Advanced Methods in Data Analysis

Outline of the course:

1. Statistics and Data Analysis
2. Multivariate Techniques and Machine Learning
3. Physics Modeling, Simulation and Monte Carlo Method

First three parts will focus on applications in physics, mostly
in High Energy Physics.

The last part will cover few typical ,,Data Science”
problems and solutions.

Acknowledgement: slides below , borrowed” from different courses on advanced analysis methods in HEP and Data Science.

Prof. dr hab. Elzbieta Richter-Was




Part 1: Statistics and Data Analysis
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Part 1: Statistics and Data Analysis
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Data - fitted background

Part 1: Statistics and Data Analysis

Sometimes difficult fo distinguish a bona fide discovery
froon a background fluctuation...
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Part 1: Statistics and Data Analysis

Sometimes difficult fo distinguish a bona fide discovery
from a background fluctuation...
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Part 1: Statistics and Data Analysis

Many important questions answered by precision measurements,
especially if no new peaks found at high mass...
Key point = determination of uncertainties
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Part 1: Statistics and Data Analysis
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Some other courses available online:

Glen Cowan'’s Cours d'Hiver and 2010 CERN Academic Training lectures
Kyle Cranmer’s CERN Academic Training lectures

Louis Lyons’and Lorenzo Moneta’s CERN Academic Training Lectures



Part 2: Multivariate Analysis and Machine Learming

In HEP everything started multivariate.

Below: inteligent ,,Multivariate Pattern Recognition”
used to identify particles

https://www.fehcom.net/WA21/wa21_01.html

Nowdays: let computer help you.



Classical Learning
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Machine Learning
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Classifiers and their properties

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics
http://tmva.sourceforge.net/talks.shtml
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Part 3: Physics modeling, simulation and Monte Carlo methods

What is the model?

= \ » This is not an apple just its graphical

Many skills are needed to build a new model, to run it and
analyze its results.

» Computational Science is an emerging, multidisciplinary
domain, based on the idea of “computational thinking”.

» A computer-based description offers a new language, a new
methodology to address scientific challenges, far beyond the
scope of traditional numerical methods, and in fields where
these classical approaches hardly apply.

B. Chopard et al., coursera lectures, University of Geneva
12



Part 3: Physics modeling, simulation and and Monte Carlo methods

GEANT4 Visualised model of the detector used for simulation Detector

GEANT4 is also used to determine the performance of
X-ray and gamma-ray detectors for astrophysics

B. Chopard et al., |




Getting your ETCs for the lectures

* | foresee a written exam on the theory part.

 List of topical questions will be available
before Xmass break.

* You will be asked to answer 5 questions out
of 25-30 on the list.
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