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Recap

* Working towards a proper calculation of decay and scattering processes

Initially concentrate on: .+ ut €. e
Tete U Y
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A covered the relativistic calculation of particle decay rates
and cross sections
M=

- X (phase space
SIS T (p pace)

A covered relativistic treatment of spin-half particles
Dirac Equation
A concentrate on the Lorentz Invariant Matrix Element

* Interaction by particle exchange
* Introduction to Feynman diagrams
* The Feynman rules for QED




Interaction by Particle Exchange

« Calculate transition rates from Fermi’s Golden Rule
i = 27|Tyi|*p(Ey)
where Tﬁ- is perturbation expansion for the Transition Matrix Element
(VI GV
=V + L e
J#i

*For particle scattering, the first two terms in the perturbation series
can be viewed as:

"scatterin_g |n Vi j “scattering via an
a potential intermediate state”
i Vi . Vii
1

» “Classical picture” - particles act as sources for fields which give
rise a potential in which other particles scatter - “action at a distance”

* “Quantum Field Theory picture” - forces arise due to the exchange

of virtual particles. No action at a distance + forces between particles
now due to particles



*Consider the particle interaction g + b — ¢+ d which occurs
via an intermediate state corresponding to the exchange of particle X

*One possible space-time picture of this process is:

C  Initial statei: a+b
Final state f: c-+d

Intermediate state j: c+ b+ x

space

* This time-ordered diagram corresponds to
a “emitting” x and then b absorbing x

*The corresponding term in the perturbation expansion is:

(SIVI IV
E—E;
(d|V|x+b){c+x|V|a)
(Ea —|—Eb) — (EC +E, -|—Eb)

. T“;’ refers to the time-ordering where @ emits X before b absorbs it

Iy =

ab
T:‘



*Need an expression for (¢ +x|V|a) in a c

non-invariant matrix element 77y; Sa

e Ultimately aiming to obtain Lorentz Invariant ME
*Recall T;; is related to the invariant matrix element by
Tri = [1(E) "My,
where k runs over an 63mmes In tne matrix element

*Here we have
(c+x|V]a) =

(a—c+x)
(2E,2E.2E,)1/2

M(aﬂ;ﬂ) is the “Lorentz Invariant” matrix element fora - ¢ + x

* The simplest Lorentz Invariant quantity is a scalar, in this case
8a
c+x|Via) =
etV (2E,2E.2E,)!/?
ga is a measure of the strength of the interactiona - ¢c + x

Note : the matrix element is only LI in the sense that it is defined in terms of
LI wave-function normalisations and that the form of the coupling is LI

Note : in this “illustrative” example g is not dimensionless.




Similarly (d|Vix+b) = b X

(2Eb2Ed2Ex)1/2
Giving 79 _ (d|V]x+b)(c+x|V]a) b 8b d
I 1 a8b

2E, (2E2E,2E.2E )V/? (E,—E.—Ey)
* The “Lorentz Invariant” matrix element for the entire process is

M = (RE2E2E2E)'?TE

1 . 8a8b
2F, (Ea —E.— Ex)

Note:

¢ M}‘if’ refers to the time-ordering where a emits x before b absorbs it

It is not Lorentz invariant, order of events in time depends on frame

+ Momentum is conserved at each interaction vertex but not energy
Ej #E
+ Particle x is “on-mass shell” i.e. E? = p* 4+ m?



* But need to consider also the other time ordering for the process

Y C * This time-ordered diagram corresponds to
§.4 b “emitting” X and then a absorbing X
« X is the anti-particle of x e.g.
e- e- Ve
f d W w*
time Vu Vu K-
* The Lorentz invariant matrix element for this time ordering is:
Sa8b

ba
MI-

La8b
2FE,

ga8b
2E,

*In QM need to sum over matrix elements corresponding to same final
M$ + M7
I [

. (Ea T

E.—E-+

E,—E; —E;

Ea_Ec'_Ex _Ea_Ec*+Er

)

)

Energy conservation:
(Ea +Ep = Ec+ Ed)




8a8b 2E,

*Which gives My = 2E.  (E,—E.)?—E2

Sa8b
(Eﬁ‘_E%)Q_"EE

From 1st time ordering Ef — ﬁ% +m_% = (Pa _ﬁc,)2+m§

o
.. La8b
giving M; = LV (55 ,
a e a c X c
_ 8a8b
(pa_pc)z_nl,%
8a8b
— Ad}f )
q ny

* After summing over all possible time orderings, My, is (as anticipated)
Lorentz invariant. This is a remarkable result - the sum over all time

orderings gives a frame independent matrix element.

