Elementary Particle Physics: theory and experiments

Interaction by Particle Exchange and QED

Follow the course/slides from M. A. Thomson lectures at Cambridge University

Recap

★ Working towards a proper calculation of decay and scattering processes

Initially concentrate on: e

•
$$e^+e^- \rightarrow \mu^+\mu^-$$

$$\bullet e^- q \rightarrow e^- q$$

covered the <u>relativistic</u> calculation of particle decay rates and cross sections

$$\sigma \propto \frac{|M|^2}{flux} \times \text{(phase space)}$$

covered <u>relativistic</u> treatment of spin-half particles

Dirac Equation

- **★ concentrate on the Lorentz Invariant Matrix Element**
 - Interaction by particle exchange
 - Introduction to Feynman diagrams
 - The Feynman rules for QED

Interaction by Particle Exchange

Calculate transition rates from Fermi's Golden Rule

$$\Gamma_{fi} = 2\pi |T_{fi}|^2 \rho(E_f)$$

where $T_{fi}\,$ is perturbation expansion for the Transition Matrix Element

$$T_{fi} = \langle f|V|i\rangle + \sum_{j\neq i} \frac{\langle f|V|j\rangle\langle j|V|i\rangle}{E_i - E_j} + \dots$$

• For particle scattering, the first two terms in the perturbation series can be viewed as:

"scattering in a potential"

"scattering via an intermediate state"

- "Classical picture" particles act as sources for fields which give rise a potential in which other particles scatter – "action at a distance"
- "Quantum Field Theory picture" forces arise due to the exchange of virtual particles. No action at a distance + forces between particles now due to particles

- •Consider the particle interaction $a+b \rightarrow c+d$ which occurs via an intermediate state corresponding to the exchange of particle x
- One possible space-time picture of this process is:

Initial state i: a+bFinal state f: c+dIntermediate state j: c+b+x

- This time-ordered diagram corresponds to a "emitting" x and then b absorbing x
- The corresponding term in the perturbation expansion is:

$$T_{fi} = \frac{\langle f|V|j\rangle\langle j|V|i\rangle}{E_i - E_j}$$

$$T_{fi}^{ab} = \frac{\langle d|V|x + b\rangle\langle c + x|V|a\rangle}{(E_a + E_b) - (E_c + E_x + E_b)}$$

ullet T_{fi}^{ab} refers to the time-ordering where a emits x before b absorbs it

•Need an expression for $\langle c+x|V|a \rangle$ in non-invariant matrix element T_{fi}

- Ultimately aiming to obtain Lorentz Invariant ME
- •Recall T_{fi} is related to the invariant matrix element by

$$T_{fi} = \prod (2E_k)^{-1/2} M_{fi}$$

where k runs over all particles in the matrix element

Here we have

$$\langle c+x|V|a\rangle = \frac{M_{(a\to c+x)}}{(2E_a 2E_c 2E_x)^{1/2}}$$

 $M_{(a \rightarrow c + x)}$ is the "Lorentz Invariant" matrix element for $a \rightarrow c + x$

★The simplest Lorentz Invariant quantity is a scalar, in this case

$$\langle c + x | V | a \rangle = \frac{g_a}{(2E_a 2E_c 2E_x)^{1/2}}$$

 g_a is a measure of the strength of the interaction $a \rightarrow c + x$

Note: the matrix element is only LI in the sense that it is defined in terms of LI wave-function normalisations and that the form of the coupling is LI Note: in this "illustrative" example g is not dimensionless.

Similarly
$$\langle d|V|x+b\rangle=\frac{g_b}{(2E_b2E_d2E_x)^{1/2}}$$

Giving $T_{fi}^{ab}=\frac{\langle d|V|x+b\rangle\langle c+x|V|a\rangle}{(E_a+E_b)-(E_c+E_x+E_b)}$

$$=\frac{1}{2E_x}\cdot\frac{1}{(2E_a2E_b2E_c2E_d)^{1/2}}\cdot\frac{g_ag_b}{(E_a-E_c-E_x)}$$

★The "Lorentz Invariant" matrix element for the entire process is

$$M_{fi}^{ab} = (2E_a 2E_b 2E_c 2E_d)^{1/2} T_{fi}^{ab}$$

$$= \frac{1}{2E_x} \cdot \frac{g_a g_b}{(E_a - E_c - E_x)}$$

Note:

- M_{fi}^{ab} refers to the time-ordering where a emits x before b absorbs it It is <u>not Lorentz invariant</u>, order of events in time depends on frame
- Momentum is conserved at each interaction vertex but not energy $E_i \neq E_i$
- Particle x is "on-mass shell" i.e. $E_x^2 = \vec{p}_x^2 + m^2$

★But need to consider also the other time ordering for the process

- This time-ordered diagram corresponds to ${\color{blue}b}$ "emitting" \widetilde{x} and then a absorbing \widetilde{x}
- \tilde{x} is the anti-particle of x e.g.

• The Lorentz invariant matrix element for this time ordering is:

$$M_{fi}^{ba} = \frac{1}{2E_x} \cdot \frac{g_a g_b}{(E_b - E_d - E_x)}$$

★In QM need to sum over matrix elements corresponding to same final state: $M_{fi} = M_{fi}^{ab} + M_{fi}^{ba}$

$$= \frac{g_a g_b}{2E_x} \cdot \left(\frac{1}{E_a - E_c - E_x} + \frac{1}{E_b - E_d - E_x}\right)$$

$$= \frac{g_a g_b}{2E_x} \cdot \left(\frac{1}{E_a - E_c - E_x} - \frac{1}{E_a - E_c + E_x}\right) \qquad \text{Energy conservation:}$$

$$(E_a + E_b = E_c + E_d)$$

7

•Which gives
$$M_{fi}=rac{g_ag_b}{2E_x}\cdotrac{2E_x}{(E_a-E_c)^2-E_x^2} = rac{g_ag_b}{(E_a-E_c)^2-E_x^2}$$

•From 1st time ordering
$$E_x^2=\vec{p}_x^2+m_x^2=(\vec{p}_a-\vec{p}_c)^2+m_x^2$$

giving
$$M_{fi} = \frac{g_a g_b}{(E_a - E_c)^2 - (\vec{p}_a - \vec{p}_c)^2 - m_x^2}$$

$$= \frac{g_a g_b}{(p_a - p_c)^2 - m_x^2}$$

$$\longrightarrow M_{fi} = \frac{g_a g_b}{q^2 - m_x^2}$$

- After summing over all possible time orderings, M_{fi} is (as anticipated) Lorentz invariant. This is a remarkable result - the sum over all time orderings gives a frame independent matrix element.
- Exactly the same result would have been obtained by considering the annihilation process

