Statistics and Data Analysis (HEP at LHC)

Reminders from lecture 1 and 2

- **Expected results and toys**
 - Pseudo-experimens and Asimov datasets
 - Dealing with non-asymptotic situations
- Profiling
- Look-Elsewhere Effect
- Bayesian method
- Presentation of results

Slides extracted from N. Berger lectures at CERN Summer School 2019

Reminders from Lecture 1: Statistical Model

Goal:

Describe the random process by which the data was obtained.

→ Build a Statistical Model

Ingredients:

- Statistical description of the random aspects
 ⇒ Probability distributions
- 2. Assumptions on the underlying statistical processes (physics, etc.)
 - → Uncertainties on the assumptions themselves: systematic uncertainties

"Systematic uncertainty is, in any statistical inference procedure, the uncertainty due to the incomplete knowledge of the probability distribution of the observables.

G. Punzi, What is systematics ?

Statistical results can only be as accurate as the model itself !

Reminders from Lecture 1: Statistical Model

Physics measurement data are produced through **random processes**, Need to be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(\mathbf{n}; \mathbf{S}, \mathbf{B}) = e^{-(\mathbf{S} + \mathbf{B})} \frac{(\mathbf{S} + \mathbf{B})^n}{n!}$
Binned shape analysis	n _i , i=1N _{bins}	Poisson product $P(\mathbf{n}_i; \mathbf{S}, \mathbf{B}) = \prod_{i=1}^{n_{\text{bins}}} e^{-(\mathbf{S} f_i^{\text{sig}} + \mathbf{B} f_i^{\text{bkg}})} \frac{(\mathbf{S} f_i^{\text{sig}} + \mathbf{B} f_i^{\text{bkg}})^{\mathbf{n}_i}}{\mathbf{n}_i!}$
Unbinned shape analysis	m _i , i=1n _{evts}	Extended Unbinned Likelihood $P(\mathbf{m_i}; \mathbf{S}, \mathbf{B}) = \frac{e^{-(\mathbf{S} + \mathbf{B})}}{n_{\text{evts}}!} \prod_{i=1}^{n_{\text{evts}}} \mathbf{S} P_{\text{sig}}(\mathbf{m_i}) + \mathbf{B} P_{\text{bkg}}(\mathbf{m_i})$

Model can include multiple **categories**, each with a separate description Includes **parameters of interest** (POIs) but also **nuisance parameters** (NPs)

Model Parameters

Model typically includes:

- Parameters of interest (POIs) : what we want to measure \rightarrow S, $\sigma \star B, \, m_w, \, ...$
- Nuisance parameters (NPs) : other parameters needed to define the model
 - $\rightarrow \mathbf{B}$
 - \rightarrow For binned data, \mathbf{f}^{slg} , \mathbf{f}^{bkg}
 - → For unbinned data, parameters needed to define P_{bkg}
 - e.g. exponential slope α of $H \rightarrow \mu\mu$ background.

NPs must be either

- → known a priori (possibly within systematics) or
- → constrained by the data (e.g. in sidebands)

Model Example

H→yy Discovery Analysis

Statistical Results as Hypothesis Tests

Usual HEP results can be recast in terms of hypothesis testing:

- **Discovery**: is the data compatible with background-only?
 - \rightarrow H_n : only background is present
 - \rightarrow How well can we reject H_0 ? \rightarrow p-value (significance)
- Upper limits: no excess observed how small must the signal be ?
 → H_a(S) : B + some signal S
 - \rightarrow How small can we make S, and still reject H₀(S) at 95% C.L. (p-value=5%)?
- Parameter measurement
 - \rightarrow H₀(µ): some parameter value µ
 - \rightarrow What values μ are <u>not</u> rejected at 68% C.L. (p=32%) ?
 - \Rightarrow 1 σ confidence interval on μ

In all cases, H₀: null hypothesis – what we are trying to disprove

Test Statistics for Discovery

Discovery :

- H_n: background only (S = 0) against
- H_1 : presence of a signal (S \neq 0)

 \rightarrow For H₁, any S≠0 is possible, which to use ? The one preferred by the data, \hat{S} .

