Elementary Particle Physics:

theory and experiments

Course will concentrate on the modern view of particle physics
with the emphasis on how theoretical concepts relate to recent
experimental measurements.

Follow the course/slides from M. A. Thomson lectures at Cambridge University

Prof. dr hab. Elzbieta Richter-Was




Course Synopsis

Introduction, Decay Rates and Cross Sections
The Dirac Equation and Spin
.......... Interaction by Particle Exchange

4: Electron — Positron Annihilation
5: Electron — Proton Scattering
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7: Symmetries and the Quark Model
8: QCD and Colour
9: V-A and the Weak Interaction

10: Leptonic Weak Interactions
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11: Neutrinos and Neutrino Oscillations
12: The CKM Matrix and CP Violation
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13: Electroweak Unification and the W and Z Bosons
14: Tests of the Standard Model

15: The Hiqgs Boson and Beyond



M. Thomson, ,Modern Particle Physics”

Other recommended books

* “Particle Physics”, Martin and Shaw (Wiley): fairly basic but good.
* “Introductory High Energy Physics”, Perkins (Cambridge): slightly below

level of the course but well written.
* “Introduction to Elementary Physics”, Griffiths (Wiley): about right level
but doesn’t cover the more recent material.

* “Quarks and Leptons”, Halzen & Martin (Wiley): good graduate level
textbook (slightly above level of this course).



Preliminaries: Natural Units

* S.I. UNITS: kg ms are a natural choice for “everyday” objects

* not very natural in particle physics

* instead use Natural Units based on the language of particle physics
* From Quantum Mechanics - the unit of action :
* From relativity - the speed of light: C

* From Particle Physics - unit of energy: GeV (1 GeV ~ proton rest mass energy)

*Units become (i.e. with the correct dimensions):

Energy GeV Time (GeV/h)™"
Momentum GeV/c Length (GeV/hC)_i
Mass GeV/c? Area (GeV /hc)~

* Simplify algebra by setting: h = C = 1
*Now all quantities expressed in powers of GeV

. —1
gy GGV GeV To convert back to S.I. units,

—1 :
Momentum GeV Length GeV : ' need to restore missing factors :
Mass GeV.  Area GeV~? offpadc o

M
nname



Preliminaries: Heaviside-Lorentz Units

2
€
* Electron charge defined by Force equation: —
45’58@?‘2
* In Heaviside-Lorentz units set |&) = |
é,2
and 5 NOW: electric charge 214 _ !
F 4712 has dimensions [FL ]j _ [EL]E — [ﬁ{,‘]f

- Since c:(e{)p{))‘%:l | U =1

h=c=¢& = Uy =1

Unless otherwise stated, Natural Units are used
E2 :p2+m2 ! ﬁ:k: etc.



Elementary Particle Physics:

theory and experiments

Short recap on the Standard Model
Feynman diagrams, units and kinematics
Decay Rates and Cross-sections



Review of the Standard Model

Particle Physics is the study of:

* MATTER: the fundamental constituents of the universe
- the elementary particles

* FORCE: the fundamental forces of nature, i.e. the interactions
between the elementary particles

Try to categorise the PARTICLES and FORCES in as simple and
fundamental manner possible

* Current understanding embodied in the STANDARD MODEL.:

* Forces between particles due to exchange of particles
» Consistent with all current experimental data !
* But it is just a “model” with many unpredicted parameters,
e.g. particle masses.
* As such it is not the ultimate theory (if such a thing exists), there
are many mysteries.