Feynman diagrams

 The sum over all possible time-orderings is represented by a FEYNMAN diagram

- It is important to remember that energy and momentum are conserved at each interaction vertex in the diagram.
- The factor $1/(q^2-m_\chi^2)$ is the propagator; it arises naturally from the above discussion of interaction by particle exchange

★ The matrix element:
$$M_{fi} = \frac{g_a g_b}{q^2 - m_x^2}$$
 depends on:

- **The fundamental strength of the interaction at the two vertices** g_a , g_b
- \bullet The four-momentum, q, carried by the (virtual) particle which is determined from energy/momentum conservation at the vertices. Note q^2 can be either positive or negative.

Here
$$q = p_1 - p_3 = p_4 - p_2 = t$$

$$q^2 = (E - E)^2 - (\vec{p}_1 - \vec{p}_3)^2$$

$$q^2 < 0$$

Here
$$q = p_1 + p_2 = p_3 + p_4 = s$$

"s-channel"

$$q^2 = (E+E)^2 - (\vec{p} - \vec{p})^2 = 4E^2$$

$$q^2 > 0$$

 $q^2 > 0$ termed "time-like"

Virtual Particles

"Time-ordered QM"

- Momentum conserved at vertices
- Energy not conserved at vertices
- Exchanged particle "on mass shell"

$$E_x^2 - |\vec{p}_x|^2 = m_x^2$$

Feynman diagram

$$M_{fi} = \frac{g_a g_b}{q^2 - m_r^2}$$

- Momentum AND energy conserved at interaction vertices
- Exchanged particle "off mass shell"

$$E_x^2 - |\vec{p}_x|^2 = q^2 \neq m_x^2$$

VIRTUAL PARTICLE

•Can think of observable "on mass shell" particles as propagating waves and unobservable virtual particles as normal modes between the source particles:

Aside: V(r) from Particle Exchange

- **★**Can view the scattering of an electron by a proton at rest in two ways:
 - •Interaction by particle exchange in 2nd order perturbation theory.

$$M_{fi} = \frac{g_a g_b}{q^2 - m_x^2}$$

• Could also evaluate the same process in first order perturbation theory treating proton as a fixed source of a field which gives rise to a potential V(r)

$$M = \langle \psi_f | V(r) | \psi_i \rangle$$

Obtain same expression for M_{fi} using

$$V(r) = g_a g_b \frac{e^{-mr}}{r}$$

YUKAWA potential

- ★ In this way can relate potential and forces to the particle exchange picture
- **\star** However, scattering from a fixed potential V(r) is not a relativistic invariant view

Quantum Electrodynamics (QED)

★Now consider the interaction of an electron and tau lepton by the exchange of a photon. Although the general ideas we applied previously still hold, we now have to account for the spin of the electron/tau-lepton and also the spin (polarization) of the virtual photon.

 The basic interaction between a photon and a charged particle can be introduced by making the minimal substitution

$$ec{p}
ightarrow ec{p} - q ec{A}; \quad E
ightarrow E - q \phi$$
 $ec{p} = -i ec{
abla}; \quad E = i \partial / \partial t$

(here q =charge)

Therefore make substitution: $i\partial_{\mu} \rightarrow i\partial_{\mu} - qA_{\mu}$ where $A_{\mu} = (\phi, -\vec{A}); \quad \partial_{\mu} = (\partial/\partial t, +\vec{\nabla})$

• The Dirac equation:

In QM:

$$\gamma^{\mu}\partial_{\mu}\psi + im\psi = 0 \implies \gamma^{\mu}\partial_{\mu}\psi + iq\gamma^{\mu}A_{\mu}\psi + im\psi = 0$$

$$(\times i) \implies i\gamma^{0}\frac{\partial\psi}{\partial t} + i\vec{\gamma}.\vec{\nabla}\psi - q\gamma^{\mu}A_{\mu}\psi - m\psi = 0$$

$$i\gamma^0 \frac{\partial \psi}{\partial t} = \gamma^0 \hat{H} \psi = m\psi - i\vec{\gamma}.\vec{\nabla}\psi + q\gamma^\mu A_\mu \psi$$

$$\times \gamma^0: \qquad \hat{H} \psi = (\gamma^0 m - i\gamma^0 \vec{\gamma}.\vec{\nabla}) \psi + q\gamma^0 \gamma^\mu A_\mu \psi$$
Combined rest Potential mass + K.E. energy

 We can identify the potential energy of a charged spin-half particle in an electromagnetic field as:

$$\hat{V}_D = q \gamma^0 \gamma^\mu A_\mu$$
 (note the A_0 term is just: $q \gamma^0 \gamma^0 A_0 = q \phi$)

 The final complication is that we have to account for the photon polarization states. $A_{\mu} = \varepsilon_{\mu}^{(\lambda)} e^{i(\vec{p}.\vec{r}-Et)}$

e.g. for a real photon propagating in the z direction we have two orthogonal transverse polarization states

$$m{arepsilon}^{(1)} = egin{pmatrix} 0 \ 1 \ 0 \ 0 \end{pmatrix}$$
 $m{arepsilon}^{(2)} = egin{pmatrix} 0 \ 0 \ 1 \ 0 \end{pmatrix}$ Could equally have chosen circularly polarized states

Previously with the example of a simple spin-less interaction we had:

★In QED we could again go through the procedure of summing the time-orderings using Dirac spinors and the expression for \hat{V}_D . If we were to do this, remembering to sum over all photon polarizations, we would obtain:

$$M = \left[u_e^{\dagger}(p_3) q_e \gamma^0 \gamma^{\mu} u_e(p_1) \right] \sum_{\lambda} \frac{\varepsilon_{\mu}^{\lambda} (\varepsilon_{\nu}^{\lambda})^*}{q^2} \left[u_{\tau}^{\dagger}(p_4) q_{\tau} \gamma^0 \gamma^{\nu} u_{\tau}(p_2) \right]$$

Interaction of *e*⁻ with photon

Massless photon propagator summing over polarizations

Interaction of $\bar{\tau}$ with photon

All the physics of QED is in the above expression!