 $\Rightarrow \text{Use LR} \quad \frac{L(S=0)}{L(\hat{S})}$

 \rightarrow In fact use the **test statistic**

$$t_0 = -2\log\frac{L(S=0)}{L(\hat{S})}$$

 \rightarrow t_o is computed from the observed data – fit to data to get \hat{S} .

- \rightarrow **t**₀ always **\geq 0**, t₀ = 0 reached for $\hat{S} = 0$.
- \rightarrow t₀ measures the relative *likelihood* of H₁ vs. H₀ in data:

Large values of $\mathbf{f}_0 \Leftrightarrow$ large observed S

Cowan, Cranmer, Gross & Vitells, Eur. Phys. J.C71:1554,2011

Discovery p-value

Large values of
$$t_0 = -2\log \frac{L(S=0)}{L(\hat{S})}$$

 \Rightarrow large observed \hat{S}

 \Rightarrow H₀(S=0) *disfavored* compared to H₁(S≠0).

How large t_0 before we can exclude H_0 ? (and claim a discovery!)

p-value: Fraction of outcomes that are **at** least as H₁-like (signal-like) as data, when H₀ is true (no signal present).

 \rightarrow Compute from distribution **f(t₀ | H₀)** of t₀ if H₀ is true:

Reminder: Wilk's Theorem

Consider
$$t_{s_0} = -2\log \frac{L(S=S_0)}{L(\hat{S})}$$

 \rightarrow Assume **Gaussian regime** (e.g. large n_{evts}, Central-limit theorem) : then:

Wilk's Theorem: t_{so} is distributed as a χ^2 under $H_{so}(S=S_0)$:

$$f(t_{S_0} | S = S_0) = f_{\chi^2(n_{dof} = 1)}(t_{S_0})$$

 \Rightarrow The significance is:

 $Z=\sqrt{q_0}$

Asymptotic Approximation

Cowan, Cranmer, Gross & Vitells Eur.Phys.J.C71:1554,2011

→ Assume Gaussian regime for \hat{S} (e.g. large n_{evts}) → Central-limit theorem : ⇒ t_0 is distributed as a χ^2 under the hypothesis H_0

$$f(t_0 \mid H_0) = f_{\chi^2(n_{dof}=1)}(t_0)$$

$$t_0 = -2\log \frac{L(s=0)}{L(\hat{s})}$$

$$t_0 = -2\log \frac{L(s=0)}{L(\hat{s})}$$

$$L(\hat{s})$$

$$f(t_0 \mid H_0) = f_{\chi^2(n_{dof}=1)}(t_0)$$

$$0.5$$

$$0.45$$

$$0.45$$

$$0.35$$

$$0.3$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.3$$

$$0.25$$

$$0.1$$

$$0.25$$

$$0.15$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.5$$

$$0.1$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0$$

The 1-line "proof": asymptotically L and S are Gaussian, so

$$L(S) = \exp\left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^2\right] \Rightarrow t_0 = \left(\frac{\hat{S}}{\sigma}\right)^2 \Rightarrow t_0 \sim \chi^2(n_{dof} = 1) \text{ since } \hat{S} \sim G(0, \sigma)$$

Discovery significance

 \Rightarrow How small is small enough ?

 \rightarrow Conventionally, discovery for $p_0 = 6 \ 10^{-7} \Leftrightarrow Z = 5\sigma$

Takeaways: Discovery Significance

Given a statistical model P(data; μ), define likelihood L(μ) = P(data; μ)

To estimate a parameter, use the value $\hat{\mu}$ that maximizes L(μ).

