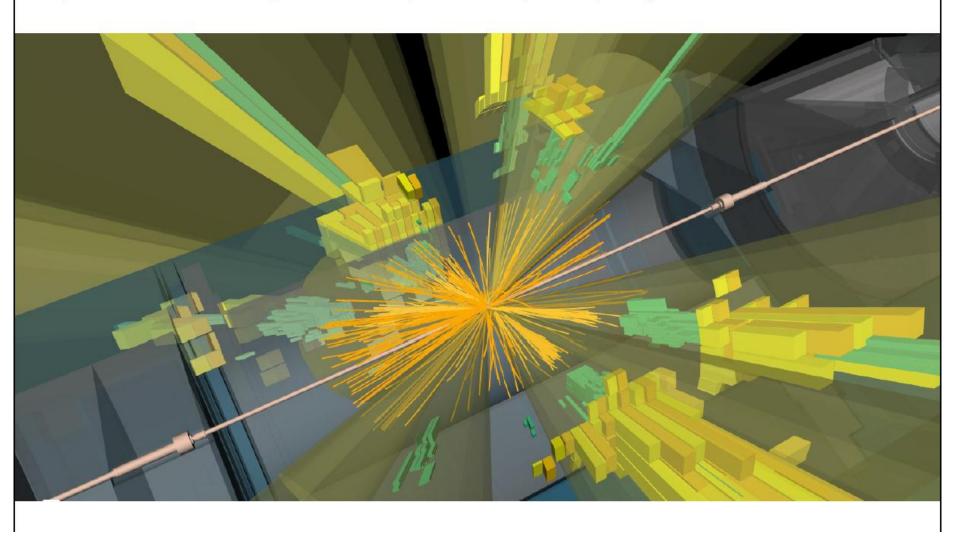
Statistics and Data Analysis (HEP at LHC)

- **☐** Statistical basics for physics
 - Random processes
 - Probability distributions
- Describing physics measurements
 - Binned and unbinned data
 - Model parameters

Slides extracted from N. Berger lectures at CERN Summer School 2019

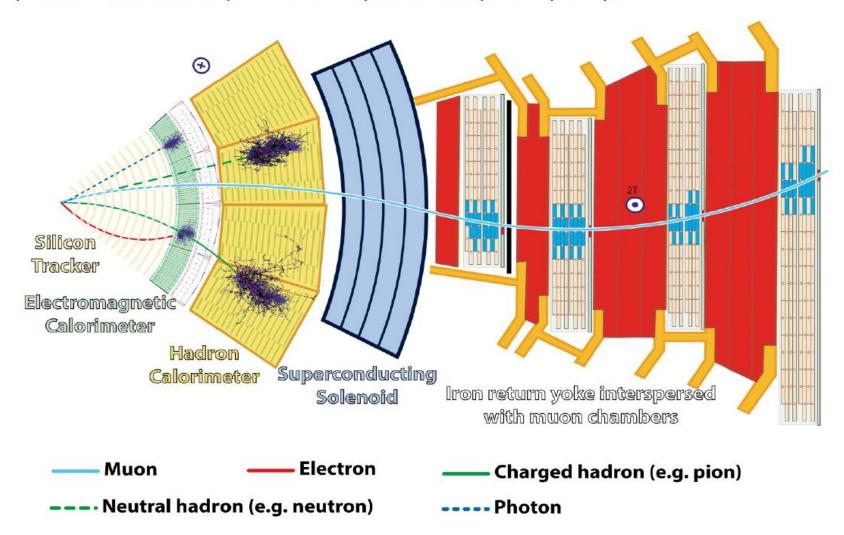
Randomness in High Energy Physics

Experimental data is produced by incredibly complex processes



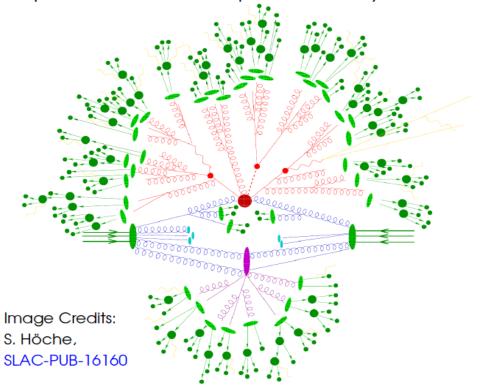
Randomness in High Energy Physics

Experimental data is produced by incredibly complex processes



Randomness in High Energy Physics

Experimental data is produced by incredibly complex processes



Randomness involved in all stages

- → Classical randomness: detector reponse
- → Quantum effects in particle production, decay