* Exactly the same result would have been obtained by considering the
annihilation process



Feynman diagrams

* The sum over all possible time-orderings is represented by a

FEYNMAN diagram

8.“
It a c
=9
wn
X
b d
time
a c

b d

+

space
=
]
=
]

b a b d
time

In a Feynman diagram:

@ the LHS represents the initial state

@ the RHS is the final state
@ everything in between is “how the interaction

happened”

* |t is important to remember that energy and momentum are conserved
at each interaction vertex in the diagram.

* The factor 1/(q2 — mﬁ) is the propagator; it arises naturally from
the above discussion of interaction by particle exchange



* The matrix element: Mf,; = % depends on:
q- — my

& The fundamental strength of the interaction at the two vertices ga, 8b

@ The four-momentum, g, carried by the (virtual) particle which is
determined from energy/momentum conservation at the vertices.
Note q2 can be either positive or negative.

a_. P . Ps ¢ Here q=p1 —p3=pa—pr=t “t-channel”
X For elastic scattering: pi1 = (E,ﬁl); P3 = (5353)
p2 L ps q* = (E—E)? — (p) — p3)?
b : i
‘ g*<0 termed “space-like”
Here g =p1+p2=p3+pa=s “s-channel”

In CoM: p1 = (E,ﬁ); P2 = (Ea —ﬁ)
q° = (E+E)*—(p—p)* =4E?

q*>0 termed “time-like”
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Virtual Particles

“Time-ordered QM” Feynman diagram
18 - ¢ ¢
=9 o,
X T bz * : Mpi=
b d d ! q- — nmy
— — b d
time time i
*Momentum conserved at vertices | *Momentum AND energy conserved
*Energy not conserved at vertices | at interaction vertices
«Exchanged particle “on mass shell” | *Exchanged particle “off mass shell”
- 2 =12 _ 2 2
E§—|px|2=m§ Ex_|px| =4 #mx

VIRTUAL PARTICLE

*Can think of observable “on mass shell” particles as propagating waves

and unobservable virtual particles as normal modes between the source
particles: —_—

- A

11



Aside: V(r) from Particle Exchange

* Can view the scattering of an electron by a proton at rest in two ways:

Interaction by particle exchange in 2" order perturbation theory.
a C

8a8b

X —
M= =

b d

* Could also evaluate the same process in first order perturbation
theory treating proton as a fixed source of a field which gives

ise t tential V
rise to a potential V(r) p M = (y/ |V (r)| )
i S / Obtain same expression for My; using
*r e YUKAWA
V(r) V(r) = gags P potential

* In this way can relate potential and forces to the particle exchange picture

* However, scattering from a fixed potential V(r) is not a relativistic
invariant view

12



Quantum Electrodynamics (QED)

*Now consider the interaction of an electron and tau lepton by the exchange
of a photon. Although the general ideas we applied previously still hold,
we now have to account for the spin of the electron/tau-lepton and also
the spin (polarization) of the virtual photon.

*The basic interaction between a photon and a charged particle can be
introduced by making the minimal substitution

p—pP—qA; E—E—q¢
In QM: p=-iV;, E=id/oi
Therefore make substitution: idy, — idy —qgAy
where Ay=(9,-A); 9y =(2/t,+V)
*The Dirac equation:

(here g = charge)

. 0 o
(Xi) - i}pa—l’:—Ffj/.Vljl—qY“Aply—mWZO

13



. a g —
n”a—'f =YHy = my—iyVy+qg/rta,y

<y Ay = (Pm—i’'TV)y+qP v Ay
o ~ W, \ﬂ_}
Combined rest Potential
mass + K.E. energy

« We can identify the potential energy of a charged spin-half particle
in an electromagnetic field as:

(note the A, term is

Vb = g7 7" Ay just: PP =a9)

*The final complication is that we have to account for the photon
polarization states.