To decide between hypotheses $\rm H_{0}$ and $\rm H_{1},$ use the likelihood ratio

To test for **discovery**, use
$$q_0 = -2\log\frac{L(S=0)}{L(\hat{S})}$$
 $\hat{S} \ge 0$

For large enough datasets (n > 5), $Z = \sqrt{q_0}$

For a Gaussian measurement,
$$Z = \frac{\hat{S}}{\sqrt{B}}$$

For a Poisson measurement, $Z = \sqrt{2\left[(\hat{S}+B)\log\left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]}$

Hypothesis testing: One-Sided vs Two-Sided

If $\hat{S} < 0$, is it a *discovery*? (does reject the S=0 hypothesis...) Usual assumption : only $\hat{S} > 0$ is a *bona fide* signal

⇒ Change statistic so that $\hat{\mathbf{S}} < \mathbf{0} \Rightarrow \mathbf{t}_0 = \mathbf{0}$ (perfect agreement with H_0 , as for $\hat{\mathbf{S}} = \mathbf{0}$)

One-Sided Asymptotics

Test Statistic for Limit-Setting

Same as q_0 :

- \rightarrow large values \Rightarrow good rejection of H₀.
- \Rightarrow Can compute p-value from q_{so} .

Takeaways: Limits & Intervals

0.8

1.2

1.4

1.8

1.6

Generating Pseudo-data

Model describes the distribution of the observable: **P(data; parameters)** ⇒ Possible outcomes of the experiment, for given parameter values Can draw random events according to PDF : **generate** *pseudo-data*

Expected results

Expected limits: Toys

Expected results: median outcome under a given hypothesis \rightarrow usually B-only for searches, but other choices possible.

Two main ways to compute:

- → Pseudo-experiments (*toys*):
- Generate a pseudo-dataset in B-only hypothesis
- Compute limit
- Repeat and histogram the results
- Central value = median, bands based on quantiles

ATLAS

Observed CL, limit

CL_s: Gaussian Bands

Usual Gaussian counting example with known B: 95% CL_s upper limit on S:

$$\mathbf{S}_{up} = \mathbf{\hat{S}} + \left[\Phi^{-1} \left(\mathbf{1} - \mathbf{0.05} \ \Phi \left(\mathbf{\hat{S}} / \sigma_s \right) \right) \right] \sigma_s \qquad \text{with} \\ \sigma_s = \sqrt{B}$$

Compute expected bands for S=0:

→ Asimov dataset ⇔ Ŝ = 0 :
→ ± no bands:

$$S_{\text{up,exp}}^{0} = 1.96 \sigma_{s}$$

$$S_{\text{up,exp}}^{\pm n} = \left(\pm n + \left[1 - \Phi^{-1}(0.05 \Phi(\mp n))\right]\right)\sigma_{s}$$

CLs :

 Positive bands somewhat reduced,

350

300 250

Exerct 200

100

50

• Negative ones more so

Band width from $\sigma_{s,A}^2 = \frac{S^2}{q_s(\text{Asimov})}$ depends on S, for non-Gaussian cases, different values for each band...

0

1

2

3

Ŝ

Eur.Phys.J.C71:1554,2011

Expected limits: Asimov Datasets

Expected results: median outcome under a given hypothesis \rightarrow usually B-only by convention, but other choices possible.

Two main ways to compute:

→ Asimov Datasets

- Generate a "perfect dataset" e.g. for binned data, set bin contents carefully, no fluctuations.
- Gives the median result immediately:
 median(toy results) ↔ result(median dataset)
- Get bands from asymptotic formulas: Band width

$$\sigma_{S_0,A}^2 = \frac{S_0^2}{q_{S_0}(\text{Asimov})}$$

⊕ Much faster (1 "toy")⊖ Relies on Gaussian approximation

Strictly speaking, Asimov dataset if $\hat{X} = X_0$ for all parameters X,

where X_0 is the generation value

Beyond Asymptotics: Toys

CMS-PAS-HIG-11-022

Asymptotics usually work well, but break down in some cases – e.g. small event counts.