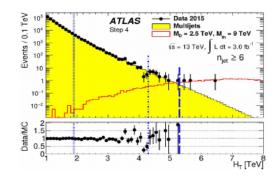
Hard scattering

PDFs, Parton shower, Pileup

Decays

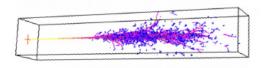
Detector response

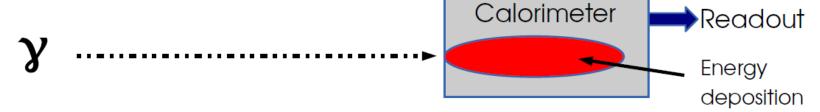
Reconstruction

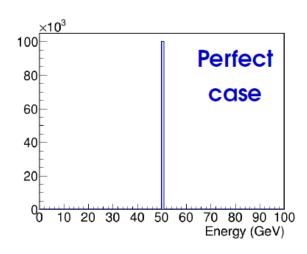


Measurement Errors: Energy measurement

Example: measuring the energy of a photon in a calorimeter

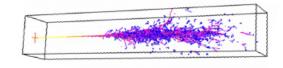


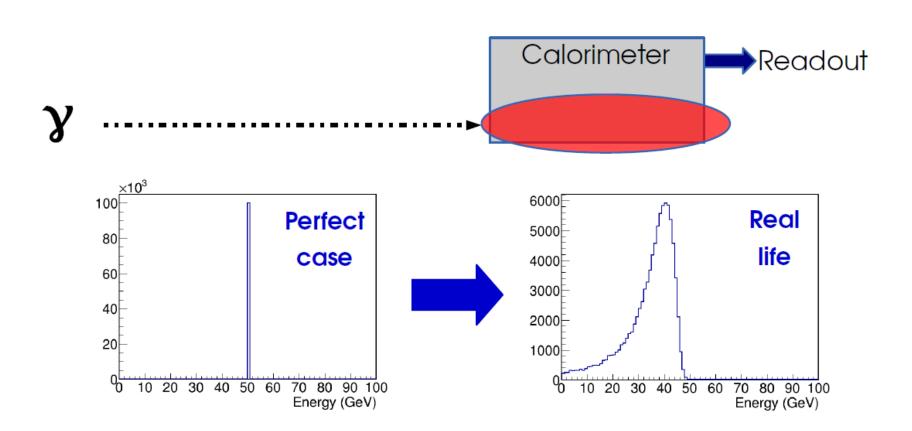




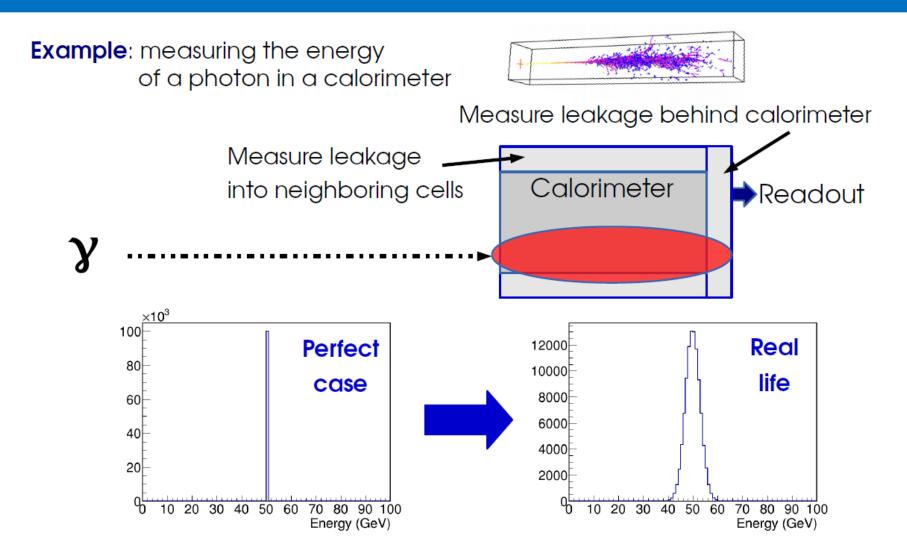
Measurement Errors: Energy measurement

Example: measuring the energy of a photon in a calorimeter





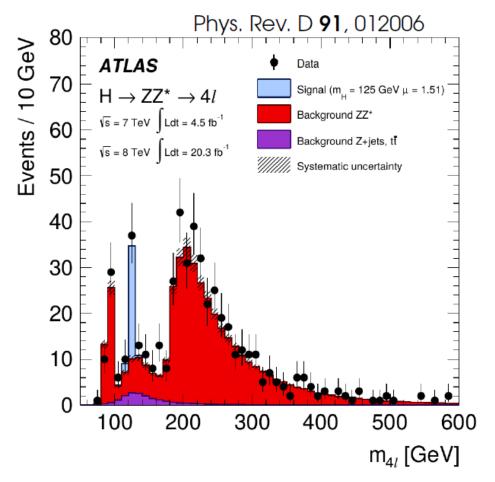
Measurement Errors: Energy measurement



Cannot predict the measured value for a given event

⇒ Random process ⇒ Need a probabilistic description

Quantum randomness: H->ZZ*-> 4 l



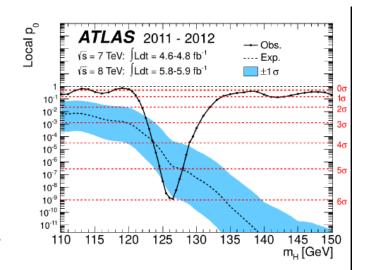
Rare process: Expect 1 signal event every ~6 days

"Will I get an event today?" → only **probabilistic** answer

Randomness in Physics

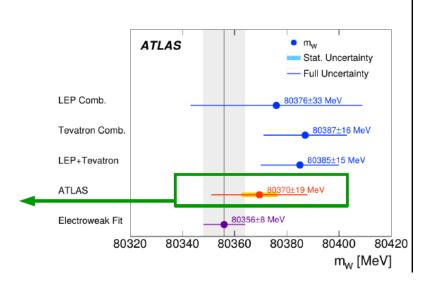
Questions with probabilistic answers:

- Is my Higgs-like excess just a background fluctuation?
 - \rightarrow associated with prob ~ 10⁻⁹ (by now ~ 10⁻²⁴)
 - \Rightarrow above the famous (and conventional) 5σ



 For measurements: probability that the true value of a parameter is within an interval:

68% chance that the true m_w is within the orange interval



Probability distributions

Probabilistic treatment of possible outcomes

⇒ Probability Distribution

Example: two-coin toss

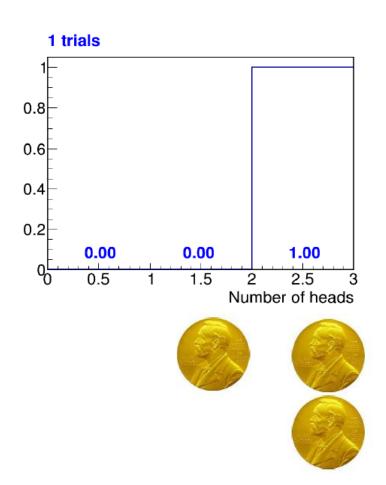
→ Fractions of events in each bin i converge to a limit p,

Probability distribution:

$$\{P_i\}$$
 for $i = 0, 1, 2$

Properties

- P_i > 0
- $\Sigma P_i = 1$



Probability distributions

Probabilistic treatment of possible outcomes

⇒ Probability Distribution

Example: two-coin toss

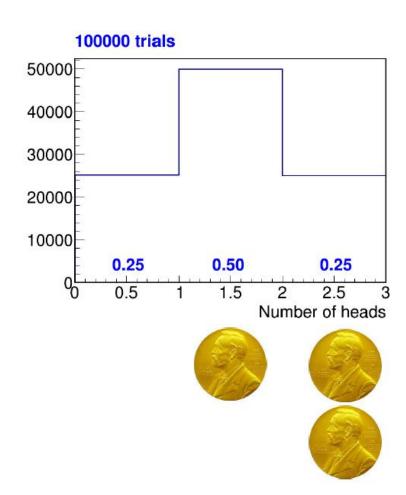
→ Fractions of events in each bin i converge to a limit p,

Probability distribution:

$$\{P_i\}$$
 for $i = 0, 1, 2$

Properties

- P_i > 0
- $\Sigma P_i = 1$



Probability distributions

Probabilistic treatment of possible outcomes

⇒ Probability Distribution

Example: two-coin toss

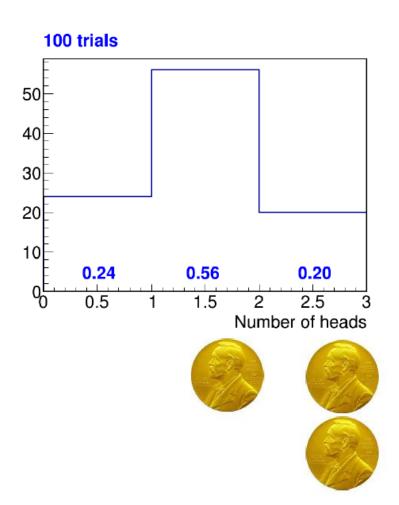
→ Fractions of events in each bin i converge to a limit p,

Probability distribution:

$$\{P_i\}$$
 for $i = 0, 1, 2$

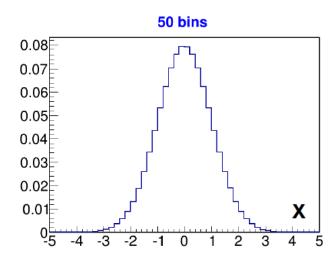
Properties

- P_i > 0
- $\Sigma P_i = 1$



Continuous Variables: PDFs

Continuous variable: can consider per-bin probabilities p_i, i=1.. n_{bins}



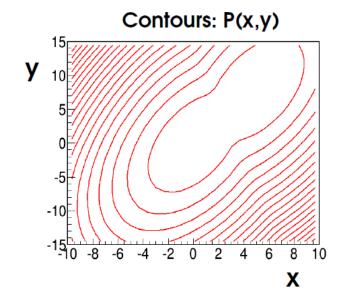
Bin size $\rightarrow 0$:

Probability distribution function P(x)

- \rightarrow P(x) > 0, \int P(x) dx = 1
- → High values ⇔ high chance to get a measurement here

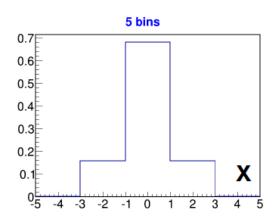
Generalizes to multiple variables:

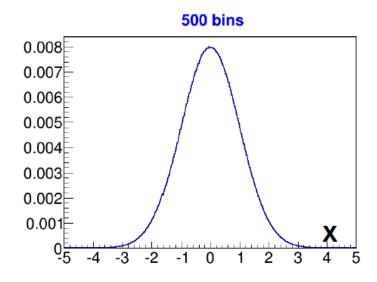
- $\rightarrow P(x,y) > 0$
- $\rightarrow \int P(x,y) dx dy = 1$

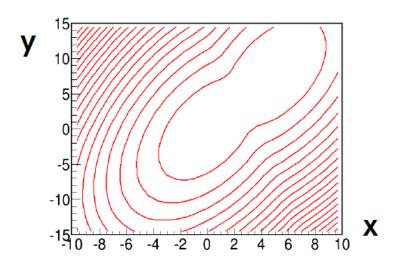


Random Variables

- X, Y... are **Random Variables** (continuous or discrete), a.ka. **observables** :
- \rightarrow X can take any value x, with probability P(X=x).
- \rightarrow P(X) is the **PDF** of X, a.k.a. the **Statistical Model.**
- \rightarrow The **Observed data** is **one value** X_{obs} of X, drawn from P(X).







PDF properties: mean

E(X) = <X>: Mean of X – expected outcome on average over many measurements

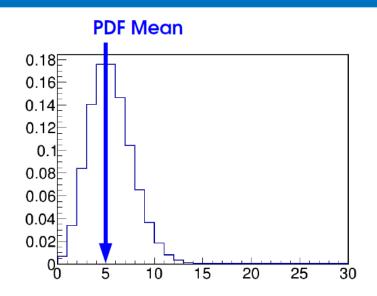
$$\langle X \rangle = \sum_{i} x_{i} P_{i}$$
 or $\langle X \rangle = \int x P(x) dx$

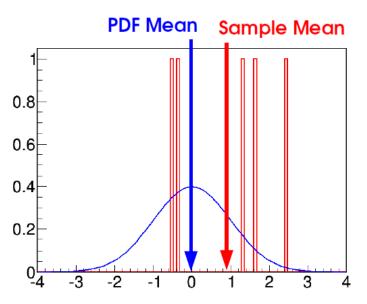
→ Property of the **PDF**

For measurements $x_1 ... x_n$, then can compute the **Sample mean**:

$$\bar{x} = \frac{1}{n} \sum_{i} x_{i}$$

- → Property of the **sample**
- → approximates the PDF mean.



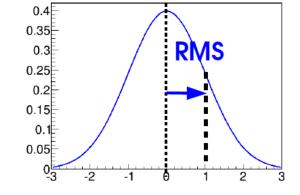


PDF properties: (co)variance

Variance of X:

$$Var(X) = \langle (X - \langle X \rangle)^2 \rangle$$

- → Average square of deviation from mean
- \rightarrow RMS(X) = $\sqrt{\text{Var}(X)}$ = σ_{x} standard deviation



Can be approximated by **sample variance**:

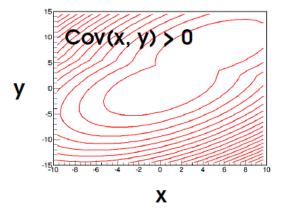
$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$$

Covariance of X and Y:

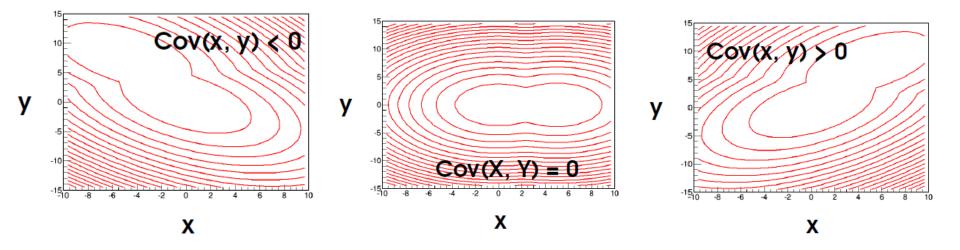
$$Cov(X,Y) = \langle (X - \langle X \rangle)(Y - \langle Y \rangle) \rangle$$

→ Large if variations of X and Y are "synchronized"

Correlation coefficient
$$\rho = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

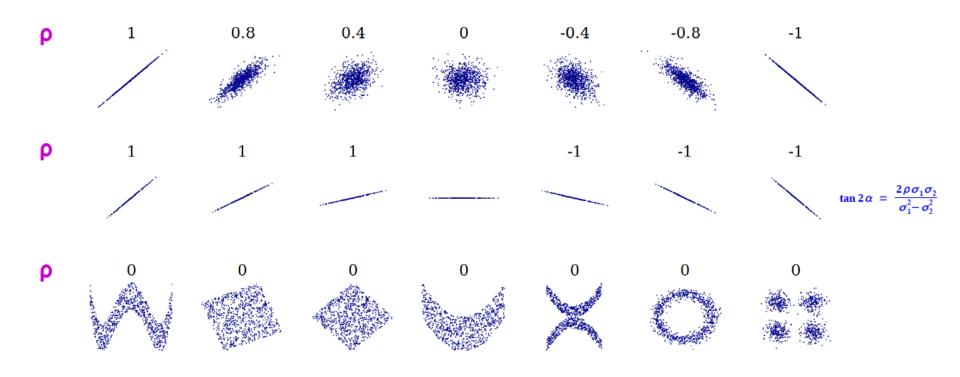


PDF properties: (co)variance



"Linear" vs. "non-linear" correlations

For non-Gaussian cases, the **Correlation coefficient** ρ is not the whole story:



Source: Wikipedia

In particular, variables can still be correlated even when $\rho=0$: "Non-linear" correlations.