_ SA) i(pr—Et
e.g. for a real photon propagating in the z direction we have two

orthogonal transverse polarization states

0
ell) — (1) chosen circularly
0

8 Could equally have
(1) polarized states

14



*Previously with the example of a simple spin-less interaction we had:

M= (YelVIVa) 75 (Wal V¥ ‘x

I 0 T
gﬂ gb b /\\ d
*In QED we could again go through the procedure
of summing the time-orderings using Dirac
spinors and the expression for V,-) If we were
to do this, remembering to sum over all photon
polarlzatlons we would obtain: o l)

= [l (p3)geY’ v ue( Pl) Z fuley)” 1} (pa)a?" Y uz(p2)]

AN J —
"v’ " "l

Interaction of ¢~ | | Massless photon propagator || Interaction of 7
with photon summing over polarizations with photon

 All the physics of QED is in the above expression !

15



*The sum over the polarizations of the VIRTUAL photon has to include
longitudinal and scalar contributions, i.e. 4 polarisation states

1 0 0 0
0_ (0 n_ (1 2y _ |0 3)
e®=[9) em=(1) e>—|0 e® = [0
0 0 0 1
o Apphye ' This is not obvious - for the :
and gives: ;8’“(8") - {mmtlttk it on trust :

~ and the invariant matrix element becomes:
M = [u}(p3)g. v u.(p1)] q; (1l (pa) gy us(p2)]
«Using the definition of the adjoint spinor ¥ =y

M = [te(p3)qey" ue(p1)]

* This is a remarkably simple expression ! It is shown in Appendix V
of Llecture2 that ;Y"up transforms as a four vector. Writing

= (p3)7uc(p1)  Jr =Uuc(pa)Y uc(p2)
M = —qeq.r% showing that M is Lorentz Invariant

1Y (i (pa)qey’ uz(p2)]
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Feynman rules for QED

eIt should be remembered that the expression

M = [G(p3)ge ¥ te(p1)) j;" e (pa)gey ur(p2)]

hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual

photon. If we are then presented with a new Feynman diagram
we don’t want to go through the full calculation again.

Fortunately this isn’t necessary - can just write down matrix element
using a set of simple rules

Basic Feynman Rules:

I~ wt @& Propagator factor for each internal line
Y (i.e. each internal virtual particle)
@ Dirac Spinor for each external line
e T (i.e. each real incoming or outgoing particle)

& Vertex factor for each vertex

17



Basic rules for QED

& External Lines

( incoming particle u(p) —>—
spin 12 4 outgoing particle u(p) —>—
incoming antiparticle v(p) —e—
| outgoing antiparticle V(p) —E—
_ [ incoming photon el(p) ANNP
spin 1 | outgoing photon et(p)* AL
@ Internal Lines (propagators) ig
v
spin 1 photon - qg ,uwv
spin1/2  fermion f(?’“@ﬂ -|—m

@ Vertex Factors
spin1/2  fermion (charge -|e|)  ie}"

& Matrix Element —j}/ = product of all factors

18



e.d. _ M Py — .
£.9. - P u P3 o e\;/,/e e (p3)[iey" Jue(p1)
—i8uv
q
gl q’

T r He(pa)liey"|uc(p2)

—iM = [ie(p3)iey uc(p1)] _ifzuv we(pa)iey"u:(p2)]

*Which is the same expression as we obtained previously
eg. et P2 N
Ny Py

—iM = [v(p2)ieY*u(p1)] ?V [u(p3)iey"v(pa)]

e/ 7p

Note: + At each vertex the adjoint spinor is written first

+ Each vertex has a different index
+* The guv of the propagator connects the indices at the vertices

19



Summary

* Interaction by particle exchange naturally gives rise to Lorentz Invariant
Matrix Element of the form
8a8b

M,
2 2
q- — my
* Derived the basic interaction in QED taking into account the spins
of the fermions and polarization of the virtual photons:

M = [@(ps)ieu(p))] ‘;i“" @(pa)ier’u(p2)]

* We now have all the elements to perform proper calculations in QED !