Solution: generate *pseudo data* (toys) using the PDF, under the tested hypothesis

 \rightarrow Also randomize the observable

Normalized events per GeV

 (θ^{obs}) of each auxiliary experiment:

 $G(\theta^{obs}; \theta, \sigma_{syst})$

 \rightarrow Samples the true distribution of the PLR

 \Rightarrow Integrate above observed PLR to get the p-value \rightarrow Precision limited by number of generated toys,

Toys: Example

ATLAS X \rightarrow ZY Search: covers 200 GeV < m_x < 2.5 TeV

 \rightarrow for m_x > 1.6 TeV, low event counts \Rightarrow derive results from toys

Asymptotic results (in gray) give optimistic result compared to toys (in blue)

JHEP 10 (2017) 112

Remarks

Short answer: The high-signal, low-background experiments have been done already (although a surprise would be welcome...) *e.g.* at LHC:

- High background levels, need precise modeling
- Large systematics, need to be described accurately
- Small signals: need optimal use of available information :
 - Shape analyses instead of counting
 - Categories to isolated signal-enriched regions

Nuisances and Systematics

Likelihood typically includes

- Parameters of interest (POIs) : S, σ×B, m_w, …
- Nuisance parameters (NPs) : other parameters needed to define the model
 - \rightarrow Ideally, constrained by data like the POI

e.g. shape of $H \rightarrow \mu\mu$ continuum bkg

What about systematics ?

= what we don't know about the random processs

- ⇒ Parameterize using additional NPs
- \rightarrow By definition, not constrained by the data
 - ⇒ Cannot be free, or would spoil the measurement (lumi free ⇒ no $\sigma \times B$ measurement!)
 - \Rightarrow Introduce a constraint in the likelihood:

Phys. Rev. Lett. 119 (2017) 051802

"Systematic uncertainty is, in any statistical inference procedure, the uncertainty due to the incomplete knowledge of the probability distribution of the observables.

G. Punzi, What is systematics ?

$$L(\mu, \theta; data) = L_{\text{measurement}}(\mu, \theta; data) C(\theta)$$
POI Systematics Measurement NP Constraint term
NP Likelihood \Rightarrow penalty for $\theta \neq \theta^{\text{nominal}}$

Likelihood, the full version (binned case)

Frequentist Constraints

Prototype: NP measured in a separate *auxiliary* experiment e.g. luminosity measurement

 \rightarrow Build the combined likelihood of the main+auxiliary measurements

 $L(\mu, \theta; \text{data}) = L_{\text{main}}(\mu, \theta; \text{main data}) L_{\text{aux}}(\theta; \text{aux. data})$

Independent measurements: ⇒ just a product

Gaussian form often used by default: $L_{aux}(\theta; aux. data) = G(\theta^{obs}; \theta, \sigma_{syst})$

In the combined likelihood, systematic NPs are constrained \rightarrow now same as other NPs: all uncertainties statistical in nature

→ Often no clear setup for auxiliary measurements
 e.g. theory uncertainties on missing HO terms from scale variations
 → Implemented in the same way nevertheless ("pseudo-measurement")

Wilks' Theorem

The likelihood usually has NPs:

- Systematics
- Parameters fitted in data
- \rightarrow What values to use when defining the hypotheses ? \rightarrow H(µ=0, θ =?)

Answer: let the data choose \Rightarrow use the best-fit values (*Profiling*)

⇒ Profile Likelihood Ratio (PLR)

$$t_{\mu_0} = -2\log\frac{L(\mu = \mu_{0,}\hat{\hat{\theta}}_{\mu_0})}{L(\hat{\mu}, \hat{\theta})}$$

 $\hat{\hat{\theta}}_{\mu_0}$ best-fit value for $\mu = \mu_0$ (conditional MLE)

 $\hat{\theta}$ overall best-fit value (unconditional MLE)

Wilks' Theorem: PLR also follows a χ^2 ! $f(t_{\mu_0} | \mu = \mu_0) = f_{\chi^2(n_{dof}=1)}(t_{\mu_0})$

also with NPs present

- \rightarrow Profiling "builds in" the effect of the NPs
- ⇒ Can treat the PLR as a function of the POI only