Gaussian PDF

Gaussian distribution:

$$G(x; X_0, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-X_0)^2}{2\sigma^2}}$$

- → Mean: X₀
- → Variance : σ^2 (\Rightarrow RMS = σ)

$G(x; X_0, C) = \frac{1}{(2\pi |C|)^{N/2}} e^{-\frac{1}{2}(x - X_0)^T C^{-1}(x - X_0)}$

0.35

0.25

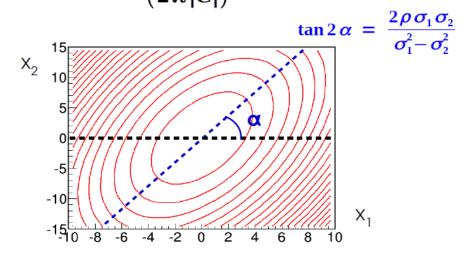
0.2

Generalize to N dimensions:

- → Mean: X₀
- → Covariance matrix :

$$C = \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$



Gaussian quantiles

Consider
$$\mathbf{z} = \left(\frac{\mathbf{x} - \mathbf{x}_0}{\sigma}\right)$$
 "pull" of x

 $G(x;x_0,\sigma)$ depends only on $z \sim G(z;0,1)$

Probability $P(|x-x_0| > Z\sigma)$ to be away from the mean:

Z	$P(x-x_0 > Z\sigma)$
1	0.317
2	0.045
3	0.003
4	3 x 10 ⁻⁵
5	6 x 10 ⁻⁷

Gaussian Cumulative Distribution Function (CDF):

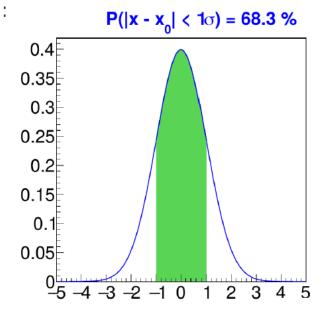
$$\Phi(z) = \int_{-\infty}^{z} G(u; 0,1) \ du$$

In ROOT.

Φ(Z): ROOT::Math::gaussian_cdf(z)
Φ-1(p): ROOT::Math::gaussian_quantile(p,1)

and add " $_c$ " to use 1- ϕ instead of ϕ

```
root [0] R00T::Math::gaussian_cdf(1) - R00T::Math::gaussian_cdf(-1)
(double) 0.68268949
root [1] R00T::Math::gaussian_quantile_c(0.05/2, 1)
(double) 1.9599640
```



Gaussian quantiles

Consider
$$z = \left(\frac{x - x_0}{\sigma}\right)$$
 "pull" of x

 $G(x;x_0,\sigma)$ depends only on $z \sim G(z;0,1)$

Probability $P(|x-x_0| > Z\sigma)$ to be away from the mean:

Z	$P(x-x_0 > Z\sigma)$
1	0.317
2	0.045
3	0.003
4	3 x 10 ⁻⁵
5	6 x 10 ⁻⁷

Gaussian Cumulative Distribution Function (CDF):

$$\Phi(z) = \int_{-\infty}^{z} G(u; 0,1) \ du$$

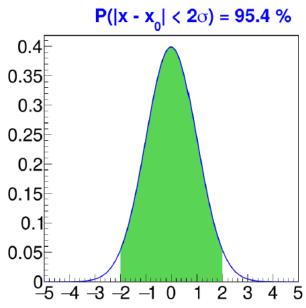
In ROOT.

Φ(Z):R00T::Math::gaussian_cdf(Z)

 $\Phi^{-1}(p)$: ROOT::Math::gaussian_quantile(p,1)

and add " $_c$ " to use 1- ϕ instead of ϕ

```
root [0] ROOT::Math::gaussian_cdf(1) - ROOT::Math::gaussian_cdf(-1)
(double) 0.68268949
root [1] ROOT::Math::gaussian_quantile_c(0.05/2, 1)
(double) 1.9599640
```



Gaussian quantiles

Consider
$$\mathbf{z} = \left(\frac{\mathbf{x} - \mathbf{x}_0}{\sigma}\right)$$
 "pull" of x

 $G(x;x_0,\sigma)$ depends only on $z \sim G(z;0,1)$

Probability $P(|x-x_0| > Z\sigma)$ to be away from the mean:

Z	$P(x-x_0 > Z\sigma)$
1	0.317
2	0.045
3	0.003
4	3 x 10 ⁻⁵
5	6 x 10 ⁻⁷

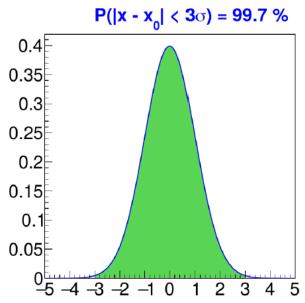
Gaussian Cumulative Distribution Function (CDF):

$$\Phi(z) = \int_{-\infty}^{z} G(u; 0,1) \ du$$

In ROOT,

 $\Phi(z)$: R00T::Math::gaussian_cdf(z) $\Phi^{-1}(p)$: R00T::Math::gaussian_quantile(p,1) and add " c" to use 1- Φ instead of Φ

```
root [0] ROOT::Math::gaussian_cdf(1) - ROOT::Math::gaussian_cdf(-1)
(double) 0.68268949
root [1] ROOT::Math::gaussian_quantile_c(0.05/2, 1)
(double) 1.9599640
```



Central Limit Theorem

(*) Assuming σ_χ < ∞and other regularityconditions

For an observable X with **any distribution**, one has(*)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \overset{n \to \infty}{\sim} G(\langle X \rangle, \frac{\sigma_X}{\sqrt{n}})$$

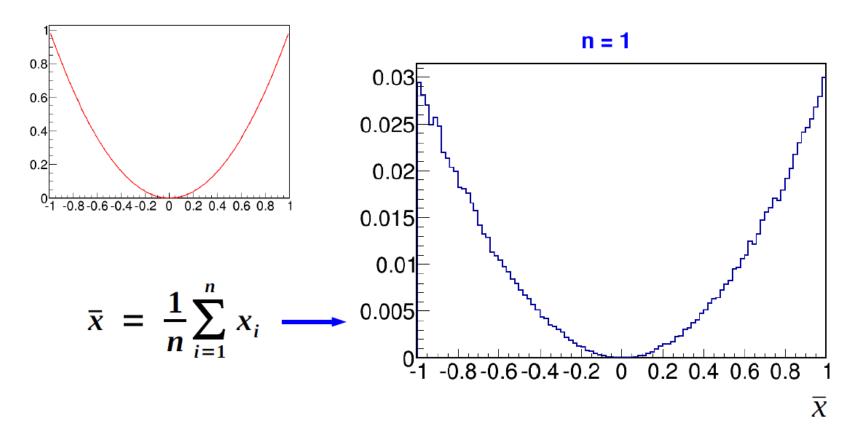
What this means:

- The average of many measurements is always Gaussian, whatever the distribution for a single measurement
- The mean of the Gaussian is the average of the single measurements
- The RMS of the Gaussian decreases as √n: smaller fluctuations when averaging over many measurements

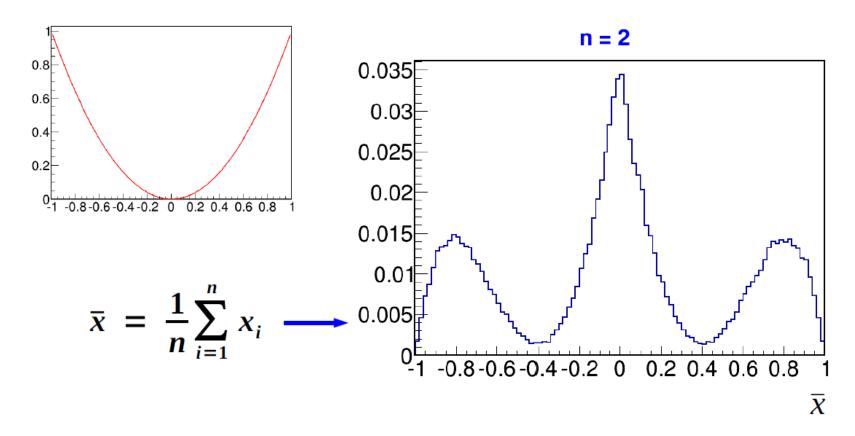
$$\sum_{i=1}^{n} x_{i} \stackrel{n\to\infty}{\sim} G(n\langle X\rangle, \sqrt{n} \sigma_{X})$$