Matter in the Standard Model

* In the Standard Model the fundamental “matter” is described by point-like
spin-1/2 fermions

LEPTONS QUARKS
q m/GeV q miGeV The masses quoted for the
quarks are the “constituent
First e -110.0005]|d|-1/3 0.3 masses”, i.e. the effective
G . masses for quarks confined
eneration V4 0 =0 u| +2/3 0.3 in a bound state

Second pw|-1] 0106 |s [-1/3| 0.5
Generation v, | 0 =0 cl+23] 15

Third v |-1| 1.77 |b |13 | 45
Generation | vy, | 0 =0 |t |+2/3| 175

* In the SM there are three generations — the particles in each generation
are copies of each other differing only in mass. (not understood why three).
* The neutrinos are much lighter than all other particles (e.g. v, has m<3 eV)
— we now know that neutrinos have non-zero mass (don’t understand why
so small)



Forces in the Standard Model

* Forces mediated by the exchange of spin-1 Gauge Bosons

Force Boson(s) | JP | m/GeV
EM (QED) Photon y | 1- 0

Weak Wt/ Z 1- | 80/91
Strong (QCD) | 8 Gluons g | 1- 0
Gravity (?) Graviton? | 2° 0

* Fundamental interaction strength is given by charge g
* Related to the dimensionless coupling “constant” (X

e.g. QED gem = € = /ATOEhC
(both gand (¢ are dimensionless,
* |n Natural Units 8=V dro but g contains a “hidden” ¢ )
* Convenient to express couplings in terms of & which, being

genuinely dimensionless does not depend on the system of
units (this is not true for the numerical value for ¢)




Standard Model vertices

The interaction of gauge bosons with fermions is
described by the Standard Model

STRONG EM |WEAKCC| ! |WEAKNC
|
|
q 8s q L e ut | d EW u 'q 87 q
|
\xg;’ \\g \xﬁ : \xl;rz’
i
Only quarks All charged All fermions I All fermions
Never changes fermions Always changes 1 Never changes
flavour Never changes flavour ' flavour
flavour
O ~ 1 o~ 1/137 Oty jz ~ 1/40
Gluons Photon W+, W- VA

massless massless very massive  very massive



Feynman diagrams

* Particle interactions described in terms of Feynman diagrams

e.g. scattering

e.g. annihilation

e_ e_ e+

o
g g
* IMPORTANT POINTS TO REMEMBER:
*“time” runs from left - right, only in sense that:

¢+ LHS of diagram is initial state

* RHS of diagram is final state
¢+ Middle is “how it happened”

* anti-particle arrows in -ve “time” direction

* Energy, momentum, angular momentum, etc.
conserved at all interaction vertices
* All intermediate particles are “virtual”

ie. B2 # |p|* +m?

Y

f :
INITIAL | :
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Special relativity and 4-vector notation

*Will use 4-vector notation withp{} as the time-like component, e.g.

pt = {Eﬁ} = {E,pxapyapz} (contravariant)
Pu = g,uvp‘u ={E,—p}={E,—px, — Dy —p:} (covariant)
with 1 0 0 O
_ouv_ | O0—=1 0 0
gw=8""=10 0-1 0
0O 0 0 -1

*|In particle physics, usually deal with relativistic particles. Require all
calculations to be Lorentz Invariant. L.l. quantities formed from 4-vector

scalar products, e.g. X
Invariant mass

xpy=Et—p.7 Phase

phpy=E*—p*=m

* A few words on NOTATION
Four vectors written as either: p’u or P

Four vector scalar product: p*g, or p.q
Three vectors written as: p

Quantities evaluated in the centre of mass frame: p°, p* etc.
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Mandelstam s, t and u

* |n particle scattering/annihilation there are three particularly useful
Lorentz Invariant quantities: s, tand u 1 > ¢ 2

* Consider the scattering process | +2 — 344 /
4

* (Simple) Feynman diagrams can be categorised according to the four-momentum
of the exchanged particle

: .......................................................................................................................... “

- — b
: . : |
: :
L] — -
: e

e'. pi p3 M
Y
Y , !
e~ - P P4
P2 pa M e A~ e e D e
s-channel t-channel z u-channel

*Can define three kinematic variables: s,t and u from the following four vector
scalar products (squared four-momentum of exchanged particle)

s=(pi+p2)*, t=(pi—p3)% u=(p1—ps)’

13



Example: Mandelstam s, t and u

2

s=(p1+p2)° t=(p1—p3)’, u=(p1—pa)

Note: S+t—|—u:m%—|—m%—l—m%—|—mﬁ
* e.g. Centre-of-mass energy, S:
e’ pi p3 M
Y
e~/ p pa SR

s=(p1+p2)° = (Et +E2)* — (P1 + P2)*
*This is a scalar product of two four-vectors === | orentz Invariant