Systematics implementation

Prototype: NP measured in a separate *auxiliary* experiment e.g. luminosity measurement

 \rightarrow Build the combined likelihood of the main+auxiliary measurements

 $L(\mu, \theta; data) = L_{main}(\mu, \theta; main data) L_{aux}(\theta; aux. data)$

Independent measurements: ⇒ just a product

Gaussian form often used by default: $L_{aux}(\theta; aux. data) = G(\theta^{obs}; \theta, \sigma_{syst})$

→ Often no clear setup for auxiliary measurements e.g. theory uncertainties on missing HO terms from scale variations

→ Implemented in the same way nevertheless ("pseudo-measurement")

Gausian Profiling

Gaussian counting with systematic on background: $\mathbf{n} = \mathbf{S} + \mathbf{B} + \mathbf{\theta}$: $\rightarrow \mathbf{n}_{obs} \sim \mathbf{G}(\mathbf{S} + \mathbf{B} + \mathbf{\theta}, \sigma_{stat})$ $\rightarrow \text{ constraint } \mathbf{G}(\mathbf{\theta}, \sigma_{syst}) \text{ on } \mathbf{\theta}$ Then: MLE: $\hat{S} = \mathbf{n} - \mathbf{B}$, $\hat{\theta} = \mathbf{0}$ Then: MLE: $\hat{\theta}(S) = \frac{\sigma_{syst}^2}{\sigma_{stat}^2 + \sigma_{syst}^2} (\mathbf{n} - S - B)$ $\mathbf{Conditional MLE:}$ $\hat{\hat{\theta}}(S) = \frac{\sigma_{syst}^2}{\sigma_{stat}^2 + \sigma_{syst}^2} (\mathbf{n} - S - B)$ $\mathbf{MLE:} = \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2} (\mathbf{n} - S - B)$

⇒ Statistical and systematic uncertainties add in quadrature as expected

Executive summary:

- → Systematic = NP with an external constraint (auxiliary measurement)
- → Profiling systematics includes their effect into the total uncertainty
- → No special treatment for systematics: treated like any other NP, automatically accounted for through profiling.
- → Guaranteed to work only as long as everything is Gaussian, but typically robust against non-Gaussian behavior.

Profiling example

Uncertainty decomposition

Pull/Impact plots

Systematics are described by NPs included in the fit. Nominally:

- NP central value = 0 : corresponds to the pre-fit expectation (usually MC)
- **NP uncertainty = 1** : since NPs normalized to the value of the syst. : $N = N_0 (1 + \sigma_{syst} \theta), \theta \sim G(0, 1)$

Fit results provide information on impact of the systematic on the result:

- If central value ≠ 0: some data feature absorbed by nonzero value ⇒ Need investigation if large pull
- If uncertainty < 1 : systematic is constrained by the data
 ⇒ Needs checking if this legitimate or a modeling issue
- Impact on result of ±1σ shift of NP

ATLAS-CONF-2016-058

Pull/Impact plots

Systematics are described by NPs included in the fit. Nominally:

- NP central value = 0 : corresponds to the pre-fit expectation (usually MC)
- **NP uncertainty = 1** : since NPs normalized to the value of the syst. : $N = N_0 (1 + \sigma_{syst} \theta), \theta \sim G(0, 1)$

Fit results provide information on impact of the systematic on the result:

- If central value ≠ 0: some data feature absorbed by nonzero value ⇒ Need investigation if large pull
- If uncertainty < 1 : systematic is constrained by the data
 ⇒ Needs checking if this legitimate or a modeling issue
- Impact on result of ±1σ shift of NP

13 TeV single-t XS (arXiv:1612.07231)

Takeaways

Systematics: uncertainties on the form of the statistical model
 (as opposed to the uncertainties encoded in the model itself)
 → Implemented using additional nuisance parameters in the model
 → Constrained by adding *auxiliary measurements* (sometimes fictitious ones)

to the model – usually represented by a single Gaussian for each NP.