Mean scales like n, but RMS only like \sqrt{n}

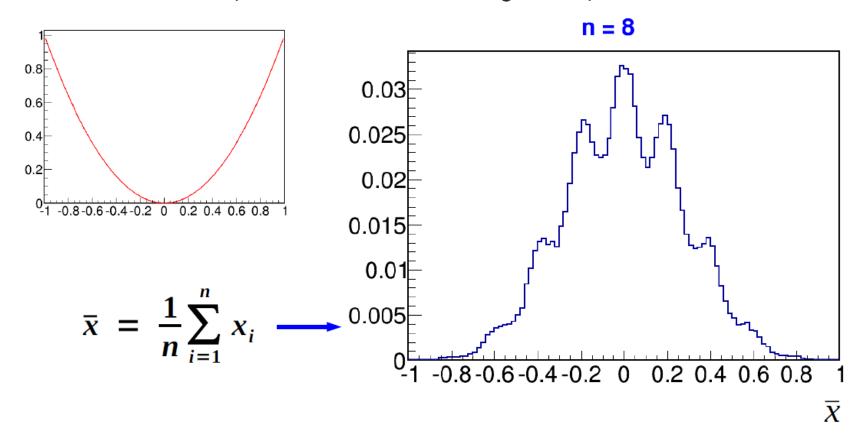
Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)



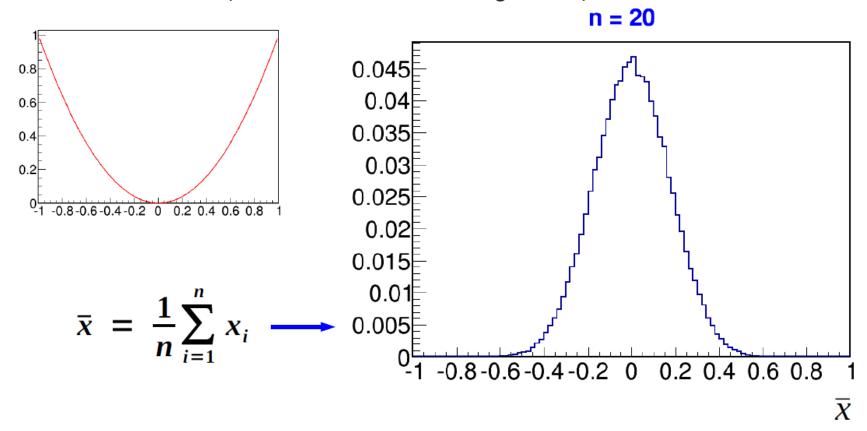
Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)



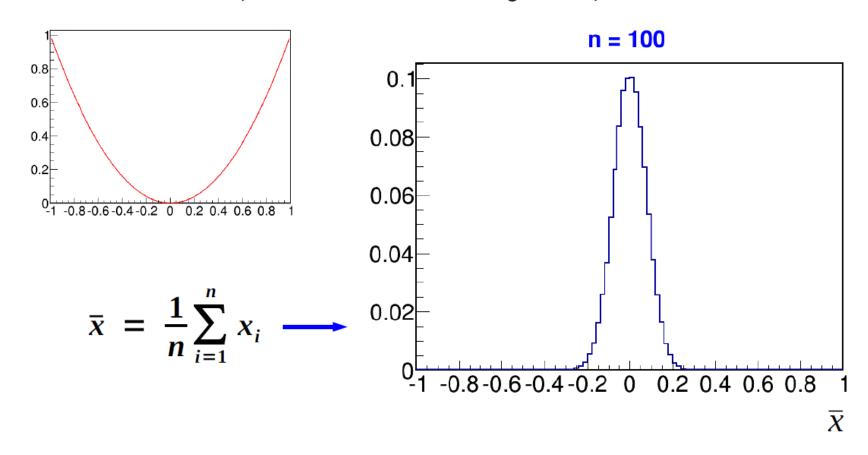
Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)



Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)



Draw events from a parabolic distribution (e.g. decay $\cos \theta^*$)



Chi-squared

Chi-squared

Multiple Independent Gaussian variables x_i: Define

$$\chi^2 = \sum_{i=1}^n \left(\frac{x_i - x_i^0}{\sigma_i} \right)^2$$

Measures global distance from reference point $(x_1^0 \dots x_n^0)$

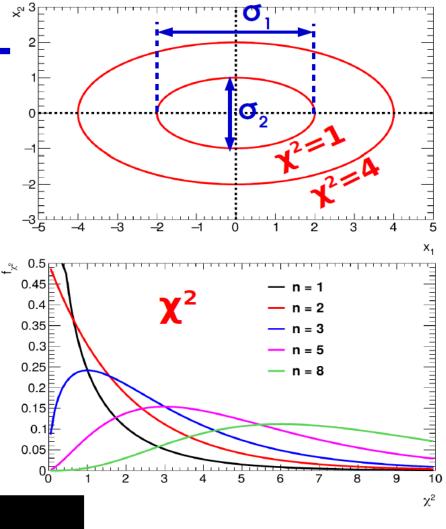
Distribution depends on n:

Rule of thumb: χ^2/n should be $\lesssim 1$

Exact distributions in ROOT:

ROOT::Math::chisquared_pdf(x, n)
ROOT::Math::chisquared_cdf(x, n)

```
root [0] R00T::Math::chisquared_cdf(1, 1)
(double) 0.68268949
root [1] R00T::Math::chisquared_cdf(4, 1)
(double) 0.95449974
```



Chi-squared

Multiple Independent Gaussian variables x_i: Define

$$\chi^2 = \sum_{i=1}^n \left(\frac{x_i - x_i^0}{\sigma_i} \right)^2$$

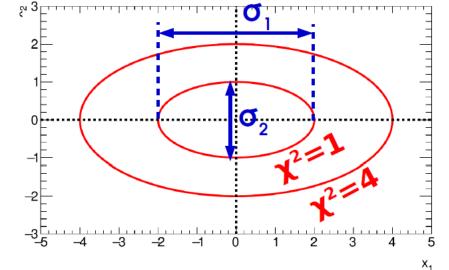
Measures global distance from reference point $(x_1^0 \dots x_n^0)$

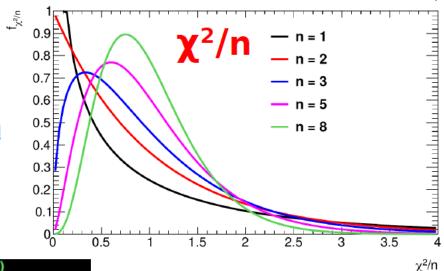
Distribution depends on n:

Rule of thumb: χ^2/n should be $\lesssim 1$

Exact distributions in ROOT:

ROOT::Math::chisquared_pdf(x, n)
ROOT::Math::chisquared_cdf(x, n)



