DATA SCIENCE WITH MACHINE LEARNING: REGRESSION

This lecture is based on course by E. Fox and C. Guestrin, Univ of Washington

4/01/2022

WFAiS UJ, Informatyka Stosowana I stopień studiów

What is Data Science?

2

Is mainly about extracting knowledge from data (terms "data mining" or "Knowledge Discovery in Databases" are highly related). It can be about analyzing trends, building predictive models, ... etc.

Is an agglomerate of data collection, data modeling and analysis, a decision making, and everything you need to know to accomplish your goals. Eventually, it boils down to the following fields/skills:

<u>Computer science:</u>

Algorithms, programming (patterns, languages etc.), understanding hardware & operating systems, high-performance computing'

Mathematical aspects:

Linear algebra, differential equations for optimization problems, statistics

Few others:

Machine learning, domain knowledge, and data visualization & communication skills

Data Science and Machine Learning?

3

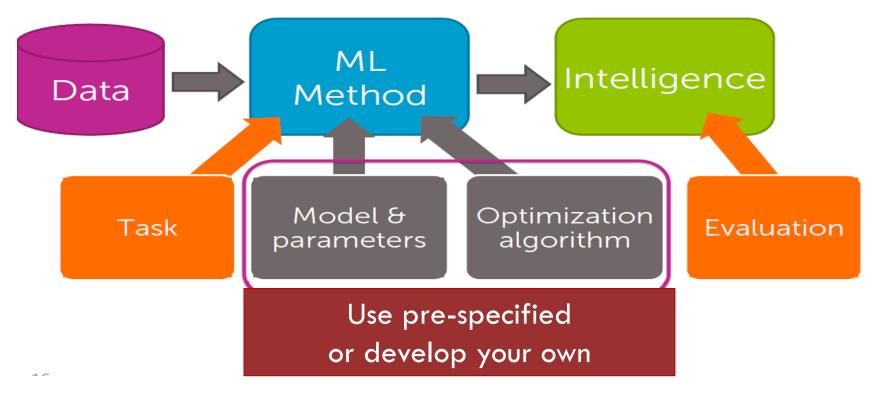
Machine learning algorithms are algorithms that learn (often predictive) models from data. I.e., instead of formulating "rules" manually, a machine learning algorithm will learn the model for you.

Machine learning - at its core - is about the use and development of these learning algorithms. Data science is more about the extraction of knowledge from data to answer particular question or solve particular problems.

Machine learning is often a big part of a "data science" project, e.g., it is often heavily used for exploratory analysis and discovery (clustering algorithms) and building predictive models (supervised learning algorithms). However, in data science, you often also worry about the collection, wrangling, and cleaning of your data (i.e., data engineering), and eventually, you want to draw conclusions from your data that helps you solve a particular problem.

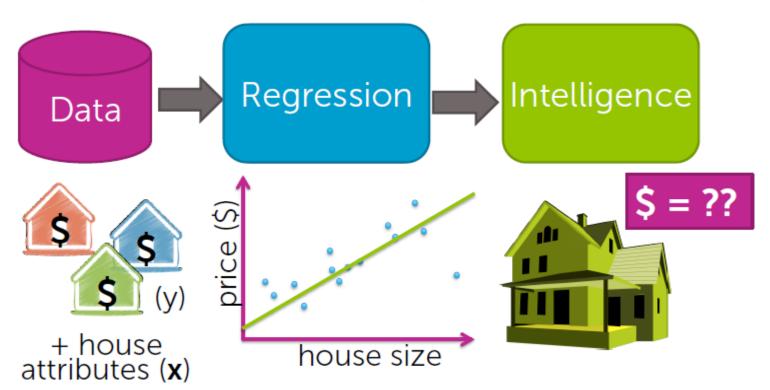
Deploing inteligence module

Case studied are about building, evaluating, deploying inteligence in data analysis.