• The sum over the polarizations of the VIRTUAL photon has to include longitudinal and scalar contributions, i.e. 4 polarisation states

$$\boldsymbol{\varepsilon}^{(0)} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad \boldsymbol{\varepsilon}^{(1)} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad \boldsymbol{\varepsilon}^{(2)} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad \boldsymbol{\varepsilon}^{(3)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

and gives:

$$\sum_{\lambda} \varepsilon_{\mu}^{\lambda} (\varepsilon_{\nu}^{\lambda})^{*} = -g_{\mu\nu}$$

 $\sum_{\lambda} arepsilon_{\mu}^{\lambda} (arepsilon_{
u}^{\lambda})^{*} = -g_{\mu
u} \qquad \left\{ egin{array}{l} ext{This is not obvious - for the moment just take it on trust} \end{array}
ight.$

and the invariant matrix element becomes:

$$M = \left[u_e^{\dagger}(p_3) q_e \gamma^0 \gamma^{\mu} u_e(p_1) \right] \frac{-g_{\mu\nu}}{q^2} \left[u_{\tau}^{\dagger}(p_4) q_{\tau} \gamma^0 \gamma^{\nu} u_{\tau}(p_2) \right]$$

•Using the definition of the adjoint spinor $\overline{\psi} = \psi^\dagger \gamma^0$

$$M = \left[\overline{u}_e(p_3)q_e\gamma^{\mu}u_e(p_1)\right] \frac{-g_{\mu\nu}}{q^2} \left[\overline{u}_{\tau}(p_4)q_{\tau}\gamma^{\nu}u_{\tau}(p_2)\right]$$

★ This is a remarkably simple expression! It is shown in Appendix V of Lecture 2 that $\overline{u}_1 \gamma^{\mu} u_2$ transforms as a four vector. Writing

$$j_e^\mu = \overline{u}_e(p_3) \gamma^\mu u_e(p_1)$$
 $j_\tau^\nu = \overline{u}_\tau(p_4) \gamma^\nu u_\tau(p_2)$ $M = -q_e q_\tau rac{j_e \cdot j_ au}{q^2}$ showing that M is Lorentz Invariant

Feynman rules for QED

It should be remembered that the expression

$$M = \left[\overline{u}_e(p_3)q_e\gamma^{\mu}u_e(p_1)\right] \frac{-g_{\mu\nu}}{q^2} \left[\overline{u}_{\tau}(p_4)q_{\tau}\gamma^{\nu}u_{\tau}(p_2)\right]$$

hides a lot of complexity. We have summed over all possible timeorderings and summed over all polarization states of the virtual photon. If we are then presented with a new Feynman diagram we don't want to go through the full calculation again. Fortunately this isn't necessary – can just write down matrix element using a set of simple rules

Basic Feynman Rules:

- Propagator factor for each internal line (i.e. each internal virtual particle)
- Dirac Spinor for each external line (i.e. each real incoming or outgoing particle)
- Vertex factor for each vertex

Basic rules for QED

External Lines

spin 1/2
$$\begin{cases} &\text{incoming particle} & u(p) \\ &\text{outgoing particle} & \overline{u}(p) \\ &\text{incoming antiparticle} & \overline{v}(p) \\ &\text{outgoing antiparticle} & v(p) \end{cases}$$

$$\text{spin 1} \qquad \begin{cases} &\text{incoming photon} & \varepsilon^{\mu}(p) \\ &\text{outgoing photon} & \varepsilon^{\mu}(p)^* \end{cases}$$

$$\text{spin 1} \qquad \text{photon} \qquad \frac{ig_{\mu\nu}}{q^2} \qquad \frac{ig_{\mu\nu}}{q^2} \qquad \frac{v}{q^2}$$

$$\text{ertex Factors}$$

$$\text{spin 1/2} \qquad \text{fermion} \qquad \frac{i(\gamma^{\mu}q_{\mu}+m)}{q^2-m^2} \qquad \frac{i}{q^2-m^2}$$

Internal Lines (propagators)

- Vertex Factors

spin 1/2 fermion (charge
$$-|e|$$
)

• Matrix Element -iM = product of all factors

Which is the same expression as we obtained previously

e.g.
$$e^+$$
 p_2 p_4 μ^+ $-iM = [\overline{v}(p_2)ie\gamma^{\mu}u(p_1)]\frac{-ig_{\mu\nu}}{q^2}[\overline{u}(p_3)ie\gamma^{\nu}v(p_4)]$ $e^ p_1$ p_3 μ^-

Note:

- At each vertex the adjoint spinor is written first
- Each vertex has a different index
- The $g_{\mu\nu}$ of the propagator connects the indices at the vertices

Summary

★ Interaction by particle exchange naturally gives rise to Lorentz Invariant Matrix Element of the form

$$M_{fi} = \frac{g_a g_b}{q^2 - m_x^2}$$

★ Derived the basic interaction in QED taking into account the spins of the fermions and polarization of the virtual photons:

$$-iM = [\overline{u}(p_3)ie\gamma^{\mu}u(p_1)]\frac{-ig_{\mu\nu}}{q^2}[\overline{u}(p_4)ie\gamma^{\nu}u(p_2)]$$

★ We now have all the elements to perform proper calculations in QED!

Electron-positron annihilation

QED calculations

- How to calculate a cross section using QED (e.g. $e^+e^- \rightarrow \mu^+\mu^-$):
 - Draw all possible Feynman Diagrams
 - For e⁺e⁻ → μ⁺μ⁻ there is just one <u>lowest order</u> diagram

$$M \propto e^2 \propto \alpha_{em}$$

+ many second order diagrams + ...

- 2 For each diagram calculate the matrix element using Feynman rules
- 3 Sum the individual matrix elements (i.e. sum the amplitudes)

$$M_{fi} = M_1 + M_2 + M_3 + \dots$$

 Note: summing amplitudes therefore different diagrams for the same final state can interfere either positively or negatively!

and then square
$$|M_{fi}|^2=(M_1+M_2+M_3+....)(M_1^*+M_2^*+M_3^*+....)$$

- \Longrightarrow this gives the full perturbation expansion in $lpha_{em}$
- For QED $\alpha_{em} \sim 1/137$ the lowest order diagram dominates and for most purposes it is sufficient to neglect higher order diagrams.