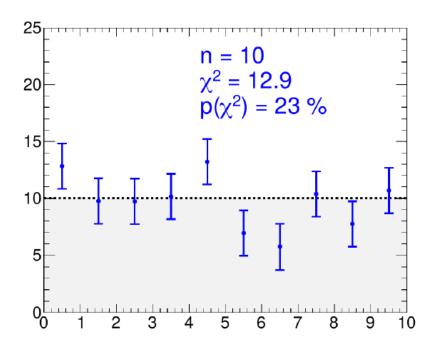


```
root [0] ROOT::Math::chisquared_cdf(1, 1)
(double) 0.68268949
root [1] ROOT::Math::chisquared_cdf(4, 1)
(double) 0.95449974
```

Histogram Chi-squared

Histogram χ 2 with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) (number of fit parameters)



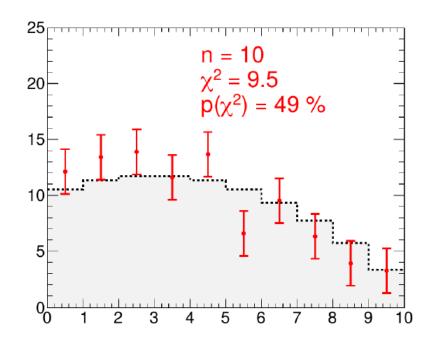
BLUE histogram vs. flat reference

$$\chi^2 = 12.9$$
, $p(\chi^2 = 12.9, n=10) = 23\%$

Histogram Chi-squared

Histogram χ 2 with respect to a reference shape:

- Assume an independent Gaussian distribution in each bin
- Degrees of freedom = (number of bins) (number of fit parameters)



BLUE histogram vs. flat reference

$$\chi^2 = 12.9$$
, $p(\chi^2=12.9, n=10) = 23\%$

RED histogram vs. flat reference

$$\chi^2 = 38.8$$
, $p(\chi^2=38.8, n=10) = 0.003\%$

RED histogram vs. correct reference

$$\chi^2 = 9.5$$
, p($\chi^2 = 9.5$, n=10) = **49%**

ROOT commands:

```
root [0] R00T::Math::chisquared_cdf_c(12.9, 10)
(double) 0.22931681
root [1] R00T::Math::chisquared_cdf_c(38.8, 10)
(double) 2.7519383e-05
```

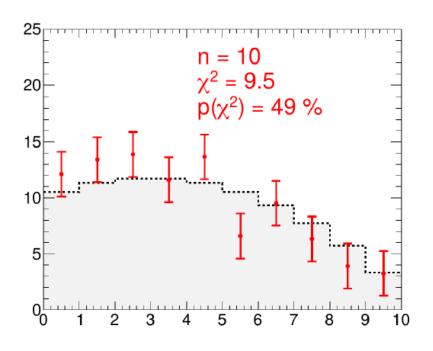
Error Bars

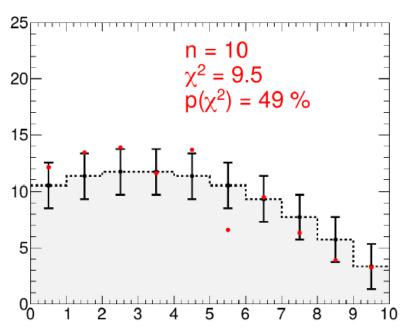
Strictly speaking, the uncertainty is given by the model:

- → Bin central value ~ mean of the bin PDF
- → **Bin uncertainty** ~ RMS of the bin PDF

The data is just what it is, a simple observed point.

- ⇒ One should in principle show the error bar on the prediction.
- → In practice, the usual convention is to have error bars on the data points.



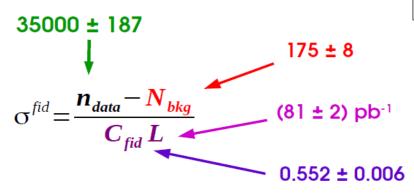


Example analyses

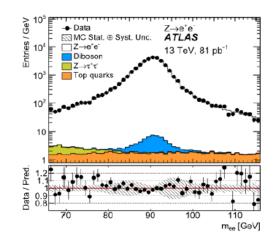
Example 1: Z→ee Inclusive offid

Phys. Lett. B 759 (2016) 601

Measurement Principle:



Signal events	$34865 \pm 187 \pm 7 \pm 3$
Correction C	$0.552^{+0.006}_{-0.005}$
$\sigma^{ m fid}[m nb]$	$0.781 \pm 0.004 \pm 0.008 \pm 0.016$

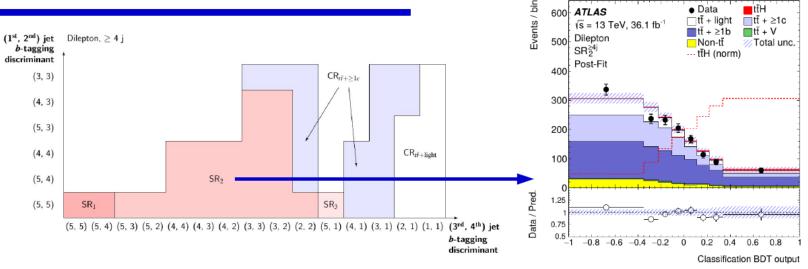


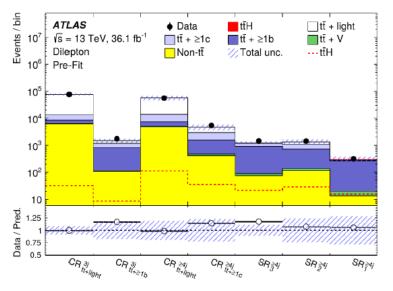
Simple uncertainty propagation:

 $\sigma^{\text{fid}} = 0.781 \pm 0.004 \text{ (stat)} \pm 0.008 \text{ (syst)} \pm 0.016 \text{ (lumi) nb}$

- → Simplest possible example in several ways (from the Statistics point of view!)
- → "Single bin counting": only data input is n_{data}.

Example analyses





Event counting in different regions:

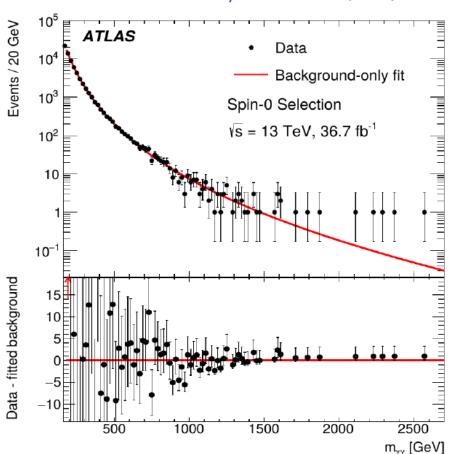
Multiple-bin counting

Lots of information available

- → Potentially higher sensitivity
- → How to make optimal use of it?

Example analyses

Example 3: Unbinned shape analysis



Describe spectrum without discrete binning

→ use smooth functions of a continuous variable.

Unbinned shape analysis

- → No binning effects
- → Use all available information
- → How to describe the shapes?

Counting events

Consider N total events, select **good** events with probability p. Probability to get **n good events**?