* Since this is a L.l. quantity, can evaluate in any frame. Choose the
most convenient, i.e. the centre-of-mass frame:

py = (EY,p*) p2=(E;,—P")
= | s=(Ef+E;)°

* Hence \/E is the total energy of collision in the centre-of-mass frame

14



From Feynman diagrams to physics

Particle Physics = Precision Physics
* Particle physics is about building fundamental theories and testing their
predictions against precise experimental data

* Dealing with fundamental particles and can make very precise theoretical
predictions - not complicated by dealing with many-body systems

* Many beautiful experimental measurements
== precise theoretical predictions challenged by precise measurements

*For all its flaws, the Standard Model describes all experimental data !
This is a (the?) remarkable achievement of late 20" century physics.

Requires understanding of theory and experimental data

+ will use Feynman diagrams and associated Feynman rules to
perform calculations for many processes

+ hopefully gain a fairly deep understanding of the Standard Model
and how it explains all current data

Before we can start, need calculations for:

* |Interaction cross sections;
* Particle decay rates;

15



Cross-sections and decay rates

* In particle physics we are mainly concerned
with particle interactions and decays, i.e.
transitions between states

= these are the experimental observables of particle physics
» Calculate transition rates from Fermi’s Golden Rule

[y =2x|Ty:|p(Ey)

Fﬁ is number of transitions per unit time from initial state

|i) to final state <f| - not Lorentz Invariant !
Tﬁ- is Transition Matrix Element
‘H‘j <J‘H‘ > -“}—:{ |5 the .....
perturbmg
IH‘ +§ E,—E; T . Hamiltonian ¢

p(Ey) is density of final states
* Rates depend onIJIATRIX ELEMENT and DENSITY OF STATE?

Yl Tl

the ME contains the fundamental particle physics just kinematics

16



The first few lectures

* Aiming towards a proper calculation of decay and scattering processes
Will concentrate on:

cete IJ, Vo

e q e (g
(e-q—e—q to probe
proton structure)

A Need relativistic calculations of particle decay rates and cross sections:

x (phase space)

4 Need relativistic treatment of spin-half particles:

Dirac Equation
A Need relativistic calculation of interaction Matrix Element:

Interaction by particle exchange and Feynman rules
+ and a few mathematical tricks along, e.g. the Dirac Delta Function

17



Particle decays

In general a given particle may decay to more than one decay mode. For
example tau lepton decay into a number of final states:

T =€ VeV, T = W V,vy and 1~ — v, +hadrons

The transition rate for each decay mode j can be calculated independently using
Fermi’s golden rule. The individual transition rates r are refered as partial
decay rates or partial widths.

The total decay rate is a simple sum of partial decay rates, I = Z L.

The lifetime of particle in its rest frame 7 is refered to as its proper litetime and
is determined from the total decay rate 1
T= —.

T

The relative frequency of the particular decay mode is refered to as a branching

ratio (or a branching fraction).

I';
BR(j) = T

For example the branching ratio for the tau lepton decay: ™ — e v.v; is 0.17

18



Paricle decay rates

. The two body decay in the
* Consider the two-body decay rest fame of particle _ 1
i — 142 1 /4
» Want to calculate the decay rate in firstorder @ 77 ®
perturbation theory using plane-wave descriptions /
of the particles (Born approximation): 2
_ i(p.r—Et P -
Y = Ne'l? ) (k.7=p7F as h=1)

— Ne—ip.x
where N is the normalisation and p.X = p“xju

For decay rate calculation need to know:
* Wave-function normalisation

» Transition matrix element from perturbation theory,
» Expression for the density of states

All in a Lorentz
Invariant form

* First consider wave-function normalisation

* Non-relativistic: normalised to one particle in a cube of sideq

Jwwdv =N =1 = N = 1)d

19



Non-relativistic phase-space (revision)

» Apply boundary conditions (p = /ik):
 Wave-function vanishing at box boundaries
== quantised particle momenta:

Px=""4g"Py= 7 Pz=

* Volume of single state in momentum space:
()= &1

a

vV
* Normalising to one particle/unit volume gives
number of states in element: d°p = dp,dp,dp,
7 d3p
dn =

e “V T (2n)

% Pz

* Therefore density of states in Golden rule: Pz
(E;) — dn| | dn d|p|
PO aE |, T lalpl e |,
* Integrating over an elemental shell in 4

momentum-space gives 471'!72

(d3f5 — 4?1'}?2(1}7) p(Ef) — (271-)3 X 18

20



Dirac o function

* In the relativistic formulation of decay rates and cross sections we will make
use of the Dirac 6 function: “infinitely narrow spike of unit area”

§(x—a)t ” _:m §(x—a)dx = 1
""" : 18— a)de = f(a)

i X _
» Any function with the above properties can represent §(x)

_ 1 _ (Y_z?)
egd. O(x)=lim ——e \20° (an infinitesimally narrow Gaussian)
c—0+/21o

* In relativistic quantum mechanics delta functions prove extremely useful
for integrals over phase space, e.g. inthedecay ¢ — 1 4+ 2

f S(Ea — E; —Eg)dE and f 53(,8(1 —ﬁl —ﬁz)d3ﬁ

express energy and momentum conservation

21



* We will soon need an expression for the delta function of a function §( f(x))
» Start from the definition of a delta function

2 1 ify <0<
[F800={ § bt

v 0 otherwise

- Now express in terms of ¥ = f(x) where f(x9) =0
and then change variables

x2 df . I ifx; <xp<x
/x] 5(f(x))adx_{ 0 otherwise

* From properties of the delta function (i.e. here only
non-zero at xg)

df *2 B I ifx <xp<x
dx o o(f (x))dx{ 0 otherwise

» Rearranging and expressing the RHS as a delta function

f(x).

o(f(x))

A

> X
X0

[ o= o /ldxlxﬂ [ 53 —x0)a
]
= |80t =[] S—x)

X0

(1)

22



The Golden Rule revisited

[ =2n|Tsi|*p(Ey)

* Rewrite the expression for density of states using a delta-function

dn dn .
P(Ef): i = | —O6(E —E;)dE since Ef:Ef-

E, dE
Note : integrating over all final state energies but energy conservation now
taken into account explicitly by delta function

* Hence the golden rule becomes: ['j; = 2:«‘:/ T[>S (E; — E)dn

the integral is over all “allowed” final states of any energy

* For dn in a two-body decay, only need to consider ,/('1
one particle : mom. conservation fixes the other .1 0
d3 / E"----“""---c-l-i":“-i
2 fq, . LD
rﬂ_zyz//:z“ﬁ| (£~ 1~ ) 5 ) : =g

* However, can include momentum conservation explicitly by integrating over
the momenta of both particles and using another 6-fn

3 = 3
Ci= (' [ 1P 8(E 1~ B0 G~ 1) .35 T

Energy cons. Mom. cons.

Densi:cry of states

23



Lorentz invariant phase-space

+ In non-relativistic QM normalise to one particle/unit volume: [ W wdV =1

* When considering relativistic effects, volume contracts by Y = E/m
—_—

a a

a ay
* Particle density therefore increases by Y = E/m

* Conclude that a relativistic invariant wave-function normalisation
needs to be proportional to E particles per unit volume

* Usual convention: | Normalise to 2E particles/unit volume| [ y"*y/dV = 2E

* Previouslyused ¥/ normalised to 1 particle per unit volume [y*ydV =1
* Hence 1;/" — (ZE)l/zqf is normalised to 2 F per unit volume

* Define Lorentz Invariant Matrix Element, Mﬁ- , in terms of the wave-functions
normalised to 2F particles per unit volume

My = (v W |H|.. W _ ) = (2E|.2E,.2E;... 2E,) /> Ty;

24



Decay rate calculations

d’ pi d* 7
(231)325'1 (231)3252

i|?8(Ei — Ey — E>)8* (Bi — 1 — P)

Y

* Because the integral is Lorentz invariant (i.e. frame independent) it can be
evaluated in any frame we choose. The C.0.M. frame is most convenient