- 4 Calculate decay rate/cross section using formulae
 - •e.g. for a decay $\Gamma = rac{p^*}{32\pi^2 m_a^2} \int |M_{fi}|^2 \mathrm{d}\Omega$
 - For scattering in the centre-of-mass frame

$$\frac{d\sigma}{d\Omega^*} = \frac{1}{64\pi^2 s} \frac{|\vec{p}_f^*|}{|\vec{p}_i^*|} |M_{fi}|^2$$
 (1)

For scattering in lab. frame (neglecting mass of scattered particle)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \left(\frac{E_3}{ME_1}\right)^2 |M_{fi}|^2$$

Electron Positron Annihilation

- **★**Consider the process: e⁺e⁻ → μ⁺μ⁻
 - Work in C.o.M. frame (this is appropriate for most e⁺e⁻ colliders).

$$p_1 = (E, 0, 0, p)$$
 $p_2 = (E, 0, 0, -p)$
 $p_3 = (E, \vec{p}_f)$ $p_4 = (E, -\vec{p}_f)$

Only consider the lowest order Feynman diagram:

$$-iM = \left[\overline{v}(p_2)ie\gamma^{\mu}u(p_1)\right] \frac{-ig_{\mu\nu}}{q^2} \left[\overline{u}(p_3)ie\gamma^{\nu}v(p_4)\right]$$

- Adjoint spinor written first

In the C.o.M. frame have

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} \frac{|\vec{p}_f|}{|\vec{p}_i|} |M_{fi}|^2$$
 with $s = (p_1 + p_2)^2 = (E + E)^2 = 4E^2$

Electron and Muon Currents

•Here $q^2=(p_1+p_2)^2=s$ and matrix element

$$-iM = \left[\overline{v}(p_2)ie\gamma^{\mu}u(p_1)\right] \frac{-ig_{\mu\nu}}{q^2} \left[\overline{u}(p_3)ie\gamma^{\nu}v(p_4)\right]$$

$$\longrightarrow M = -\frac{e^2}{s} g_{\mu\nu} \left[\overline{v}(p_2) \gamma^{\mu} u(p_1) \right] \left[\overline{u}(p_3) \gamma^{\nu} v(p_4) \right]$$

In Lecture 2 introduced the four-vector current

$$j^{\mu} = \overline{\psi} \gamma^{\mu} \psi$$

which has same form as the two terms in [] in the matrix element

The matrix element can be written in terms of the electron and muon currents

$$(j_e)^{\mu} = \overline{v}(p_2)\gamma^{\mu}u(p_1)$$
 and $(j_{\mu})^{\nu} = \overline{u}(p_3)\gamma^{\nu}v(p_4)$

$$\longrightarrow M = -\frac{e^2}{s}g_{\mu\nu}(j_e)^{\mu}(j_{\mu})^{\nu}$$

$$M = -\frac{e^2}{s}j_e.j_{\mu}$$

· Matrix element is a four-vector scalar product - confirming it is Lorentz Invariant

Spin in e⁺e⁻ Annihilation

- In general the electron and positron will not be polarized, i.e. there will be equal numbers of positive and negative helicity states
- There are four possible combinations of spins in the initial state!

- Similarly there are four possible helicity combinations in the final state
- In total there are 16 combinations e.g. RL→RR, RL→RL,
- To account for these states we need to sum over all 16 possible helicity combinations and then average over the number of initial helicity states:

$$\langle |M|^2 \rangle = \frac{1}{4} \sum_{\text{spins}} |M_i|^2 = \frac{1}{4} \left(|M_{LL \to LL}|^2 + |M_{LL \to LR}|^2 + \dots \right)$$

★ i.e. need to evaluate:

$$M = -\frac{e^2}{s} j_e . j_\mu$$

for all 16 helicity combinations!

 \star Fortunately, in the limit $E\gg m_\mu$ only 4 helicity combinations give non-zero matrix elements - we will see that this is an important feature of QED/QCD

•In the C.o.M. frame in the limit $E\gg m$

$$p_1 = (E, 0, 0, E); p_2 = (E, 0, 0, -E)$$

 $p_3 = (E, E \sin \theta, 0, E \cos \theta);$
 $p_4 = (E, -\sin \theta, 0, -E \cos \theta)$

Left- and right-handed helicity spinors (Lecture 2) for particles/anti-particles are:

$$u_{\uparrow} = N \begin{pmatrix} c \\ e^{i\phi} s \\ \frac{|\vec{p}|}{E + m} c \\ \frac{|\vec{p}|}{E + m} e^{i\phi} s \end{pmatrix} \quad u_{\downarrow} = N \begin{pmatrix} -s \\ e^{i\phi} c \\ \frac{|\vec{p}|}{E + m} s \\ -\frac{|\vec{p}|}{E + m} e^{i\phi} c \end{pmatrix} \quad v_{\uparrow} = N \begin{pmatrix} \frac{|\vec{p}|}{E + m} s \\ -\frac{|\vec{p}|}{E + m} e^{i\phi} c \\ -\frac{|\vec{p}|}{E + m} e^{i\phi} s \end{pmatrix} \quad v_{\downarrow} = N \begin{pmatrix} \frac{|\vec{p}|}{E + m} c \\ \frac{|\vec{p}|}{E + m} e^{i\phi} s \\ e^{i\phi} s \end{pmatrix}$$

where $s = \sin \frac{\theta}{2}$; $c = \cos \frac{\theta}{2}$ and $N = \sqrt{E + m}$

•In the limit $E \gg m$ these become:

$$u_{\uparrow} = \sqrt{E} \begin{pmatrix} c \\ se^{i\phi} \\ c \\ se^{i\phi} \end{pmatrix}; \ u_{\downarrow} = \sqrt{E} \begin{pmatrix} -s \\ ce^{i\phi} \\ s \\ -ce^{i\phi} \end{pmatrix}; \ v_{\uparrow} = \sqrt{E} \begin{pmatrix} s \\ -ce^{i\phi} \\ -s \\ ce^{i\phi} \end{pmatrix}; \ v_{\downarrow} = \sqrt{E} \begin{pmatrix} c \\ se^{i\phi} \\ c \\ se^{i\phi} \end{pmatrix}$$

The ir Lecture 2 electron can either be in a left- or right-handed helicity state

$$u_{\uparrow}(p_1) = \sqrt{E} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}; \ u_{\downarrow}(p_1) = \sqrt{E} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix};$$