 $P(n; N, p) = C_N^n p^n (1-p)^{N-n}$ Binomial distribution: Mean = Np N trials Variance = N p(1 - p)

However suppose $p \ll 1$, $N \gg 1$, and let $\lambda = N \cdot p$:

→ i.e. very rare process, but very many trials so still expect to see good events

Poisson distribution: $P(n; \lambda) = e^{-\lambda} \frac{\lambda^{n}}{n!}$ Mean = λ $(1-p)^{N-n} \stackrel{n \ll N}{\sim} \left(1-\frac{\lambda}{N}\right)^{N} \stackrel{N \gg 1}{\sim} e^{-\lambda}$ For n expected events, the uncertainty is √n

Rare processes?

HEP: almost always use Poisson distributions. Why?

ATLAS:

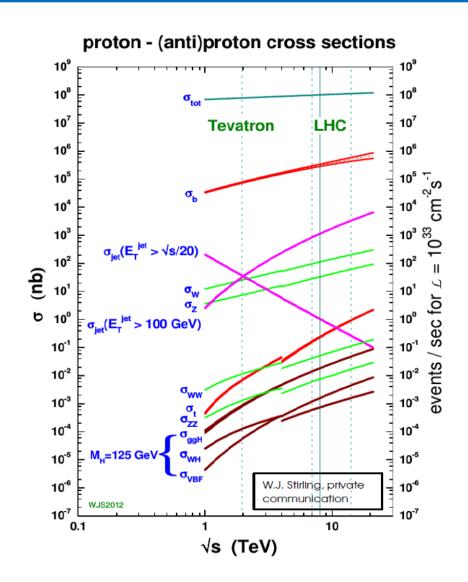
- Event rate ~ 1 GHz $(L\sim 10^{34} \text{ cm}^{-2}\text{s}^{-1}\sim 10 \text{ nb}^{-1}/\text{s}, \, \sigma_{tot}\sim 10^8 \text{ nb},)$
- Trigger rate ~ 1 kHz

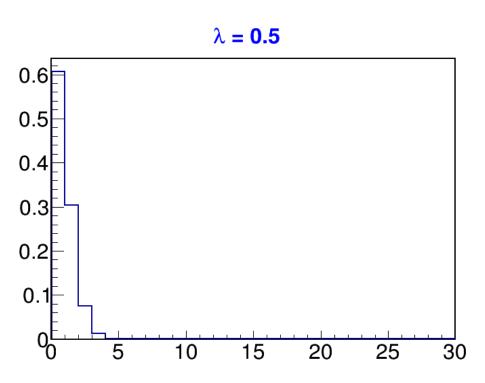
$$\Rightarrow$$
 p ~ 10⁻⁶ \ll 1 (p_{H→w} ~ 10⁻¹³)

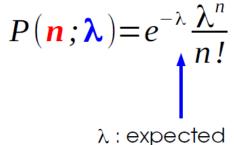
A day of data: $N \sim 10^{14} \gg 1$

⇒ Poisson regime!

(Large N = design requirement, to get not-too-small λ =Np...)







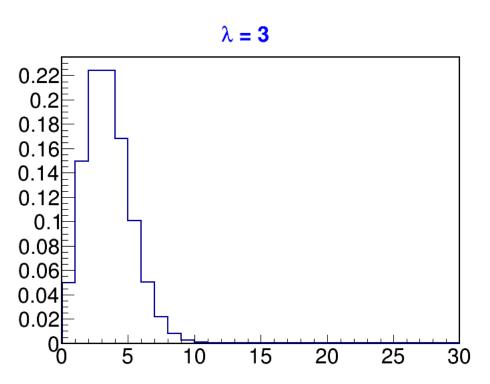
number of events

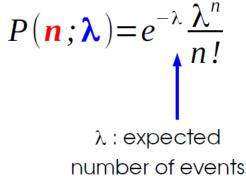
Mean =
$$\lambda$$

Variance = λ
 $\sigma = \sqrt{\lambda}$

- Discrete distribution (positive integers only), asymmetric for small λ
- Typical variation (RMS) of n events is √n
- Central limit theorem : becomes Gaussian for large λ :

$$P(\lambda) \stackrel{\lambda \to \infty}{\to} G(\lambda, \sqrt{\lambda})$$



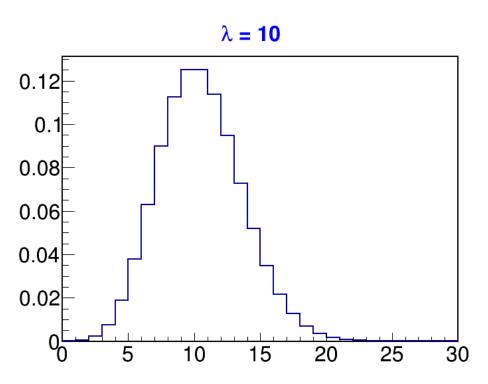


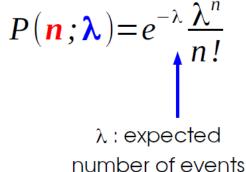
Mean =
$$\lambda$$

Variance = λ
 $\sigma = \sqrt{\lambda}$

- Discrete distribution (positive integers only), asymmetric for small λ
- Typical variation (RMS) of n events is √n
- Central limit theorem : becomes Gaussian for large λ :

$$P(\lambda) \stackrel{\lambda \to \infty}{\to} G(\lambda, \sqrt{\lambda})$$



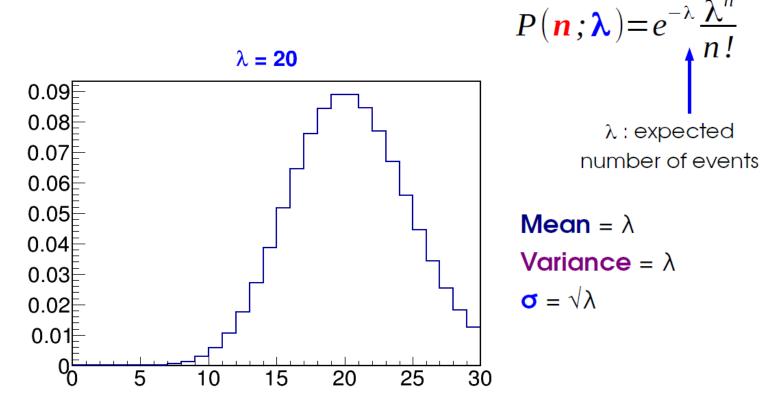


Mean =
$$\lambda$$

Variance = λ
 $\sigma = \sqrt{\lambda}$

- Discrete distribution (positive integers only), asymmetric for small λ
- Typical variation (RMS) of n events is √n
- Central limit theorem : becomes Gaussian for large λ :

$$P(\lambda) \stackrel{\lambda \to \infty}{\to} G(\lambda, \sqrt{\lambda})$$



- Discrete distribution (positive integers only), asymmetric for small λ
- Typical variation (RMS) of n events is √n
- Central limit theorem : becomes Gaussian for large λ :

$$P(\lambda) \stackrel{\lambda \to \infty}{\to} G(\lambda, \sqrt{\lambda})$$

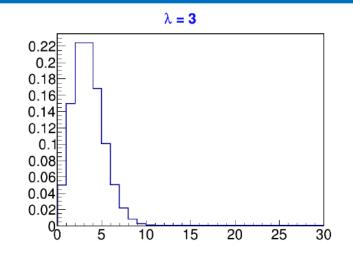
Statistical model for counting

Counting experiment:

Observable: number of events n

→ describe by a Poisson distribution

$$P(n;\lambda) = e^{-\lambda} \frac{\lambda^n}{n!}$$



Typically both signal and background expected:

$$P(n; S, B) = e^{-(S+B)} \frac{(S+B)^n}{n!}$$
 S: # of events from signal process
B: # of events from bkg. process(exercises)

B: # of events from bkg. process(es)

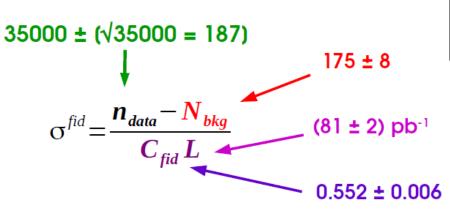
We have **assumed** a Poisson distribution for n: This is our model, based on physics knowledge (but usually a very safe one).