¢ Inthe C.oM.frameE; =m; andp;=0 =
Uri= 1 /|Mff'25(mf—El — E2)8°(p) +52)d351 &7
ST E; 2E, 2E>
Integrating over P> using the 8-function: '/{'1
. rating over P2 usi -function:
oY’

d3ﬁ] .....
. 25

I:>r.f-'_8 QF/\Mst (ms E) — F2)4EE2 2/

now E7 = (m5+|p1|*) since the 8-function imposes pg = —pl

 Writing d3P1 = Pldpl sin0dod¢ = p%dpldﬂ For convenience, here

t|P1|is written as p,

I 2 / / p1dp1dQ
Fﬁ_m./‘Mﬁ S(m,-— ms + pj — m%er%) EE

25



* Which can be written rﬁ_ / ‘Mf.i‘zg([?l )6(]"(}9] ))dp] dQ2 (2)

in the form

~ 322
) = pi/(E1E2) = pi(mi+p7) '3 (m3+p7)~'/2

and  f(p))=m (”11+p1)1f2 (m +P1)U2 : P 1

Note: . ( (p|)) imposes energy conservation. :/é .

f(pl ) = () determines the C.0.M momenta of /
p:k

the two decay products )
ie. f(p1)=0 for p =p*
* Eq. (2) can be integrated using the property of ¢ - function derived earlier (eq. (1))

/g(Pl)a(f(Pl))dPI = |df/(1p| L,;x ./g(pl)ﬁ(pl —pi)dp = 8(pP")

|df/dp| lp"c
where P” is the value for which f(p*) =0
« All that remains is to evaluate df/dp

df P P __p1_pr_ Ey+E

dp1 — m2+p)2 (m+pH) 2T E E U EE

where g(p

26



giving: [y = ! flM ..|2 Ei1Ep p%
- Ji 32?[25} Ji PI(EI +E2) E1Es

dQ
p1=p*

P1
— M|? dQ
32m2E; /| fi £y +E pi=p*

* Butfromf(p;) =0, ie. energy conservation: £} + E» = m;

P’ >
'y = 32?]:2 /\M [~dQ

In the particle’s rest frame E; = m;

(3)

VALID FOR ALL TWO-BODY DECAYS'!
«p* can be obtained from f(p;) =0

(m2+ p )2 4+ (ml+ p )2 = m,
] 2
- P = I [(m? — (m1 +m2)?]| [m? — (m) —m3)?]

27



Interaction cross section

e Calculation of the interaction cross-section is slightly
more complicated, it is necessary to account for the
flux of the initial-state particles.

* |In the simplest case one can imagine a beam of
particle of type a, with flux ¢_, crossing a region of
space in which there are n, particles per unit volume.
The interaction rate will be

r.b = nb o] (I)a
* The fundamental physics is contained in o, which has
dimensions of an area and is termed cross-section.

28



* Consider a single particle of type @ with velocity, U, traversing a region of area

A containing n, particles of type b per unit volume (Va 4+ 1}5)5!
In time &t a particle of type a traverses ° .,
region containing 1p(v, + vy )AOt A . —8
particles of type b . °
ol * Interaction probability obtained from effective
A ® cross-sectional area occupied by the
®% np(va +vp)ASt particles of type b
np(vy +vy)Ao0to
* Interaction Probability = Ve 1 ) = npvoto v =1v,+ )

— Rate per particle of type a = 1,0 O

» Consider volume V, total reaction rate = (n,v0).(n,V) = (npV) (nyv) o
= thpa(f

* As anticipated: | Rate =Flux x Number of targets x cross section

29



Cross-section definition

L1 8

no of interactions per unit time per target | Flux = number of ;
- : : per unit u P g : incident particles/ :

incident flux <«  unit arealunit time :

* The “cross section”, 5, can be thought of as the effective cross-
sectional area of the target particles for the interaction to occur.