•For the initial state positron $(heta=\pi)$ can have either:

$$v_{\uparrow}(p_2) = \sqrt{E} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}; \ v_{\downarrow}(p_2) = \sqrt{E} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

•Similarly for the final state μ^{-} which has polar angle $\, heta\,$ and choosing $\,\phi=0$

$$u_{\uparrow}(p_3) = \sqrt{E} \begin{pmatrix} c \\ s \\ c \\ s \end{pmatrix}; u_{\downarrow}(p_3) = \sqrt{E} \begin{pmatrix} -s \\ c \\ s \\ -c \end{pmatrix};$$

•And for the final state μ^{+} replacing $heta o \pi - heta; \quad \phi o \pi$

$$v_{\uparrow}(p_4) = \sqrt{E} \begin{pmatrix} c \\ s \\ -c \\ -s \end{pmatrix}; v_{\downarrow}(p_4) = \sqrt{E} \begin{pmatrix} s \\ -c \\ s \\ -c \end{pmatrix}; \begin{cases} \text{using} & \sin\left(\frac{\pi - \theta}{2}\right) = \cos\frac{\theta}{2} \\ \cos\left(\frac{\pi - \theta}{2}\right) = \sin\frac{\theta}{2} \end{cases}$$

obtain

$$\sin\left(\frac{\pi-\theta}{2}\right) = \cos\frac{\theta}{2}$$

$$\cos\left(\frac{\pi-\theta}{2}\right) = \sin\frac{\theta}{2}$$

$$e^{i\pi} = -1$$

- $M = -\frac{e^2}{a} j_e \cdot j_\mu$ •Wish to calculate the matrix element
- \star first consider the muon current J_{μ} for 4 possible helicity combinations

The muon current

- Want to evaluate $(j_{\mu})^{\nu} = \overline{u}(p_3) \gamma^{\nu} v(p_4)$ for all four helicity combinations
- •For arbitrary spinors ψ , ϕ with it is straightforward to show that the components of $\overline{\psi}\gamma^{\mu}\phi$ are

$$\overline{\psi}\gamma^{0}\phi = \psi^{\dagger}\gamma^{0}\gamma^{0}\phi = \psi_{1}^{*}\phi_{1} + \psi_{2}^{*}\phi_{2} + \psi_{3}^{*}\phi_{3} + \psi_{4}^{*}\phi_{4}$$
 (3)

$$\overline{\psi}\gamma^{1}\phi = \psi^{\dagger}\gamma^{0}\gamma^{1}\phi = \psi_{1}^{*}\phi_{4} + \psi_{2}^{*}\phi_{3} + \psi_{3}^{*}\phi_{2} + \psi_{4}^{*}\phi_{1}$$
 (4)

$$\overline{\psi}\gamma^2\phi = \psi^{\dagger}\gamma^0\gamma^2\phi = -i(\psi_1^*\phi_4 - \psi_2^*\phi_3 + \psi_3^*\phi_2 - \psi_4^*\phi_1)$$
 (5)

$$\overline{\psi}\gamma^{3}\phi = \psi^{\dagger}\gamma^{0}\gamma^{3}\phi = \psi_{1}^{*}\phi_{3} - \psi_{2}^{*}\phi_{4} + \psi_{3}^{*}\phi_{1} - \psi_{4}^{*}\phi_{2}$$
 (6)

•Consider the $\,\mu_R^-\mu_L^+$ combination using $\,\psi=u_{\uparrow}\,\,\,\phi=v_{\downarrow}$

with
$$v_{\downarrow} = \sqrt{E} \begin{pmatrix} s \\ -c \\ s \\ -c \end{pmatrix}$$
; $u_{\uparrow} = \sqrt{E} \begin{pmatrix} c \\ s \\ c \\ s \end{pmatrix}$;
 $\overline{u}_{\uparrow}(p_3) \gamma^0 v_{\downarrow}(p_4) = E(cs - sc + cs - sc) = 0$
 $\overline{u}_{\uparrow}(p_3) \gamma^1 v_{\downarrow}(p_4) = E(-c^2 + s^2 - c^2 + s^2) = 2E(s^2 - c^2) = -2E\cos\theta$
 $\overline{u}_{\uparrow}(p_3) \gamma^2 v_{\downarrow}(p_4) = -iE(-c^2 - s^2 - c^2 - s^2) = 2iE$
 $\overline{u}_{\uparrow}(p_3) \gamma^3 v_{\downarrow}(p_4) = E(cs + sc + cs + sc) = 4Esc = 2E\sin\theta$

Hence the four-vector muon current for the RL combination is

$$\overline{u}_{\uparrow}(p_3)\gamma^{\nu}v_{\downarrow}(p_4) = 2E(0, -\cos\theta, i, \sin\theta)$$

• The results for the 4 helicity combinations (obtained in the same manner) are:

$$\mu^{+} \qquad \mu^{-} \qquad \overline{u}_{\uparrow}(p_{3})\gamma^{\nu}v_{\downarrow}(p_{4}) = 2E(0, -\cos\theta, i, \sin\theta)
\overline{u}_{\uparrow}(p_{3})\gamma^{\nu}v_{\uparrow}(p_{4}) = (0, 0, 0, 0)
\overline{u}_{\downarrow}(p_{3})\gamma^{\nu}v_{\downarrow}(p_{4}) = (0, 0, 0, 0)
\overline{u}_{\downarrow}(p_{3})\gamma^{\nu}v_{\downarrow}(p_{4}) = 2E(0, -\cos\theta, -i, \sin\theta)
LR$$

- ***** IN THE LIMIT $E \gg m$ only two helicity combinations are non-zero!
- This is an important feature of QED. It applies equally to QCD.
- In the Weak interaction only one helicity combination contributes.
- The origin of this will be discussed in the last part of this lecture
- But as a consequence of the 16 possible helicity combinations only four given non-zero matrix elements

Electron Positron Annihilation cont.