Case study

Predicting house prices



Prediction: Predicting house prices

Models	 Linear regression Regularization: Ridge (L2), Lasso (L1)
Algorithms	Gradient descentCoordinate descent
Concepts	 Loss functions, bias-variance tradeoff, cross-validation, sparsity, overfitting, model selection

Data

input output $(x_1 = sq.ft., y_1 = \$)$ $(x_2 = sq.ft., y_2 = \$)$ $(x_3 = sq.ft., y_3 = \$)$ $(x_4 = sq.ft., y_4 = \$)$

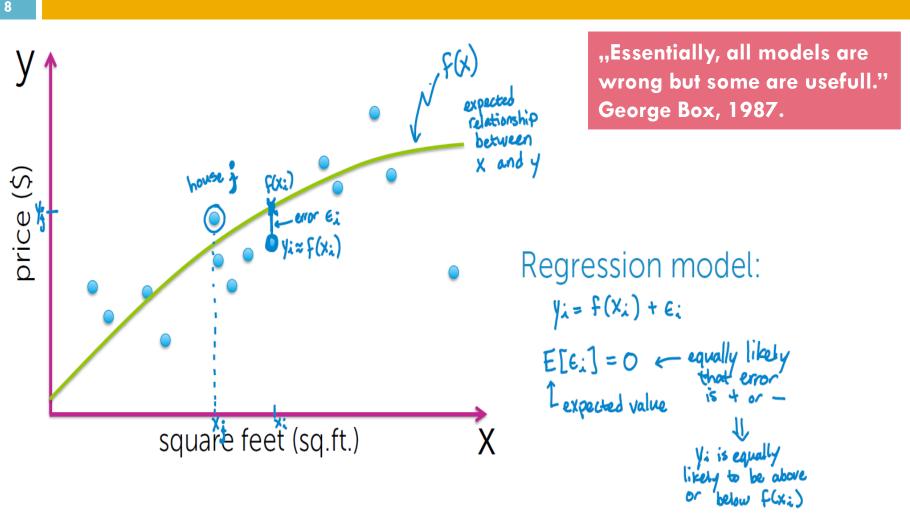
 $(x_5 = sq.ft., y_5 = \$)$

Input vs output

y is quantity of interest
assume y can be predicted from x

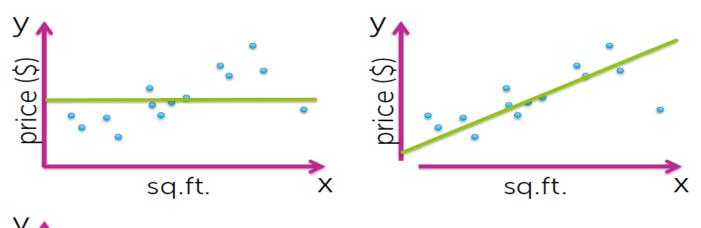
- •
- •
- -

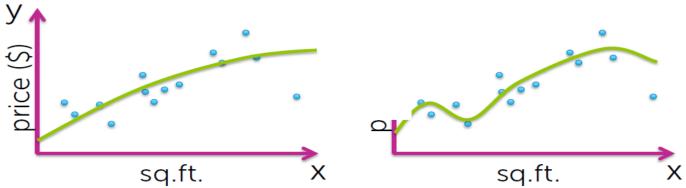
Model: assume functional relationship



Task 1:

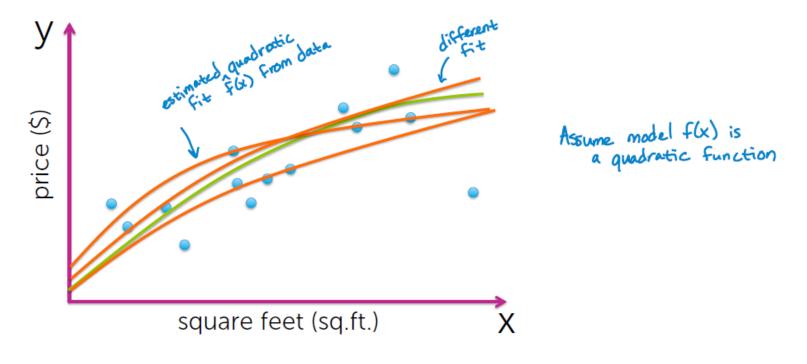
Which model to fit?