* In general this has nothing to do with the physical size of the
target although there are exceptions, e.g. neutron absorption

*— . here @ is the projective area of nucleus

Differential Cross section oo
. or generally

do — no of particles per sec/per target into d(
dQ) incident flux . —

dQ =d(cos8)d¢

€ with |O —dQ

I S A—— ] dQ
0 \;‘F integrate over all
other particles

30



Cross-section calculations

* Consider scattering process 7 / 3
1 _I_ 2 — 3 _l_ 4 1 > & — 2
1}
» Start from Fermi’s Golden Rule: 4/ 2
d*p3 d’py

F_2:r/T25 E\+Ey—E3—E) 8 (p)+ pr —
ft | f! ( 2 3 4) (P] 12 p% p4)(2 ) (2?_5)
where Tﬁ is the transition matrix for a normalisation of 1/unit volume
« Now Rate/Volume = (flux of 1) x (number density of 2) X &
= ni(vit+v) Xnmxo
* For 1 target particle per unit volume Rate — (Vl + VQ)O'

c = —
(vi +v2)

6_

d*ps d°py

Ti|*8(E) +E» —E3s — E — Pa—
v1+v /] i|“0(E1 +E>»—E3—E4)0 (p1 + P> — pP3 p4)(2 7 (2n)?
\—Y_J H—J L

“——— ]| the parts are not Lorentz Invariant| ——
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*To obtain a Lorentz Invariant form use wave-functions normalised to2F particles
per unit volume wr _ (ZE)]/EIV

* Again define L.I. Matrix element M ; = (2E1 2F>2F5 2E4) l/zTﬁ
(2m) =

- 2E12E>(vi + w2

/\M 128(E) + E> — Ez — Ex)8* (7 + > — Pa — Pa)

d?ps d3 pi
2E3 2E4

* The integral is now written in a Lorentz invariant form

» The quantity ' = 2E2E>(v) +Vv]) can be written in terms of a four-vector
scalar product and is therefore also Lorentz Invariant (the Lorentz Inv. Flux)

F=4 [(P'?PZ#)

_ QO%} 1/2 (see appendix I)

*» Consequently cross section is a Lorentz Invariant quantity

Two special cases of Lorentz Invariant Flux:

* Centre-of-Mass Frame
= 4E1E2(V1 +V2)
= 4EEx(|pY|/E1+ P/ E2)

F

4P |[(Er + E2)
4" [Vs

*» Target {partlcle 2) at rest
F = 4EEy(vi+w)

= 4E1mov

= 4Eymy(|p1|/E)
= 4dma|pi|
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2-> 2 Body Scattering in C.o.M. Frame

* We will now apply above Lorentz Invariant formula for the
interaction cross section to the most common cases used

in the course. First consider 2—2 scattering in C.o.M. frame 1 /
« Start from g
d*psy & py

_ (2m) 2 / 2
= 2B (v ) \Myi|*8(Ey + Ex — Ez — E4)8° (51 + > — 3 Ps) 5 . 3E,
cHere p1+pr =0 and E,+E, =/s

d D3 d3p4

- (@2m 12

* The integral is exactly the same integral that appeared in the particle decay
calculation but with 171; replaced by

m)21rl
c = M| ~dQ"
= 4|ﬁr\¢§4ﬁ/‘ U

(4)
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* In the case of elastic scattering \ﬁﬂ = \ﬁ?\ e e 3

1 2 *
Oclastic — 64x25f‘Mff| dQ ,
H

* For calculating the total cross-section (which is Lorentz Invariant) the result on
the previous page (eq. (4)) is sufficient. However, it is not so useful for calculating
the differential cross section in a rest frame other than the C.o.M:

+

u* 4

1|7l

64125 | p]
because the angles in dQ* = d(cos0*)d¢* refer to the C.0.M frame

 For the last calculation in this section, we need to find a L.I. expression fodo

do M ;i |*dQ*

* Start by expressing dQ™ in terms of Mandelstam ¢ = = (p1—p3)?
I.e. the square of the four-momentum transfer =4 =\P1—P3

_ M T _ ",
e 7 P3 e R —
: Productof :
: four-vectors :
! therefore L.I. :

