limits

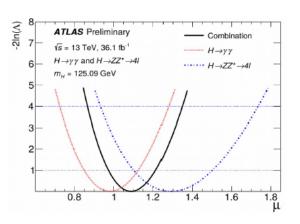
Poisson regime, n=0: $S_{up} = 3$ events

Confidence intervals: use

$$t_{\mu_0} = -2\log\frac{L(\mu = \mu_0)}{L(\hat{\mu})}$$

 \rightarrow Crossings with $t_{\mu 0}$ = Z^2 for $\pm Z\sigma$ intervals (in 1D)

Gaussian regime: $\mu = \hat{\mu} \pm \sigma_{u}$ (1 σ interval)

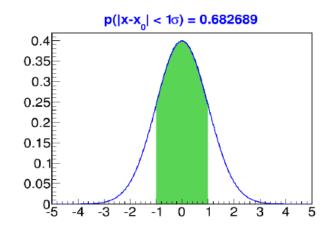


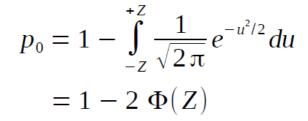
Extra slides

Discovery significance

Interesting p-values are quite small

- ⇒ express in terms of Gaussian quantiles
- → Significance Z





$$\Phi(Z) = \int_{-\infty}^{Z} G(u; 0,1) du$$

Z	p-value
1	0.32

- 2 0.045
- 3 0.003
- 5 6 x 10⁻⁷

In ROOT:

 $\mathbf{p}_0 \rightarrow \mathbf{Z} \quad (\Phi) : ROOT::Math::gaussian_quantile_c$

 $Z \rightarrow p_0 (\Phi^{-1}) : ROOT : : Math : : gaussian_cdf_c$

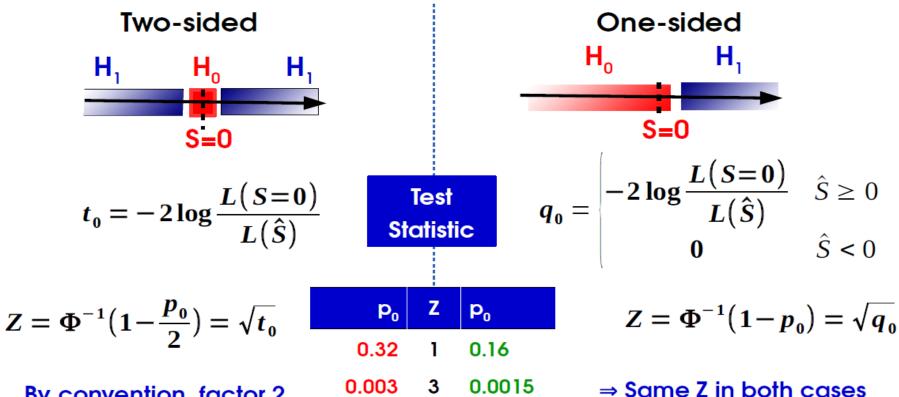
- ⇒ How small is small enough?
- \rightarrow Conventionally, discovery for $p_0 = 6 \cdot 10^{-7} \Leftrightarrow Z = 5\sigma$

One-sided vs. Two-sided

If $\hat{S} < 0$, is it a *discovery*? (does reject the S=0 hypothesis...)

Usual assumption : only $\hat{S} > 0$ is a bona fide signal

 \Rightarrow Change statistic so that $\hat{\mathbf{S}} < \mathbf{0} \Rightarrow \mathbf{t}_0 = \mathbf{0}$ (perfect agreement with H_0 , as for $\hat{\mathbf{S}} = \mathbf{0}$)



By convention, factor 2 in p-values for a given Z

0.003	3	0.0015
6 x 10 ⁻⁷	5	3 x 10 ⁻⁷

⇒ Same Z in both cases for a given signal S

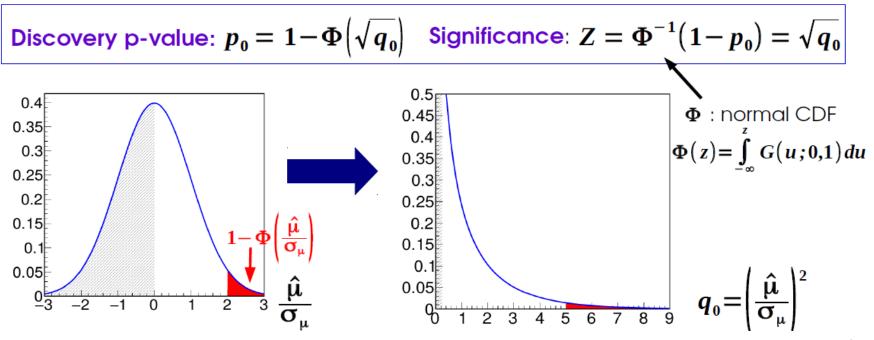
One-sided Asymptotics

→ One-sided test:

$$q_0 = \begin{vmatrix} -2\log\frac{L(S=0)}{L(\hat{S})} & \hat{S} \ge 0 \\ 0 & \hat{S} < 0 \end{vmatrix}$$