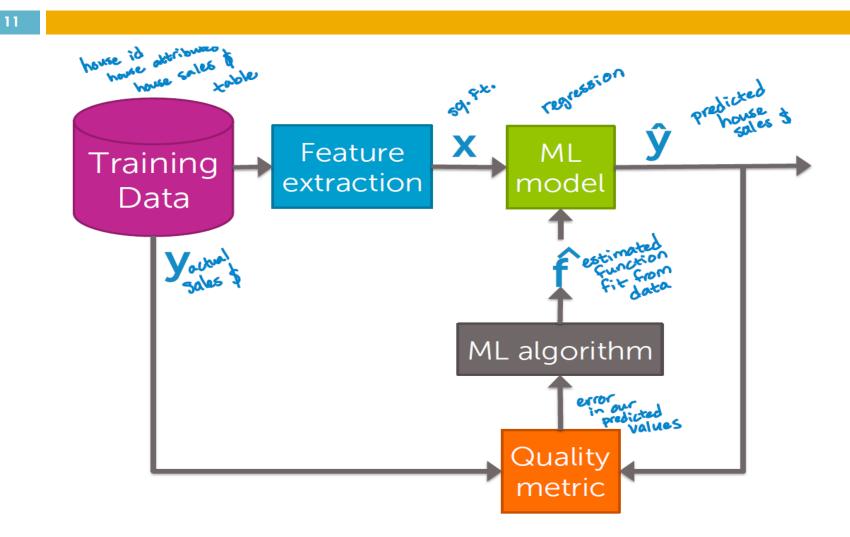


Task 2:

For a given model f(x) estimate function $\hat{f}(x)$ from data



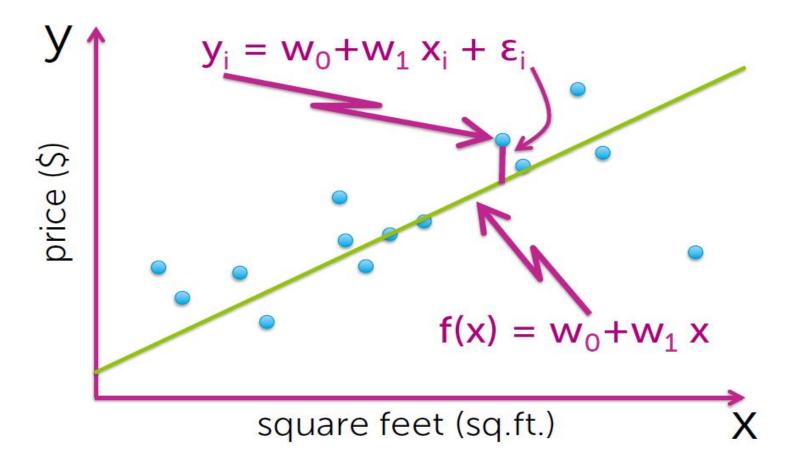
How it works: baseline flow chart



12

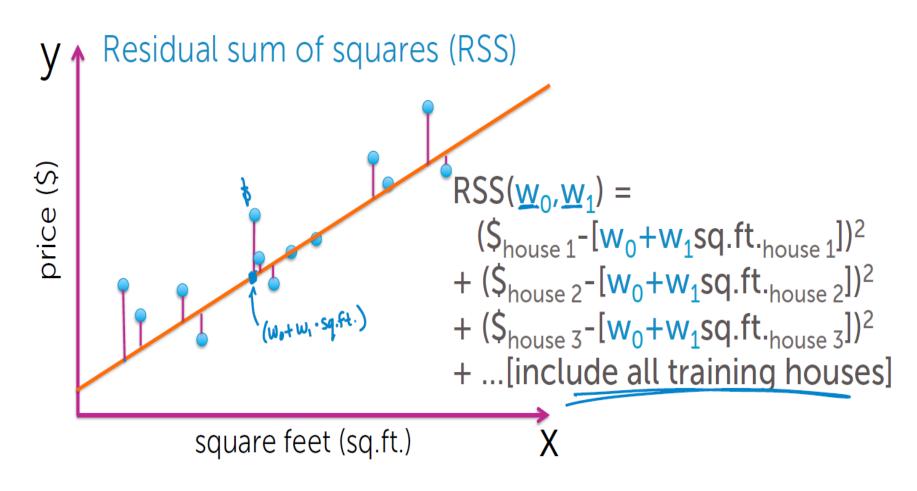
SIMPLE LINEAR REGRESSION

Simple linear regression model

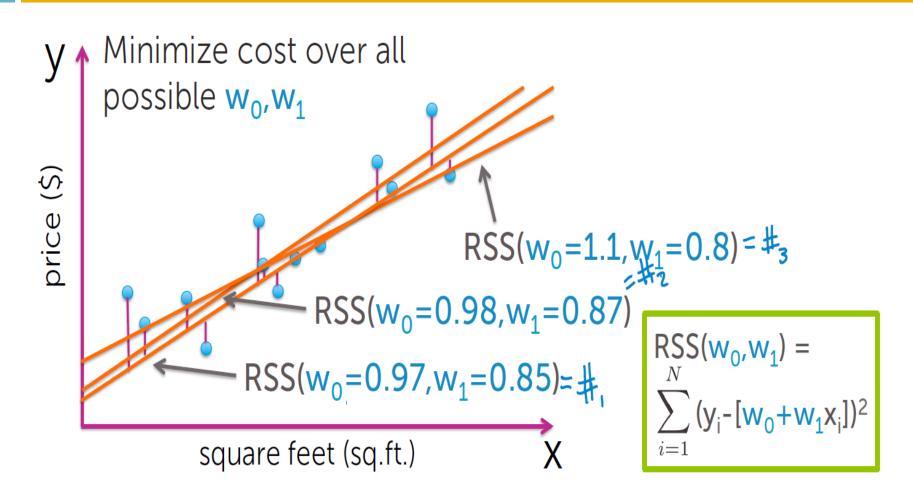


The cost of using a given line

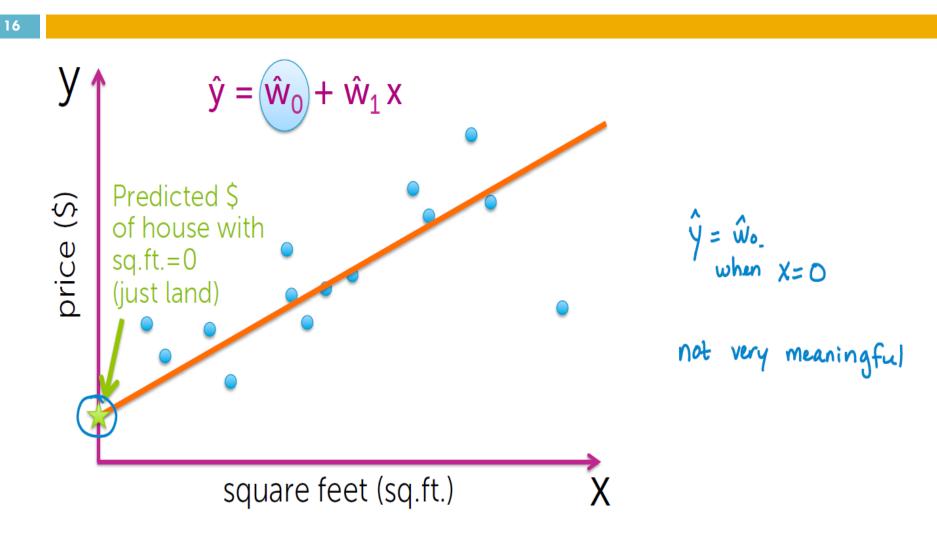
14



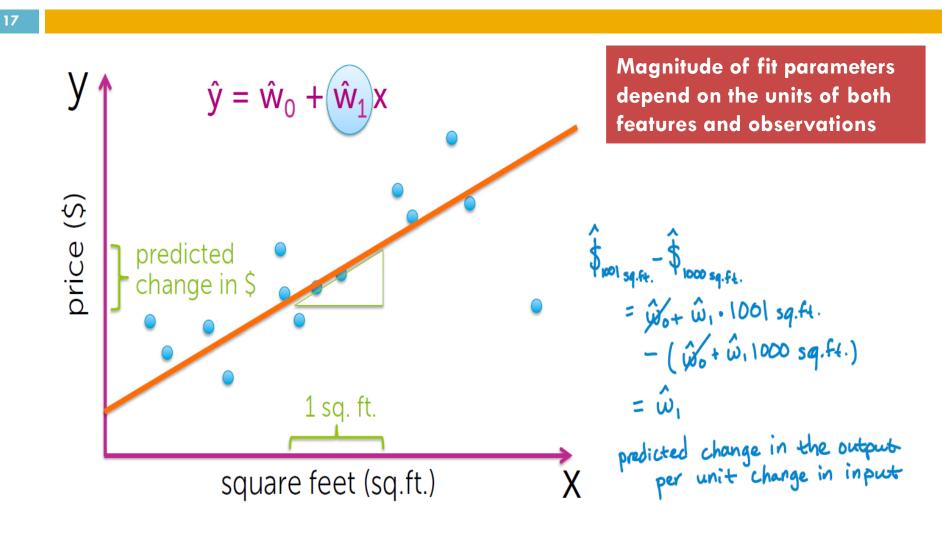