20



Electron-positron annihilation




QED calculations

@ How to calculate a cross section using QED (e.g. e'e~ — ufu-):
© Draw all possible Feynman Diagrams
*For e*e~ — u*u- there is just one lowest order diagram
e’ u
T

e T

+ many second order diagrams + ...

e Y ut et W
>"©“‘< " M b, Meetocag,
e L e T
® For each diagram calculate the matrix element using Feynman rules

©® Sum the individual matrix elements (i.e. sum the amplitudes)
Mﬁ' =M +M,+M;+....

* Note: summing amplitudes therefore different diagrams for the same final
state can interfere either positively or negatively!

22



and then square \Mﬁ\z (My +My+Msz+....)(M; + M +M5 + o)
m) this gives the full perturbation expansionin 0,

 For QED Q;, ~ 1/137 the lowest order diagram dominates and
for most purposes it is sufficient to neglect higher order diagrams.

et ur et Y ut
! M2 2 MZ 4
o< Uem o< a{fm
e- B e =
O Calculate decay rate/cross section using formulae
*e.g. for a decay o / \M |2dQ
3271:2 2
*For scattering in the centre-of-mass frame
dQ* — 64n2s |pi| ! (1)

* For scattering in lab. frame (neglecting mass of scattered particle)

dQ ~ 6412 \ ME, Ji

23



Electron Positron Annihilation

* Consider the process: e'e~ — u*u- p3; U
*Work in C.0.M. frame (this is appropriate o) Q/W‘
for most e*e- colliders). e = e’
P2
p1=(E,0,0,p)  p2=(E,0,0,—p) +A
pg:(Eaﬁf) p4:(E:_15f) H

*Only consider the lowest order Feynman diagram:

+ ¢ Feynman rules give: :
_Igﬂv

e’ P2 P4 —iM = [v(ps)iey*u(p1)] 2 @(p3)iey'v(pa))

NOTE: °Incoming anti-particle Vv
*Incoming particle u
* Adjoint spinor written first

Pl

*In the C.o.M. frame have
do 1 |5/l
dQ 64725 |

Mg)?  with  s=(p1+p2)*=(E+E)* =4E°

24



Electron and Muon Currents

*Here q2 = (p1 +p2)2 = § and matrix element

—i8uv

—iM = [v(p2)iey*u(p1)] ” [@(ps)iey"v(pa)]

€2

= M=——guy [V(p2)7"u(p)][i(p3)y"v(pa)]

*In Lecture2 introduced the four-vector current

H =ty

which has same form as the two terms in [ ] in the matrix element

« The matrix element can be written in terms of the electron and muon currents

(Je)* =v(p2)y"u(p1) and ()" =7(p3)y"v(ps)

o2

- M=—Zgu () ()"

€2

M = _?je-ju

« Matrix element is a four-vector scalar product - confirming it is Lorentz Invariant

25



Spin in e*e” Annihilation

* In general the electron and positron will not be polarized, i.e. there will be equal
numbers of positive and negative helicity states
* There are four possible combinations of spins in the initial state !

e"’::"e* e"'u"e* e“'»"’e* e“'n"e“‘
RL RR LL LR

» Similarly there are four possible helicity combinations in the final state
* In total there are 16 combinations e.g. RL—»RR, RL—RL, ....

* To account for these states we need to sum over all 16 possible helicity
combinations and then average over the number of initial helicity states:

1 . 1
<‘M|2> =7 Z ‘M_glz =12 (‘MLL%LL‘z + ‘MLL%LR‘Z—I— )
spins
* i.e. need to evaluate: o2 o
M= ——Jje-Jy

for all 16 helicity combinations !

* Fortunately, in the limit £ > m,, only 4 helicity combinations give non-zero
matrix elements - we will see that this is an important feature of QED/QCD

26



eIn the C.o.M. frame in the limit E > m yp_
e

Pl :(E~0:01E); IJEZ(E'!U:O:_E) e_ pl > « \ e+
p3 = (E,Esin8,0,Ecos8); / P2
4
ps = (E,—sin@,0,—Ecos8) [ P
* Left- and right-handed helicity spinors ( Lecture 2 ) for particles/anti-particles are:
s Pl | 7]
el? ¢ el o llr_—;||—m's' ,{3’|_'_m3
_ - _ o - i
ur =N .gflm? uy =N Elj}Lr". vi =N E +m;¢ %c v =N E+nf 3
E|f-.|f1'? eid’ S o E|—I|)-_|u? €i¢' ¢ “;ac é’.w’S