Asymptotics: "half- χ^2 " distribution:

$$f(q_0 | S=0) = \frac{1}{2}\delta(q_0) + \frac{1}{2}f_{\chi^2(n_{dof}=1)}(q_0)$$



One-sided Test Statistic

For upper limits, alternate is $\mathbf{H}_1: \mathbf{S} < \mathbf{\mu}_0$:

- \rightarrow If **large** signal observed ($\hat{S} \gg S_0$), does not favor H_1 over H_0
- \rightarrow Only consider $\hat{S} < S_0$ for H_1 , and include $\hat{S} \geq S_0$ in H_0 .

Discovery H_0 H_1 H_1 H_2

- \Rightarrow Set \mathbf{q}_{so} = 0 for $\mathbf{\hat{S}} > \mathbf{S}_{o}$ only small signals ($\mathbf{\hat{S}} < \mathbf{S}_{o}$) help lower the limit.
- → Also treat separately the case S < 0 to avoid technical issues in -2logL fits.</p>

Asymptotics:

 $q_{so} \sim "\frac{1}{2}\chi^2"$ under $H_0(S=S_0)$, same as q_0 , except for special treatment of $\hat{S} < 0$.

$$p_0 = 1 - \Phi\left(\sqrt{q_{S_0}}\right)$$

$$\widetilde{q}_{S_0} = \begin{vmatrix} \mathbf{0} & \hat{S} \ge S_0 \\ -2\log \frac{L(S=S_0)}{L(\hat{S})} & 0 \le \hat{S} \le S_0 \\ -2\log \frac{L(S=S_0)}{L(S=0)} & \hat{S} < 0 \end{vmatrix}$$

Cowan, Cranmer, Gross & VItells, Eur. Phys. J. C71:1554,2011

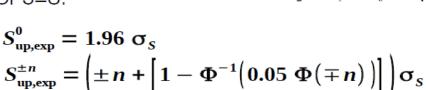
CL_s: Gaussian Bands

Usual Gaussian counting example with known B: 95% CL, upper limit on S:

$$S_{up} = \hat{S} + \left[\Phi^{-1} \left(1 - 0.05 \, \Phi \left(\hat{S} / \sigma_s \right) \right) \right] \sigma_s \qquad \sigma_s = \sqrt{B}$$

Compute expected bands for S=0:

- \rightarrow Asimov dataset $\Leftrightarrow \hat{S} = 0$:
- → ± no bands:



n	S _{exp} ^{±n} /√B		
+2	3.66	٠. ـ	
+1	2.72		
0	1.96		
-1	1.41	17	
-2	1.05	!	

CLs:

 Positive bands somewhat reduced,

300 250

Exercise 200

• Negative ones more so

Band width from $\sigma_{s,A}^2 = \frac{S^2}{q_s(\text{Asimov})}$ depends on S, for non-Gaussian cases, different values for each band...

Eur.Phys.J.C71:1554,2011

Ŝ

Comparison with LEP/Tevatron definitions

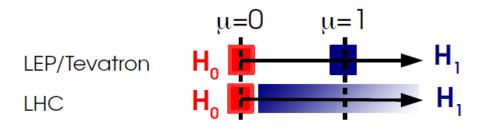
Likelihood ratios are not a new idea:

- LEP: Simple LR with NPs from MC
 - Compare μ =0 and μ =1
- Tevatron: PLR with profiled NPs

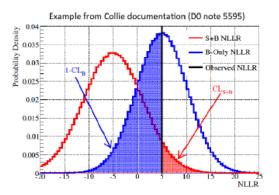
$$q_{LEP} = -2\log \frac{L(\mu=0, \widetilde{\theta})}{L(\mu=1, \widetilde{\theta})}$$

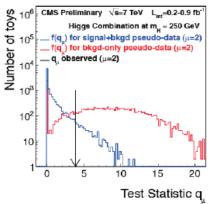
$$q_{\text{Tevatron}} = -2\log \frac{L(\mu=0, \hat{\hat{\theta_0}})}{L(\mu=1, \hat{\hat{\theta_1}})}$$

Both compare to $\mu=1$ instead of best-fit $\hat{\mu}$



- → Asymptotically:
- LEP/Tevaton: q linear in µ ⇒ ~Gaussian
- LHC: q quadratic in μ ⇒ ~χ2
- → Still use TeVatron-style for discrete cases





Spin/Parity measurements

Phys. Rev. D 92 (2015) 012004