Model has **parameters S** and **B**. B can be known a priori or not (S usually not...)

→ Example: can **assume B is known**, use the **measured n** to find out about the parameter S. usually up to uncertainties → systematics

Z->ee inclusive σ^{fid}

Measurement Principle:



Signal events	$34865 \pm 187 \pm 7 \pm 3$
Correction C	$0.552^{+0.006}_{-0.005}$
$\sigma^{ m fid}[m nb]$	$0.781 \pm 0.004 \pm 0.008 \pm 0.016$

Phys. Lett. B 759 (2016) 601

Simple uncertainty propagation:

 $\sigma^{\text{fid}} = 0.781 \pm 0.004 \text{ (stat)} \pm 0.008 \text{ (syst)} \pm 0.016 \text{ (lumi) nb}$ Statistical uncertainty:
Systematics: more on this in Lecture 3 that n_{data} is ~ Poisson(S+B)

Unbinned shape analysis

Observable: set of values m₁... m_n, one per event

- → Describe shape of the *distribution of m*
- \rightarrow Deduce the **probability to observe m**₁... m_n

$H \rightarrow \gamma \gamma$ -inspired example:

- Gaussian signal $P_{\text{sig}}(m) = G(m; m_H, \sigma)$
- Exponential bkg $P_{bk\sigma}(m) = \alpha e^{-\alpha m}$
- ⇒ Total PDF for a single event:

$$P_{\text{total}}(m) = \frac{S}{S+B}G(m; m_H, \sigma) + \frac{B}{S+B}\alpha e^{-\alpha m}$$

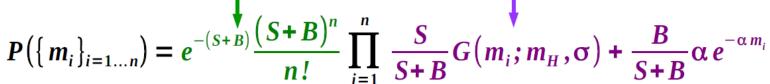
⇒ Total PDF for a dataset

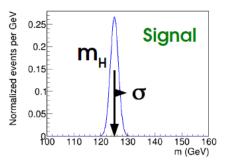
Probability to observe

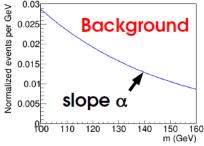
the value m,

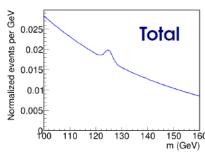
Expected yields: S, B

Probability to observe n events

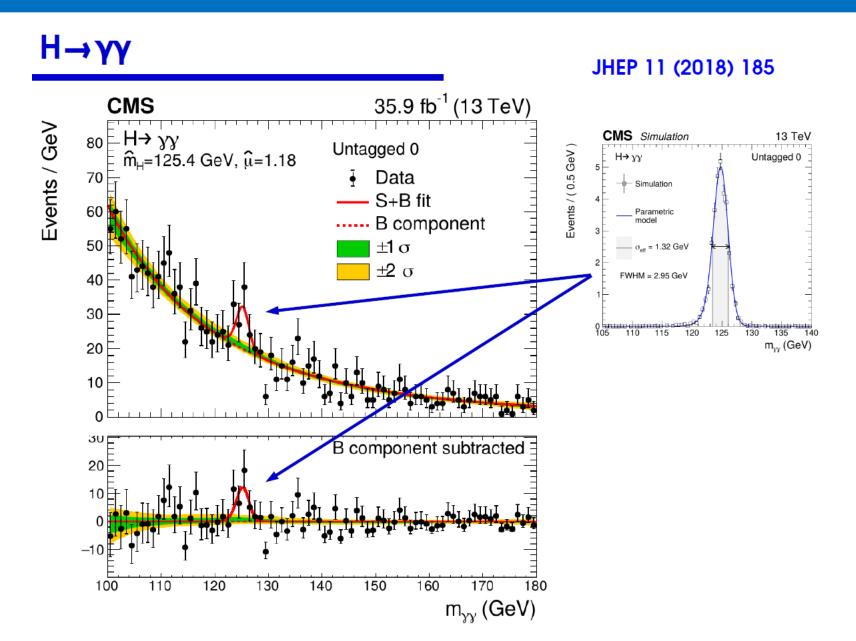








Unbinned shape analysis



Binned shape analysis

Instead of using $m_1...m_n$ directly, can build a *histogram* $n_1...n_N$.

 $P(\{n_i\};S,B) = \prod_{i=1}^{N_{bins}} e^{-(Sf_{S,i}+Bf_{B,i})} \frac{(Sf_{S,i}+Bf_{B,i})^{n_i}}{n_i!}$ $P(\{s_{S,i}+Bf_{B,i})^{n_i}$ $P(\{s_$

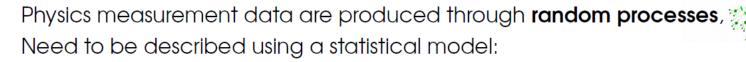
N_{bins}=1: Counting analysis

 $N_{bins} \rightarrow \infty$: Unbinned shape analysis (the fractions become PDF values)

Shapes specified through $f_{s,i}$, $f_{B,i}$ rather than $P_{signal}(m)$, $P_{bkg}(m)$

- Obtained directly from MC, no need to define continuous PDFs.
- → MC stat fluctuations can create artefacts, especially for S≪B.

How to describe data



Description	Observable	Likelihood
Counting	n	Poisson $P(n; S, B) = e^{-(S+B)} \frac{(S+B)^n}{n!}$
Binned shape analysis	n _i , i=1N _{bins}	Poisson product $P(\mathbf{n_i}; \mathbf{S}, \mathbf{B}) = \prod_{i=1}^{N_{\text{bins}}} e^{-(\mathbf{S} f_i^{\text{sig}} + \mathbf{B} f_i^{\text{bkg}})} \frac{(\mathbf{S} f_i^{\text{sig}} + \mathbf{B} f_i^{\text{bkg}})^{\mathbf{n_i}}}{\mathbf{n_i}!}$
Unbinned shape analysis	m _i , i=1n _{evts}	Extended Unbinned Likelihood $P(\mathbf{m_i}; \mathbf{S}, \mathbf{B}) = \frac{e^{-(\mathbf{S} + \mathbf{B})}}{\mathbf{n_{evts}}!} \prod_{i=1}^{\mathbf{n_{evts}}} \mathbf{S} P_{sig}(\mathbf{m_i}) + \mathbf{B} P_{bkg}(\mathbf{m_i})$

Model can include multiple categories, each with a separate description