 $L(\mu, \theta; data) = L_{main}(\mu, \theta; main data) G(\theta^{obs}, \theta, 1)$

⇒ Systematics treated in the same way as statistical uncertainties, although we still keep track of systematics NPs for bookkeeping purposes

Profiling: when testing a hypothesis, use the best-fit values of the nuisance parameters: *profile likelihood ratio*.

 $\frac{L(\mu=\mu_{0,}\hat{\hat{\theta}}_{\mu_{0}})}{L(\hat{\mu},\hat{\theta})}$

Wilks' Theorem: the PLR has the same asymptotic properties as the LR without systematics: can profile out NPs and just deal with POIs.

 \rightarrow NPs still show up in the PLR as increased uncertainties – Gaussian case:

$$\sigma_{total} = \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}$$

Profiling can have unintended effects – need to carefully check behavior

Summary on Statistical Results Computation

Methods provide:

- \rightarrow Optimal use of information from the data under general hypotheses
- \rightarrow Arbitrarily complex/realistic models (up to computing constraints...)

\rightarrow No Gaussian assumptions in the measurements

Still often assume Gaussian behavior of PLR – but weaker assumption and can be lifted with toys

Systematics treated as auxiliary measurements – modeling can be tailored as needed

\rightarrow Single PLR-based framework for all usual classes of measurements

Discovery testing Upper limits on signal yields Parameter estimation

Look-Elsewhere effect

Sometimes, unknown parameters in signal model e.g. p-values as a function of m_x

 \Rightarrow Effectively: multiple, simultaneous searches

 \rightarrow If e.g. small resolution and large scan range, many independent experiments

→ More likely to find an excess anywhere in the range, rather than in a predefined location \Rightarrow Look-elsewhere effect (LEE)

Global Significance

For searches over a parameter range, p_{alobal} is the relevant p-value

→ Depends on the scanned parameter ranges e.g. $X \rightarrow \gamma \gamma$: 200 < m_x < 2000 GeV, 0 < Γ_x < 10% m_x.

 \rightarrow However what comes out of the usual asymptotic formulas is p_{local}

How to compute p_{global} ? \rightarrow Toys (brute force) or asymptotic formulas.

Global Significance from Toys

 \rightarrow repeat many times

 \Rightarrow The frequency at which a given Z₀ is found **is** the global p-value

e.g. $X \rightarrow \gamma \gamma$ Search: $Z_{local} = 3.9\sigma (\Rightarrow p_{local} \sim 5 \ 10^{-5})$,

 \rightarrow However we are scanning 200 < m_x< 2000 GeV and 0 < Γ_x < 10% m_x!

→ Toys : find such an excess 2% of the time somewhere in the range ⇒ $p_{global} \sim 2 \ 10^{-2}$, $Z_{global} = 2.1\sigma$ Less exciting, and better indication of true Z!

Exact treatment

⊖ CPU-intensive especially for large Z (need ~O(100)/p_{alobal} toys)

m_{yy} [GeV]

Global Significance from Asymptotics

Global Significance from Asymptotics

Illustrative Example (1)

Test on a simple example: generate toys with

- \rightarrow flat background (100 events/bin)
- \rightarrow count events in a fixed-size sliding window, look for excesses

Two configurations:

- 1. Look only in 10 slices of the full spectrum
- 2. Look in any window of same size as above, anywhere in the spectrum

Illustrative Example (2)

Very different results if the excess is **near a boundary** :

1. Look only in 10 slices of the full spectrum

2. Look in any window of same size as above, anywhere in the spectrum

Illustrative Example (3)

Z_{Global} Asymptotics Extrapolation

Asymptotic trials factor (1 POI): $N_{\text{trials}} = 1 + \sqrt{2}$

 $N_{\text{trials}} = 1 + \sqrt{\frac{\pi}{2}} N_{\text{indep}} Z_{\text{local}}$

How to get N_{indep} ? Usually work with a slightly different formula:

$$N_{trials} = 1 + \frac{1}{p_{local}} \langle N_{up}(Z_{test}) \rangle e^{\frac{Z_{local}^2 - Z_{test}^2}{2}}$$

Number of excesses with Z > Z_{test}

→ Get N_{up} From toys ? but high $Z_{local} \Rightarrow$ many toys needed ⇒ calibrate for small Z_{test} , apply result to higher Z_{local} .