— win 8. _
where § =8In5; ¢ =CO83 and N =+VE +m

*In the limit £ > m these become:

s

C —5 K C
i I'(;f) o jq‘) i'(p
ur =vE (5" )i = vE( € )i = vE (e )iy = vE
se'? —ce'? ce'? se'?
*The it Lecture2 ‘'lectron can either be in a left- or right-handed helicity state
L 0
0 1
ur(pr) =vE | |sup)=vE| o |:
0 —1

27



* For the initial state positron (9 = JI') can have either:

1 0

1

vi(p2) =VE _01 cvi(p2) =VE |
0 1

* Similarly for the final state |1~ which has polar angle @ and choosing q_’) =0

c —s ‘P/E%}/‘u
s C 5
u(p3)=VvVE | |iups)=vVE| § |; Py e
s —C }l+
Q=T -
*And for the final state u*replacing 60 — w1 —60; ¢ — T obtain
c s using sin (21:2;8) — COSs %
s —c
vi(pa) = VE | Zc | svilpa) =VE | § | cos(—nge) = Sin%
—s —c ,
2 et = —1
*Wish to calculate the matrix element M = —— j..j,
5

* first consider the muon current jp; for 4 possible helicity combinations

RR %“ RL y“ LR y“ LL yw“-

28



The muon current

* Want to evaluate (j,u)v

E(p3)’}/vl’(p4) for all four helicity combinations

* For arbitrary spinors V/, (,D with it is straightforward to show that the
components of W}ﬂ”@') are

Vo = w0 =yl +vrda+ vios+ vy (3)
VYo = YYo= v+ e+ v+ o (4)
VYo = ¥Yro=—i(yos— w03+ yi— i) (5)
VYo = VY0 =wids—wost+vion— vt (6)

*Consider the ,Lt;;,ujcombination using Y = Uy ¢ = V|

s ¢
with v, =VE (SC) s up =VE (i) ;
—c s

w (p3)Yv (ps) = E(cs—sc+es—sc)=0

- i (p3)Y'v (ps) = E(=c*+s*—c*+5%) =2E(s* —c*) = —2Ecos 8
w (p3)yvi(ps) = —iE(—c®—s>—c*—s")=2iE
i (p3)Yvi(ps) = E(cs+sc+es+sc)=4Esc=2Esin8

29



*Hence the four-vector muon current for the RL combination is

ur(p3)y'v(ps)

2E(0,—cos0,i,sin0)

*The results for the 4 helicity combinations (obtained in the same manner) are:

H—+«-'£"'
T
M-+«-g"'

W=

2E(0,—cos8,i,sin0)

(0,0,0,0)
(0,0,0,0)

2E(0,—cos@,—i,sinB)

RL
RR

LL
LR

* IN THE LIMIT E > monly two helicity combinations are non-zero !

* This is an important feature of QED. It applies equally to QCD.
* In the Weak interaction only one helicity combination contributes.
* The origin of this will be discussed in the last part of this lecture

* But as a consequence of the 16 possible helicity combinations only

four given non-zero matrix elements

30



Electron Positron Annihilation cont.

u.
L

o 2 [ s @ (7)) = 2E(0,—cosB,isinB)
*«3"“}*“’_ uppg o u(p3)y'vi(ps) = 2E(0,—cos8,—i,sinb)

* For e'e™ — LWL~ now only have to consider the 4 matrix elements:

Ty Ty
- 2 - 2

MRR e /bi et e /: < et MRL
ur ur
/ K / H
MLR e - > 4 h et e = > < — et MLL
/
pw wr

* Previously we derived the muon currents for the allowed helicities:

*Now need to consider the electron current

31



The electron current

*The incoming electron and positron spinors (L and R helicities) are:

| 0 1 0
(i) o)
0 —1 0 1

* The electron current can either be obtained from equations (3)-(6) as before or
it can be obtained directly from the expressions for the muon current.