Y LR
qg" =p) — 3
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» Want to express €)™ in terms of Lorentz Invariant dt

where = (p|—p3)” = pi+p3—2pi1.p3 =mi+m3;—2pi.p3

¢In C.q.M.frame: X 1 3
pi" = (Ef,0,0,|p7]) y
pt = (E3,|pi|sin6%,0,|p5|cos 67) I p Ve .,
Pipsu = EJE;—|pi||p}|cos6” /553 -
t = mi+m—EE;+2|p||p|cose” 4
giving dt =2|p7||p5|d(cos07) )
therefore dQ* =d(cos8")d¢™ = %
o 2|1"J1||py;1
hence do I Ifb*:; M ;|2 dQ* = 2 64n2s|pi|? M| >do*d

* Finally, integrating over d¢)* (assuming no¢* dependence of|Mﬁ‘2 ) gives:
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Lorentz invariant differential cross-section

* All quantities in the expression ford(}'/dr are Lorentz Invariant and

therefore, it applies to any rest frame. It should be noted that |ﬁf \2
is a constant, fixed by energy/momentum conservation

. 1
\Ps \2 — @[5 - (”11 +fﬂ2)z] [5 — (m1 — ”12)2]

 As an example of how to use the invariant expressiondo /dr

we will consider elastic scattering in the laboratory frame in the limit
where we can neglect the mass of the incoming particle E; > m;

Eq - ’fz e.g. electron or neutrino scattering
2
T — § — M3
In this limit 75 = ( )
ds

do 1 ,
7 —|M|?
dr 167r(s—m§)2| fi
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2->2 body scattering in the Lab Frame

* The other commonly occurring case is scattering from a fixed target in the
Laboratory Frame (e.g. electron-proton scattering)

* First take the case of elastic scattering at high energy where the mass
of the incoming particles can be neglected: m; =m3 =0, nmo=my=M

(E3,|P3]) 3 eqg. 1 e- e 3

(Ev,lp1l) 2
——

(Es,|Pal) >\ 2 X
4 4 2X

* Wish to express the cross section in terms of scattering angle of the e~

dQ = 2nd(cos 6)

do do dr 1 dt do Integrating ;

— = — L - over d¢

dQ  dr dQ  2md(cosB) dr
* The rest is some rather tedious algebra.... start from four-momenta

pl:(EhOaO!El)u P2=(M10a010)a p3=(E3,E3SiH9,0,E3COSQ), P4:(E4,ﬁ4)
so here T:(pl —p3)2:—2p].p3 = —2E1E3(1 —COSQ)

But from (E,p) conservation P11+ p2 = p3+ pa
and, therefore, can also express f in terms of particles 2 and 4

£

therefore
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I = (pz—p4)2=2M2—2p2.p4=2M2—2ME4
= 2M?—2M(E|+M —E3) = —2M(E, — E3)

Note EI is a constant (the energy of the incoming particle) so

dt dEs
- = M—
d(cos ) d(cos )
: : : E\M
» Equating the two expressions for { gives E; =
) M+E;—FE;cos0
dEs E\M , (B3 \° E}
S0 d(cos6) (M+E,—Ejcosf)2 (ElM) M
de 1 dt do 1 ME§da_E§dc_E§ 1 ML
dQ ~ 2md(cos®) dt  2x M & m dt 7 l6m(s—m2)2"
using s = (p1+p2)? = M>+2p,.py = M* +2ME, gpfi?;j;:g?s'ess
giVES (S _Mz) — 2ME] R - AP

do

In limit m; — 0

dQ ~ 6472
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In this equation, E; is a function of &:
EM

M+E;—E;cosf

Ey =

giving _ ! y (my =0)
dQ 64n2 \M+E| —E;cos8

General form for 2—2 Body Scattering in Lab. Frame
* The calculation of the differential cross section for the case where 11, can not be
neglected is longer and contains no more “physics” (see appendix Il). It gives:

Again there is only one independent variable, #, which can be seen from
conservation of energy

Evtmy = /1324 m3 /|1 P+ 153~ 215 [153] cos 6 + 3

———

i.e. |173| is a function of @ P4 =pP1—D3
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Summary