Can choose arbitrarily small Z_{test}

- ⇒ many excesses
- ⇒ can measure N_{up} in data (1 "toy")

Can also measure <N_{up}> in multiple toys

if large stat uncertainty from too few excesses

Trials factor

Trials factor N = # of independent searches:

Frequentist vs. Bayesian

All methods described so far are frequentist

- Probabilities (p-values) refer to outcomes if the experiment were repeated identically many times
- Parameters value are fixed but unknown
- Probabilities apply to measurements:

→ "m_H = 125.09 ± 0.24 GeV" :

 \rightarrow i.e. [125.09 - 0.24 ; 125.09 + 0.24] GeV has p=68% to contain **the** true m_H.

 \rightarrow if we repeated the experiment many times, we would get different intervals, 68% of which would contain the true m_.

\rightarrow "5 σ Higgs discovery"

• if there is really no Higgs, such fluctuations observed in 3.10⁻⁷ of experiments

Not exactly the crucial question – what we would really like to know is What is the probability that the excess we see is a fluctuation → we want P(no Higgs | data) – but all we have is P(data | no Higgs)

Frequentist vs. Bayesian

Can compute P(µ|data), if we provide P(µ)

 \rightarrow Implicitly, we have now made μ into a random variable

- Is m_{μ} , or the presence of H(125), randomly chosen ?
- In fact, different definition of p: *degree of belief*, not from frequencies.
- $P(\mu)$ **Prior degree of belief** critical ingredient in the computation

Compared to frequentist PLR:

- ⊕ answers the "right" question
- ⊖ answer depends on the prior

"Bayesians address the questions everyone is interested in by using assumptions that no one believes. Frequentist use impeccable logic to deal with an issue that is of no interest to anyone." - Louis Lyons

Bayesian methods

Probability distribution (= likelihood) : same form as frequentist case, but P(θ) constraints now priors for the systematics NPs, P(θ) not auxiliary measurements P(θ^{mes} ; θ) B Simply integrate them out, no need for profiling: $P(\mu) = \int P(\mu, \theta) d\theta$ \rightarrow Use probability distribution P(μ) directly for limits, credibility intervals e.g. define 68% CL ("Credibility Level") interval (A, B) by: $\int_{A}^{B} P(\mu) d\mu = 68\%$ B No simple way to test for discovery B Integration over NPs can be CPU-intensive

Priors : most analyses still using flat priors in the analysis variable(s) \Rightarrow **Parameterization-dependent**: if flat in $\sigma \times B$, then not flat in $\kappa \dots$ \rightarrow Can use the Jeffreys' or reference priors, but difficult in practice

Frequentist-Bayesian Hybrid methods ("Cousins-Highland")

- Integrate out NPs as in Bayesian measurements
- Once only POIs left, Use P(data | μ) in a frequentist way

→ "Bayesian NPs, frequentist POIs"

• Some use in Run 1, now phased out in favor of frequentist PLR.