(Je)* =v(p2) v u(p1) () =u(p3) V" v(ps)

* Taking the Hermitian conjugate of the muon current gives

a(p3) P v(pa)l’ = [u(pg)*‘yowmf

_ p4 fr},u‘r,},(ﬁ (AB)T — BTAT
(pe) 7 Pu(ps) P =
= v(pa) Y7 u(ps) PHIP = Pyt

= V(m)}’“u(!)a)

32



* Taking the complex conjugate of the muon currents for the two non-zero
helicity configurations:

v ()P ur(p3) = [B(p3)Y' v (pa)]” =2E(0,—c0s8,—i,sin 8)
vi(pa)Puy(p3) = [#(p3)7 vi(pa)]” =2E(0,—cos6,i,sin6)

To obtain the electron currents we simply need toset 8 = ()

crer V()Y um(p) = 2E(0.—1,-i,0)

e——> «——¢" 856’}_ . ?T(pg)’]/vui(p]) = ZE(Oj—]’i,O)

e =, <= e

33



Matrix element calculation

2
e . .
*We can now calculate M = — — Je-Ju for the four possible helicity combinations.
\)

e.q. the matrix element for é“Eé’f — ,UR_;'JEL which will denote| Mgp

’ o bt n .............
: Here the first subscript refers to the helicity :
e~ = | = - : of the e” and the second to the helicity of the . :
: Don’t need to specify other helicities due to :
: “helicity conservation”, only certain chiral
ut : combinations are non-zero. :
xUsing: egpe; - (j)H =v(p2)Y"ur(p1) = 2E(0,—1,—i,0)
— T . NV — v L . .
up bt Gu)Y =u(p3)Y'vi(ps) = 2E(0,—cos8,i,sin6)
€2
gives Mpp = ——[2E(0,—1,—1,0)].[2E(0,—co0s8,i,sin0)]
\Y
— —¢*(1+4cosH)
= —4na(l+cosB) where o :€2/4;’r% 1/137

34



Similarly \Mgg|* = |M|* = (47a)*(1 +cos 0)?
Mg |* = [Mpg|* = (470r)* (1 —cos 6)°
Mpgr - || M - -
u RL u u
& S
— 2 P Z
=, ~—=_,
ut
: A A
. ~ | ~
-1 -1 cosB +1 | -1 cosb +1 | -1 cosb +1
e*(1+cos0)? | e*(1 —cosB)? | e*(1—cosB)? | e*(1+cosh)?

* Assuming that the incoming electrons and positrons are unpolarized, all 4
possible initial helicity states are equally likely.




Differential cross-section

*The cross section is obtained by averaging over the initial spin states

a(r;d summi]ng ov;ar the final spin states: Mo 2+ IMig]> |Mgg|? + | ML
o 2 2 2 2 3 ;
— = =X M M M M
(4mor)? > )
= 2(1+cosB 2(1 —cos0)°
do o’
m) | — = —(1+4cos’6
dQ 4s ( ) : i
. - +
Example: Mark Il Expt., M.E.Levi et al., 1 cosO 1
ete- — Tt —~ 50 Phys Rev Lett 51 (1983) 1941
. > . A pure QED, O(a?)
Vs =29 GeV S
O —— QED plus Z
'*g contribution
e Angular distribution becomes
slightly asymmetric in higher

order QED or when Z
contribution is included
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* The total cross section is obtained by integrating over, q) using

o +1 167
/(1+c05“9)d9—2ﬁr/ (1+00529)d0059—T
-

giving the QED total cross-section for the process €'~ — U~

dro?
O —=
33 TUE LI N B L B L L B B [N L L j
= ete” = ptyT .
— e . v iace ]
: * Lowest order cross section i o Mark ) ]
calculation provides a good ............................ ‘ & Pluto
description of the data! ,E ----- Z— » © Tasso 3
........................... ot ;
ha— = -
. . . . © %aen ]
This is an impressive result. From il |
first principles we have arrived at an - :
expression for the electron-positron - -
annihilation cross section which is . -
good to 10/0 0.01 I R T | | I R | i N I RO SN T Y |
0 10 20

30

&~
]
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Lorentz Invariant form of Matrix Element

*Before concluding this discussion, note that the spin-averaged Matrix Element
derived above is written in terms of the muon angle in the C.o.M. frame.