★ For $e^+e^- \rightarrow \mu^+\mu^-$ now only have to consider the 4 matrix elements:

Previously we derived the muon currents for the allowed helicities:

$$\mu^{+} \qquad \mu^{-} \qquad \mu^{-} \qquad \mu^{-} \qquad \mu^{-} \qquad \mu^{+} \qquad \overline{u}_{\uparrow}(p_{3})\gamma^{\nu}v_{\downarrow}(p_{4}) = 2E(0, -\cos\theta, i, \sin\theta)$$

$$\mu^{-} \qquad \mu^{-} \qquad \overline{u}_{\downarrow}(p_{3})\gamma^{\nu}v_{\uparrow}(p_{4}) = 2E(0, -\cos\theta, -i, \sin\theta)$$

Now need to consider the electron current

The electron current

The incoming electron and positron spinors (L and R helicities) are:

$$u_{\uparrow} = \sqrt{E} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}; \ u_{\downarrow} = \sqrt{E} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}; \quad v_{\uparrow} = \sqrt{E} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}; \ v_{\downarrow} = \sqrt{E} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

• The electron current can either be obtained from equations (3)-(6) as before or it can be obtained directly from the expressions for the muon current.

$$(j_e)^{\mu} = \overline{v}(p_2)\gamma^{\mu}u(p_1) \qquad (j_{\mu})^{\mu} = \overline{u}(p_3)\gamma^{\mu}v(p_4)$$

Taking the Hermitian conjugate of the muon current gives

$$\begin{aligned} [\overline{u}(p_3)\gamma^{\mu}v(p_4)]^{\dagger} &= \left[u(p_3)^{\dagger}\gamma^{0}\gamma^{\mu}v(p_4)\right]^{\dagger} \\ &= v(p_4)^{\dagger}\gamma^{\mu\dagger}\gamma^{0\dagger}u(p_3) & (AB)^{\dagger} = B^{\dagger}A^{\dagger} \\ &= v(p_4)^{\dagger}\gamma^{\mu\dagger}\gamma^{0}u(p_3) & \gamma^{0\dagger} = \gamma^{0} \\ &= v(p_4)^{\dagger}\gamma^{0}\gamma^{\mu}u(p_3) & \gamma^{\mu\dagger}\gamma^{0} = \gamma^{0}\gamma^{\mu} \\ &= \overline{v}(p_4)\gamma^{\mu}u(p_3) & \gamma^{\mu\dagger}\gamma^{0} = \gamma^{0}\gamma^{\mu} \end{aligned}$$

 Taking the complex conjugate of the muon currents for the two non-zero helicity configurations:

$$\overline{\nu}_{\downarrow}(p_4)\gamma^{\mu}u_{\uparrow}(p_3) = \left[\overline{u}_{\uparrow}(p_3)\gamma^{\nu}\nu_{\downarrow}(p_4)\right]^* = 2E(0, -\cos\theta, -i, \sin\theta)
\overline{\nu}_{\uparrow}(p_4)\gamma^{\mu}u_{\downarrow}(p_3) = \left[\overline{u}_{\downarrow}(p_3)\gamma^{\nu}\nu_{\uparrow}(p_4)\right]^* = 2E(0, -\cos\theta, i, \sin\theta)$$

To obtain the electron currents we simply need to set $\theta = 0$

Matrix element calculation

•We can now calculate $M=-rac{e^2}{s}j_e.j_\mu$ for the four possible helicity combinations.

<u>e.g.</u> the matrix element for $e_R^- e_L^+ o \mu_R^- \mu_L^+$ which will denote M_{RR}

Here the first subscript refers to the helicity of the e⁻ and the second to the helicity of the μ⁻. Don't need to specify other helicities due to "helicity conservation", only certain chiral combinations are non-zero.

*Using:
$$e_R^- e_L^+$$
: $(j_e)^\mu = \overline{v}_\downarrow(p_2) \gamma^\mu u_\uparrow(p_1) = 2E(0, -1, -i, 0)$
 $\mu_R^- \mu_L^+$: $(j_\mu)^\nu = \overline{u}_\uparrow(p_3) \gamma^\nu v_\downarrow(p_4) = 2E(0, -\cos\theta, i, \sin\theta)$
gives $M_{RR} = -\frac{e^2}{s} \left[2E(0, -1, -i, 0) \right] \cdot \left[2E(0, -\cos\theta, i, \sin\theta) \right]$
 $= -e^2(1 + \cos\theta)$
 $= -4\pi\alpha(1 + \cos\theta)$ where $\alpha = e^2/4\pi \approx 1/137$

Similarly
$$|M_{RR}|^2 = |M_{LL}|^2 = (4\pi\alpha)^2 (1 + \cos\theta)^2$$

 $|M_{RL}|^2 = |M_{LR}|^2 = (4\pi\alpha)^2 (1 - \cos\theta)^2$

Assuming that the incoming electrons and positrons are unpolarized, all 4
possible initial helicity states are equally likely.

Differential cross-section

The cross section is obtained by averaging over the initial spin states

and summing over the final spin states:

$$\frac{d\sigma}{d\Omega} = \frac{1}{4} \times \frac{1}{64\pi^2 s} (|M_{RR}|^2 + |M_{RL}|^2 + |M_{LR}|^2 + |M_{LL}|^2)$$
$$= \frac{(4\pi\alpha)^2}{256\pi^2 s} (2(1+\cos\theta)^2 + 2(1-\cos\theta)^2)$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{4s}(1+\cos^2\theta)$$

Example:

$$e^+e^- \rightarrow \mu^+\mu^-$$

 $\sqrt{s} = 29 \text{ GeV}$

---- pure QED, O(α³)

—— QED plus Z contribution

Angular distribution becomes slightly asymmetric in higher order QED or when Z contribution is included • The total cross section is obtained by integrating over $oldsymbol{ heta},\; \phi$ using

$$\int (1 + \cos^2 \theta) d\Omega = 2\pi \int_{-1}^{+1} (1 + \cos^2 \theta) d\cos \theta = \frac{16\pi}{3}$$

giving the QED total cross-section for the process $e^+e^- \rightarrow \mu^+\mu^-$

$$\sigma = \frac{4\pi\alpha^2}{3s}$$

★ Lowest order cross section calculation provides a good description of the data!