Frequentists method: CL_s computation

Gaussian counting with systematic on background: $\mathbf{n} = \mathbf{S} + \mathbf{B} + \sigma_{syst} \mathbf{\theta}$ $L(n; \mathbf{S}, \mathbf{\theta}) = G(n; \mathbf{S} + \mathbf{B} + \sigma_{syst} \mathbf{\theta}, \sigma_{stat}) G(\mathbf{\theta}_{obs} = \mathbf{0}; \mathbf{\theta}, \mathbf{1})$

MLE:
$$\hat{S} = n - B$$

Conditional MLE: $\hat{\hat{\theta}}(S) = \frac{\sigma_{\text{syst}}}{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2} (n - S - B)$

$$PLR: \lambda(S) = \left(\frac{S + B - n}{\sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}}\right)^2$$

Gaussian \Rightarrow from previous studies, CL_s limit is

$$\mathbf{CL}_{s}: \quad S_{up}^{\mathrm{CL}_{s}} = n - B + \left[\Phi^{-1} \left| 1 - 0.05 \Phi \left(\frac{n - B}{\sqrt{\sigma_{stat}^{2} + \sigma_{syst}^{2}}} \right) \right| \right] \sqrt{\sigma_{stat}^{2} + \sigma_{syst}^{2}} \right]$$

Bayesian method: Bayesian limit

Gaussian counting with systematic on background: $\mathbf{n} = \mathbf{S} + \mathbf{B} + \sigma_{syst} \mathbf{\theta}$ $P(n \mid \mathbf{S}, \mathbf{\theta}) = G(n; \mathbf{S} + \mathbf{B} + \sigma_{syst} \mathbf{\theta}, \sigma_{stat}) G(\mathbf{\theta} \mid \mathbf{0}, \mathbf{1})$

Bayesian: $G(\theta)$ is actually a *prior* on $\theta \Rightarrow$ perform integral (*marginalization*)

 $P(n \mid S) = G(S; n-B, \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2})$ some effect as profiling!

Bayesian methods

Example: W'→Iv Search

arXiv:1706.04786

- POI: W' $\sigma \times B \rightarrow \text{Use}$ flat prior over $[0, +\infty[$.
- NPs: syst on signal ϵ (6 NPs), bkg (6), lumi (1) \rightarrow integrate over Gaussian priors

Why 5σ ?

One-sided discovery: $5\sigma \Leftrightarrow p_0 = 3 \ 10^{-7} \Leftrightarrow 1 \ chance \ in \ 3.5M$

- \rightarrow Overly conservative ?
- \rightarrow Do we even control such small probabilities ?

Reasons for sticking with 5 σ (from Louis Lyons):

- LEE : searches typically cover multiple independent regions

 ⇒ Global p-value is the relevant one
 N_{trials} ~ 1000 : local 5σ ⇔ O(10⁻⁴) more reasonable
- **Mismodeled systematics**: factor 2 error in syst-dominated analysis ⇒ factor 2 error on Z...
- History: 3\sigma and 4\sigma excesses do occur regularly, for the reasons above
- "Subconscious Bayes Factor" : p-value should be at least as small as the subjective p(S):

Extraordinary claims require extraodinary evidence \Rightarrow Stay with 5 σ ...

Reparametrisation

Start with basic measurement in terms of e.g. $\sigma \times B$

 \rightarrow How to measure derived quantities (couplings, parameters in some theory model, etc.)? \rightarrow just reparameterize the likelihood:

e.g. Higgs couplings: σ_{ggF} , σ_{VBF} sensitive to Higgs coupling modifiers κ_{V} , κ_{F} .

Reparametrisation: Limits

Reparameterization: Limits

CMS Run 2 Monophoton Search: measured N_s in a counting experiment reparameterized according to various DM models

Presentation of results

 \rightarrow Cannot test every model : need to make enough information public so that others (theorists) are able to do it independently

→ Gaussian case: sufficient to provide measurements + covariance matrix \rightarrow For example using the HEPData repository.

Non-Gaussian case: no simple method

Conclusions

- Significant evolution in the statistical methods used in HEP
- Variety of methods, adapted to various situations and target results
- Allow to
 - model the statistical process with high precision in difficult situations (large systematics, small signals)
 - make optimal use of available information
- Implemented in standard RooFit/RooStat toolkits within the ROOT framework, as well as other tools (BAT)

• Still many open questions and areas that could use improvement \rightarrow e.g. how to present results with all available information