1 _
(Mpil*) = Z><(|MRR]2+‘MRL|2+|MLR‘2+|MELD /p3<'“
] e_ pl » 4 6 e+
= —¢*(2(14c0s0)*+2(1—cos0)?) / P2
4 " p4
= ¢*(14cos’ ) H

*The matrix element is Lorentz Invariant (scalar product of 4-vector currents)
and it is desirable to write it in a frame-independent form, i.e. express in terms
of Lorentz Invariant 4-vector scalar products

*Inthe CoM. p;=(E,0,0,E) p>»=(E,0,0,—E)
p3 = (E,Esin0,0,Ecos@) p4=(E,—Esin6,0,—Ecos0)
giving: p1.p2 =2E*; p1.p3=E2(1—0089); p].p4=E2(]+C059)

*Hence we can write

NS EEEEEEEEEEEEEEE

(M) =2 PRI PT| get (0)
P1-P2 Sl

* Valid in any frame !

]
[TTTTT ]
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Chirality

*The helicity eigenstates for a particle/anti-particle for E > m are:

C —5 § C
i0 i0 el i0
“r—@(si);ui—@(ci )%Vl—\/E 5 v =VELS

S(‘?i'q) —C(‘i’i@ .S'Ei{'r'l
where s = sin%; c= cos%

* Define the matrix 10
01) (01
00 —(10)
00

In the limit £ > m the helicity states are also eigenstates of }’5

'}/SHT }’5!,% = —ul, YSVT — _VT’ }/‘Svl +v
* In general, deflne the eigenstates of }’5 as LEFT and RIGHT HANDED CHIRAL
states UR, Uy, VR, VI

l.e. }’SMR = +UR; }/SHI = —Uy, }/SVR = —VR, YSV} +Vvr

°Inthe LIMIT E > m (and ONLY IN THIS LIMIT):
“*REMT; MLEMl; VREVT; VLEVl

00

. 00

Y =iy vy = 10
1

-
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* This is a subtle but important point: in general the HELICITY and CHIRAL
eigenstates are not the same. It is only in the ultra-relativistic limit that the
chiral eigenstates correspond to the helicity eigenstates.

* Chirality is an import concept in the structure of QED, and any interaction of the
form ﬁ}/"’u
* In general, the eigenstates of the chirality operator are:
Pur = +ug; Yup=—ur; Yvg=—Vg; Yvi=+vL

*Define the projection operators:

Pr=3(1+7); P.=%i1-79)

*The projection operators, project out the chiral eigenstates

Prup =up;, Prup =0; Pur=0; Pou;=uy

Prvp =0, Prvp=vy, Povg=vg; Pvp=0

*Note Pr projects out right-handed particle states and left-handed anti-particle states

*We can then write any spinor in terms of it left and right-handed
chiral components:

Y=yr+yr=5(1+V)y+5(1—-p)y
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Chirality in QED

*In QED the basic interaction between a fermion and photon is:
ieyy" o
*Can decompose the spinors in terms of Left and Right-handed chiral components:
ieyy' ¢ = ie(Y,+ W)Y (¢r+¢L)
= ie(YRY QR+ VRY QL+ WL Y O+ W, Y L)

*Using the properties of }’5

(ry=1n r=r; ri=-v¥r
it is straightforward to show

VY oL=0. W y'¢r=0

* Hence only certain combinations of chiral eigenstates contribute to the
interaction. This statement is ALWAYS true.

*For E >> m , the chiral and helicity eigenstates are equivalent. This implies that
for E > m only certain helicity combinations contribute to the QED vertex !
This is why previously we found that for two of the four helicity combinations
for the muon current were zero
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Allowed QED Helicity Combinations

+ In the ultra-relativistic limit the helicity eigenstates = chiral eigenstates
+ In this limit, the only non-zero helicity combinations in QED are:

Scattering:

N
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Summary

* In the centre-of-mass frame the e*e- — p*u- differential cross-section is

do o’ N
— = —(1 6
o 45( +cos” 0)

NOTE: neglected masses of the muons, i.e. assumed E > my

* In QED only certain combinations of LEFT- and RIGHT-HANDED CHIRAL
states give non-zero matrix elements