* Used a Lorentz invariant formulation of Fermi’s Golden Rule to

derive decay rates and cross-sections in terms of the Lorentz
Invariant Matrix Element (wave-functions normalised to 2E/Volume)

Main Results:

* Particle decay'

Where p* is a function of particle masses

- M ;|*dQ
’32;1;2 2 / | ‘ pt = L {(m? — (my +H’Ig)2} [m? — (m —mg)z}

2m;

* Scattering cross section in C.o0.M. frame:

1 |Pf|
64n>s |p:

O

/ M| *dQ*

* Invariant differential cross section (valid in all frames):

do 1 ) »
= M
dt 64m\5;=|2| il 7

]s [s — (m1 +mo)*][s — (my —m3)?]
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Summary cont.

* Differential cross section in the lab. frame (11,=0)

2 2
= M ¢; ) = M ¢
dQ  64x? (Mbl) ‘ ﬂ| dQ  64n2 (MJrE] — Ej COSB) | ﬁi

* Differential cross section in the lab. frame (1,7 0)

d_O'_ 1 1 |1t63|2 ‘M‘Q
dQ 6472 ‘ﬁ[’ml ‘ﬁg‘(Elemg)—Eﬂﬁl'COSQ :

With By +mz = /|53[2+m3 + /5112 + | 532 — 2[5 ||| cos 0 +m3

Summary of the summary:

* Have now dealt with kinematics of particle decays and cross sections

* The fundamental particle physics is in the matrix element
* The above equations are the basis for all calculations that follow
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Appendix |: Lorentz Invariant Flux

=Collinear collision: a > < b
Vaapa vbapb
F = ZEHQEb(va —I—vb) — 4E,E, |Pa| + |pb|
Eﬂ Eb

— 4(|ﬁa|Eb + |ﬁb‘Ea)
To show this is Lorentz invariant, first consider
Pa-Pb = ngbp = EEp — po.pp = E.Ep + |ﬁa | |f_5b|
Giving  F?/16— (phpop)” = (1PalEs+|PplEa)” — (EaEb+ |Bal|Pb])’
= Bl (Ej  |Po*) + EZ(Pol*  Ep)
= |Bal*mj — Egmj
= —mgmﬁ

9 1/2
F o= A i)

42



Appendix Il: general 2->2 scattering in lab frame

pl:(E11010:|ﬁ]|)1 PzZ(M:.O:O;O); p3:(E3nE3Sin950?E3COSGJ= p4:(E4?54)
do do dr | dr do

again — = —
dQ dr dQ 2w d(cosB) dr

But now the invariant quantity f:
t = (p2—pa)’ =m3+mi—2py.ps=m5+mi—2mkE,
= m% +mﬁ —2my(E1 +my — E3)
dr — s dE3
d(cos ) “d(cos 8)
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Which gives do  my dE3 do

dQ 7 d(cos®) dt

To determine dE,/d(cosd), first differentiate E — |p3|* = m3

dE; . d|p3]
2FE =2 . _
3c;l(cos 0) 7| d(cos @) (All1)
Then equate t=(p1— P3)2 = (pa— PZ)Z to give

mi +m3 —2(E\E3 — |p1|| P3| cos 0) = mi +m3 —2my(Ey +my — E3)
Differentiate wrt. cos@

dEs dlps| o =
E —|B1]cos O - |
( l+m2)d0039 || cos dcos 6 P1][73]
= 1= (2
Using (1) dE3 P1]|ps3] All2
d(cosB) |p3|(E1+ma) — E3|pi|cosB (All-2)
do ) dE3 do 5] dE3 1
— ‘glMﬁ‘z

Q7 d(cos@) dt  m d(cos @) 64ms|p;
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It is easy to show |f5ﬂ\/E — mz‘ﬁl ‘
do qu %)

g : Vo2
dQ ~ d(cos 8) 64m2m2|py|? My
and using (All.2) obtain
o _ 1 . i

M i |*

d—Q - 643’!:2 . P11y . ‘ﬁ3|(E] Jr!?lg) —E3‘ﬁ1‘0039 ‘
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