This is an impressive result. From first principles we have arrived at an expression for the electron-positron annihilation cross section which is good to 1%

Lorentz Invariant form of Matrix Element

 Before concluding this discussion, note that the spin-averaged Matrix Element derived above is written in terms of the muon angle in the C.o.M. frame.

$$\langle |M_{fi}|^{2} \rangle = \frac{1}{4} \times (|M_{RR}|^{2} + |M_{RL}|^{2} + |M_{LR}|^{2} + |M_{LL}|)$$

$$= \frac{1}{4} e^{4} (2(1 + \cos\theta)^{2} + 2(1 - \cos\theta)^{2})$$

$$= e^{4} (1 + \cos^{2}\theta)$$

$$= e^{4} (1 + \cos^{2}\theta)$$

- •The matrix element is Lorentz Invariant (scalar product of 4-vector currents) and it is desirable to write it in a frame-independent form, i.e. express in terms of Lorentz Invariant 4-vector scalar products
- •In the C.o.M. $p_1=(E,0,0,E)$ $p_2=(E,0,0,-E)$ $p_3=(E,E\sin\theta,0,E\cos\theta)$ $p_4=(E,-E\sin\theta,0,-E\cos\theta)$ giving: $p_1.p_2=2E^2;$ $p_1.p_3=E^2(1-\cos\theta);$ $p_1.p_4=E^2(1+\cos\theta)$
- Hence we can write

$$\langle |M_{fi}|^2 \rangle = 2e^4 \frac{(p_1.p_3)^2 + (p_1.p_4)^2}{(p_1.p_2)^2}$$

★Valid in any frame!

$$\equiv 2e^4 \left(\frac{t^2 + u^2}{s^2}\right)$$

Chirality

• The helicity eigenstates for a particle/anti-particle for $E\gg m$ are:

$$u_{\uparrow} = \sqrt{E} \begin{pmatrix} c \\ se^{i\phi} \\ c \\ se^{i\phi} \end{pmatrix}; \ u_{\downarrow} = \sqrt{E} \begin{pmatrix} -s \\ ce^{i\phi} \\ s \\ -ce^{i\phi} \end{pmatrix}; \ v_{\uparrow} = \sqrt{E} \begin{pmatrix} s \\ -ce^{i\phi} \\ -s \\ ce^{i\phi} \end{pmatrix}; \ v_{\downarrow} = \sqrt{E} \begin{pmatrix} c \\ se^{i\phi} \\ c \\ se^{i\phi} \end{pmatrix}$$
where $s = \sin \frac{\theta}{2}; \ c = \cos \frac{\theta}{2}$

Define the matrix

$$\gamma^5 \equiv i\gamma^0 \gamma^1 \gamma^2 \gamma^3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

•In the limit $E\gg m$ the helicity states are also eigenstates of γ^5

$$\gamma^5 u_{\uparrow} = +u_{\uparrow}; \quad \gamma^5 u_{\downarrow} = -u_{\downarrow}; \quad \gamma^5 v_{\uparrow} = -v_{\uparrow}; \quad \gamma^5 v_{\downarrow} = +v_{\downarrow}$$

* In general, define the eigenstates of γ^5 as LEFT and RIGHT HANDED CHIRAL states $u_R; u_L; v_R; v_L$

i.e.
$$\gamma^5 u_R = +u_R$$
; $\gamma^5 u_L = -u_L$; $\gamma^5 v_R = -v_R$; $\gamma^5 v_L = +v_L$

•In the LIMIT $E\gg m$ (and ONLY IN THIS LIMIT):

$$u_R \equiv u_{\uparrow}; \quad u_L \equiv u_{\downarrow}; \quad v_R \equiv v_{\uparrow}; \quad v_L \equiv v_{\downarrow}$$

- **★**This is a subtle but important point: in general the **HELICITY** and **CHIRAL** eigenstates are not the same. It is only in the ultra-relativistic limit that the chiral eigenstates correspond to the helicity eigenstates.
- ★Chirality is an import concept in the structure of QED, and any interaction of the form $\overline{u}\gamma^{\nu}u$
- In general, the eigenstates of the chirality operator are:

$$\gamma^5 u_R = +u_R; \quad \gamma^5 u_L = -u_L; \quad \gamma^5 v_R = -v_R; \quad \gamma^5 v_L = +v_L$$

Define the projection operators:

$$P_R = \frac{1}{2}(1+\gamma^5); \qquad P_L = \frac{1}{2}(1-\gamma^5)$$

The projection operators, project out the chiral eigenstates

$$P_R u_R = u_R;$$
 $P_R u_L = 0;$ $P_L u_R = 0;$ $P_L u_L = u_L$
 $P_R v_R = 0;$ $P_R v_L = v_L;$ $P_L v_R = v_R;$ $P_L v_L = 0$

- •Note P_R projects out right-handed particle states and left-handed anti-particle states
- We can then write any spinor in terms of it left and right-handed chiral components:

$$\psi = \psi_R + \psi_L = \frac{1}{2}(1 + \gamma^5)\psi + \frac{1}{2}(1 - \gamma^5)\psi$$

Chirality in QED

•In QED the basic interaction between a fermion and photon is:

$$ie\overline{\psi}\gamma^{\mu}\phi$$

Can decompose the spinors in terms of Left and Right-handed chiral components:

$$ie\overline{\psi}\gamma^{\mu}\phi = ie(\overline{\psi}_{L} + \overline{\psi}_{R})\gamma^{\mu}(\phi_{R} + \phi_{L})$$

$$= ie(\overline{\psi}_{R}\gamma^{\mu}\phi_{R} + \overline{\psi}_{R}\gamma^{\mu}\phi_{L} + \overline{\psi}_{L}\gamma^{\mu}\phi_{R} + \overline{\psi}_{L}\gamma^{\mu}\phi_{L})$$

• Using the properties of γ^5

$$(\gamma^5)^2 = 1; \quad \gamma^{5\dagger} = \gamma^5; \quad \gamma^5 \gamma^\mu = -\gamma^\mu \gamma^5$$

it is straightforward to show

$$\overline{\psi}_R \gamma^\mu \phi_L = 0; \quad \overline{\psi}_L \gamma^\mu \phi_R = 0$$

- ★ Hence only certain combinations of <u>chiral</u> eigenstates contribute to the interaction. This statement is ALWAYS true.
- •For $E\gg m$, the chiral and helicity eigenstates are equivalent. This implies that for $E\gg m$ only certain helicity combinations contribute to the QED vertex! This is why previously we found that for two of the four helicity combinations for the muon current were zero

Allowed QED Helicity Combinations

- In the ultra-relativistic limit the helicity eigenstates ≡ chiral eigenstates
- In this limit, the only non-zero helicity combinations in QED are:

Summary

★ In the centre-of-mass frame the e⁺e⁻ → µ⁺µ⁻ differential cross-section is

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{4s}(1+\cos^2\theta)$$

NOTE: neglected masses of the muons, i.e. assumed $E\gg m_{\mu}$

- ★ In QED only certain combinations of LEFT- and RIGHT-HANDED CHIRAL states give non-zero matrix elements
- **★ CHIRAL** states defined by chiral projection operators

$$P_R = \frac{1}{2}(1+\gamma^5); \qquad P_L = \frac{1}{2}(1-\gamma^5)$$

***** In limit $E\gg m$ the chiral eigenstates correspond to the HELICITY eigenstates and only certain HELICITY combinations give non-zero matrix elements

Appendix: Spin 1 Rotation Matrices

 Consider the spin-1 state with spin +1 along the axis defined by unit vector

$$\vec{n} = (\sin \theta, 0, \cos \theta)$$

•Spin state is an eigenstate of $\vec{n}.\vec{S}$ with eigenvalue +1

$$(\vec{n}.\vec{S})|\psi\rangle = +1|\psi\rangle$$

(A1)

• Express in terms of linear combination of spin 1 states which are eigenstates of S_{z}

$$|\psi\rangle = \alpha|1,1\rangle + \beta|1,0\rangle + \gamma|1,-1\rangle$$

 $\alpha^2 + \beta^2 + \gamma^2 = 1$

• (A1) becomes

with

$$(\sin\theta S_x + \cos\theta S_z)(\alpha|1,1) + \beta|1,0) + \gamma|1,-1\rangle) = \alpha|1,1\rangle + \beta|1,0\rangle\gamma|1,-1\rangle \quad (A2)$$

• Write S_x in terms of ladder operators $S_x = \frac{1}{2}(S_+ + S_-)$

where
$$S_{+}|1,1\rangle=0$$
 $S_{+}|1,0\rangle=\sqrt{2}|1,1\rangle$ $S_{+}|1,-1\rangle=\sqrt{2}|1,0\rangle$ $S_{-}|1,1\rangle=\sqrt{2}|1,0\rangle$ $S_{-}|1,0\rangle=\sqrt{2}|1,-1\rangle$ $S_{-}|1,-1\rangle=0$

$$S_x|1,1\rangle = \frac{1}{\sqrt{2}}|1,0\rangle$$

 $S_x|1,0\rangle = \frac{1}{\sqrt{2}}(|1,1\rangle + |1,-1\rangle)$
 $S_x|1,-1\rangle = \frac{1}{\sqrt{2}}|1,0\rangle$

• (A2) becomes

$$\sin\theta \left[\frac{\alpha}{\sqrt{2}} |1,0\rangle + \frac{\beta}{\sqrt{2}} |1,-1\rangle + \frac{\beta}{\sqrt{2}} |1,1\rangle + \frac{\gamma}{\sqrt{2}} |1,0\rangle \right] + \alpha\cos\theta |1,1\rangle - \gamma\cos\theta |1,-1\rangle = \alpha|1,1\rangle + \beta|1,0\rangle\gamma|1,-1\rangle$$

which gives

$$\beta \frac{\sin \theta}{\sqrt{2}} + \alpha \cos \theta = \alpha$$

$$(\alpha + \gamma) \frac{\sin \theta}{\sqrt{2}} = \beta$$

$$\beta \frac{\sin \theta}{\sqrt{2}} - \gamma \cos \theta = \gamma$$

• using $\alpha^2 + \beta^2 + \gamma^2 = 1$ the above equations yield

$$\alpha = \frac{1}{\sqrt{2}}(1 + \cos\theta)$$
 $\beta = \frac{1}{\sqrt{2}}\sin\theta$ $\gamma = \frac{1}{\sqrt{2}}(1 - \cos\theta)$

hence

$$\psi = \frac{1}{2}(1 - \cos\theta)|1, -1\rangle + \frac{1}{\sqrt{2}}\sin\theta|1, 0\rangle + \frac{1}{2}(1 + \cos\theta)|1, +1\rangle$$

• The coefficients α, β, γ are examples of what are known as quantum mechanical rotation matrices. The express how angular momentum eigenstate in a particular direction is expressed in terms of the eigenstates defined in a different direction

$$d_{m',m}^{j}(\theta)$$

•For spin-1 (j = 1) we have just shown that

$$d_{1,1}^1(\theta) = \frac{1}{2}(1 + \cos\theta) \quad d_{0,1}^1(\theta) = \frac{1}{\sqrt{2}}\sin\theta \qquad d_{-1,1}^1(\theta) = \frac{1}{2}(1 - \cos\theta)$$

For spin-1/2 it is straightforward to show

$$d_{\frac{1}{2},\frac{1}{2}}^{\frac{1}{2}}(\theta) = \cos\frac{\theta}{2}$$
 $d_{-\frac{1}{2},\frac{1}{2}}^{\frac{1}{2}}(\theta) = \sin\frac{\theta}{2}$

Spin considerations (E >> m)

- ★The angular dependence of the QED electron-positron matrix elements can be understood in terms of angular momentum
- Because of the allowed helicity states, the electron and positron interact in a spin state with $S_z=\pm 1$, i.e. in a total spin 1 state aligned along the z axis: $|1,+1\rangle$ or $|1,-1\rangle$
- Similarly the muon and anti-muon are produced in a total spin 1 state aligned along an axis with polar angle θ

- Hence $M_{\rm RR} \propto \langle \psi | 1, 1 \rangle$ where ψ corresponds to the spin state, $|1, 1\rangle_{\theta}$, of the muon pair.
- ullet To evaluate this need to express $|1,1
 angle_{m{ heta}}$ in terms of eigenstates of S_z
- In the appendix it is shown that:

$$|1,1\rangle_{\theta} = \frac{1}{2}(1-\cos\theta)|1,-1\rangle + \frac{1}{\sqrt{2}}\sin\theta|1,0\rangle + \frac{1}{2}(1+\cos\theta)|1,+1\rangle$$

•Using the wave-function for a spin 1 state along an axis at angle $\, heta$

$$\psi = |1,1\rangle_{\theta} = \frac{1}{2}(1-\cos\theta)|1,-1\rangle + \frac{1}{\sqrt{2}}\sin\theta|1,0\rangle + \frac{1}{2}(1+\cos\theta)|1,+1\rangle$$

can immediately understand the angular dependence