* CHIRAL states defined by chiral projection operators
_ 1 : _ 1
Pr=5(1+7); P =3(1-7)

* In limit £ > m the chiral eigenstates correspond to the HELICITY eigenstates
and only certain HELICITY combinations give non-zero matrix elements

RR RL LR LL

T T Uy Ty
o= 4% e = ‘z" [ 4/-' [ > 4/-'
A

pt pt Ty Ty
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Appendix: Spin 1 Rotation Matrices

* Consider the spin-1 state with spin +1 along the
axis defined by unit vector 0
n=(sinB,0,cos8) > Z

*Spin state is an eigenstate of 77.§ with eigenvalue +1

(i.8)|y) = +1|y) (A1)

* Express in terms of linear combination of spin 1 states which are eigenstates

of S,

|l!f> :(x|l,l}+}3\1,0)+y\l?—l)
with o’ +p*+y =1
* (A1) becomes

(sin@S, + cos 0S.)(e|1,1) + B|1,0) + v

1,—1)) = a|1,1)+ B[1,0)y]1,—1) (AZ2)

*Write S, interms of ladder operators S, = %(S+ +S5_)

where  Sy|1.1)=0 S.[1,0) =+2[1,1) S [1,—1) =+/2[1,0)
S_[1,1) =+2]1,0)  S_]|1,0) =v2|1,—-1) S_[1,—-1)=0
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«from which we find Sy |1.1>:V+r\l 0)
5:11,0) = J=(|1,1) +]1,—1))
Sel1,—1) = 151,0)

* (A2) becomes

o B p
E\LO) 7 ﬁ\l,l)+\f|l L0y [+
ocosB|1,1) —ycosO|1,—1) = e|1,1) + B[1,0)y[1,—1)

sin 6 11,—1) +

« which gives ﬁﬂiﬂe 3
+ocosO = o
V2
(a+ )';mﬁ g 4
V2 o
sin @
B 7 —ycosO =y

* using a2+ﬁ2 —+ 72 =1 the above equations yield

o= 1 +cosB) B:ﬁsinﬁ y:ﬁ(l—cosﬁ)

1
7
* hence

= 5(1—c0s0)|1,—1) + J=sinB[1,0) + 3 (1 +cos 0)[1,+1)
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*The coefficients ¢, ﬁ, Y are examples of what are known as quantum
mechanical rotation matrices. The express how angular momentum eigenstate
in a particular direction is expressed in terms of the eigenstates defined in a

different direction

d;ii'.’ m ( 6 )

*For spin-1 (] = l) we have just shown that

di (8)=3(1+cos8) dy,(8)=5sin® dl (68)=7(1—cosb)
*For spin-1/2 it is straightforward to show

6 1
0) = cos — d’
(0) cos - °

d

1= b
r—
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Spin considerations (E >> m)

* The angular dependence of the QED electron-positron matrix elements can
be understood in terms of angular momentum

* Because of the allowed helicity states, the electron and positron interact
in a spin state with S; = =1, i.e. in a total spin 1 state aligned along the

zaxis: [1,+1) or|l,—1)
* Similarly the muon and anti-muon are produced in a total spin 1 state aligned
along an axis with polar angle 8 ‘ | 1)
»1/6

-
eg. |M ”z
=l 2

p ¢ o mE ‘131)

« Hence MRR o< (y|1,1) where ¥ corresponds to the spin state, |1,1)g , of

the muon pair.

* To evaluate this need to express \ 1, 1)9 in terms of eigenstates of S

* In the appendix it is shown that:

[1,1)g = 5(1 —0059)|],—1)+%sin9|]j0)+]§(l +cos@)|1,+1)
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 Using the wave-function for a spin 1 state along an axis at angle 0
y=11,1)g =3(1—cos®)|1,—1) +\L@Sin9\130>+ L(14cos0)|1,+1)
can immediately understand the angular dependence
Mgr /}f 11,1)9
C=H T 1,1)  p
u*f/

[MRr|* o< |(y|1,+1)|* = 7 (14cosB)?

MLR ~ }J'_
e_&= 34/‘_' + == 11, —1) e
z  °

| |
pt -1 cos0 +1

IMiR|? o< [{y|1,—1)]> = (1 —cos 6)?

11,1)g
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