Find "best" line



Interpreting the coefficients

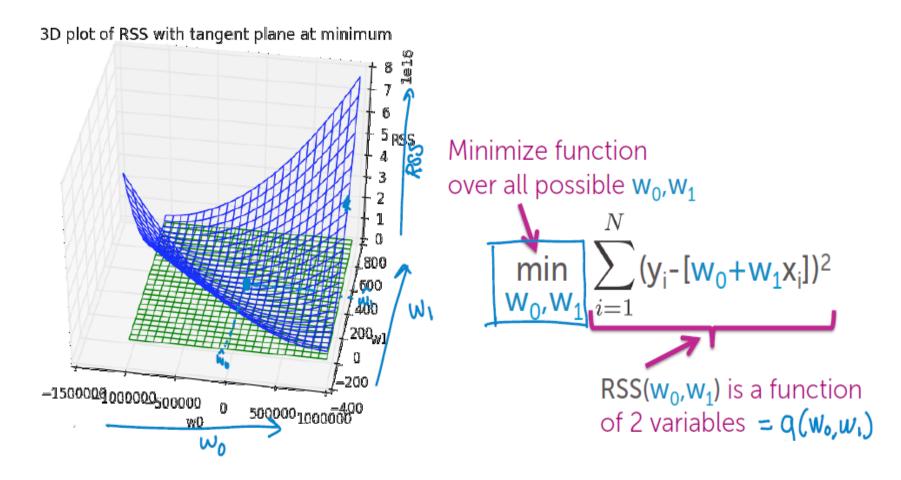


Interpreting the coefficients



ML algorithm: minimasing the cost

18



Convergence criteria

For convex functions, optimum occurs when $dg(\omega) = 0$

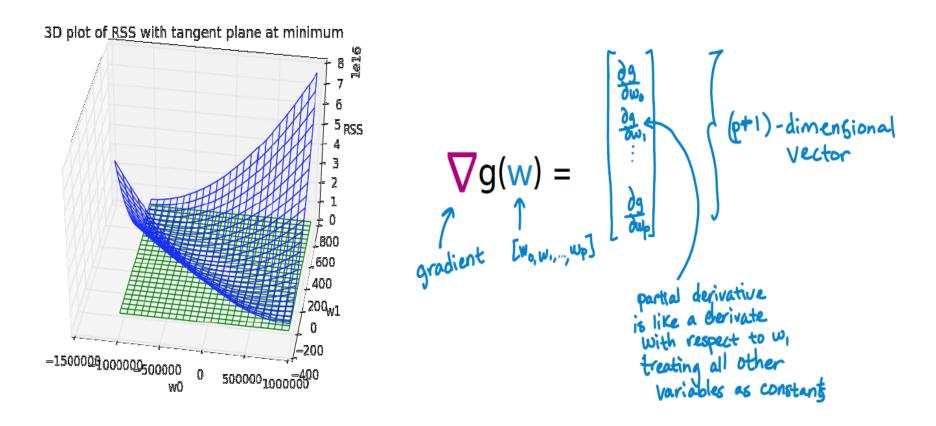
In practice, stop when

That will be "good enough" value of ε depends on the data we are looking at

Algorithm:

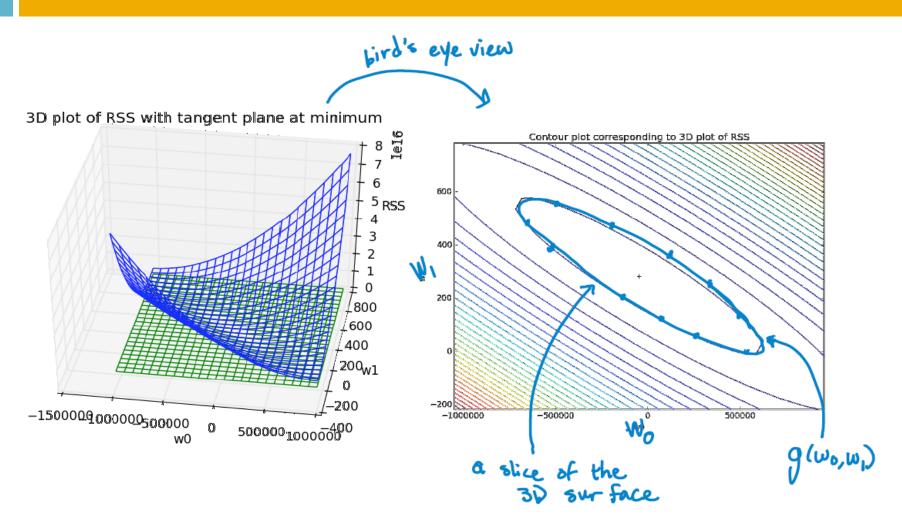
while not converged $W^{(t+1)} \leftarrow W^{(t)} - \eta \frac{dg}{dw}\Big|_{W^{(t)}}$

Moving to multiple dimensions

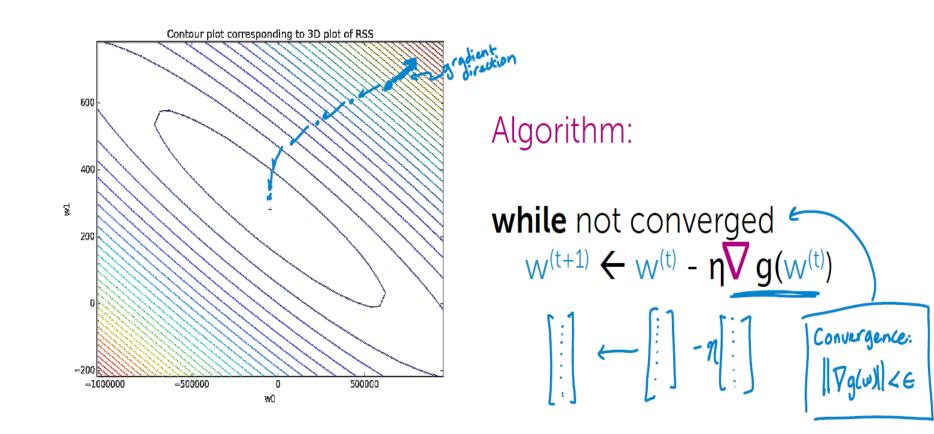


Contour plots

21



Gradient descent



Compute the gradient

$$RSS(w_0, w_1) = \sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i])^2$$

Taking the derivative w.r.t.
$$w_0$$

$$\sum_{i=1}^{N} 2(y_i - [w_0 + w_1 \times i]) \cdot (-1)$$

$$= -2 \sum_{i=1}^{N} (y_i - [w_0 + w_1 \times i])$$

Putting it together:

$$\nabla \text{RSS}(w_0, w_1) = \begin{bmatrix} -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] \\ -2\sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] x_i \end{bmatrix} \text{ Taking the derivative w.r.t. } w_1$$

$$\sum_{i=1}^{N} 2(y_i - [w_0 + w_1 x_i]) \cdot (-x_i)$$

$$= -2\sum_{i=1}^{N} (y_i - [w_0 + w_1 x_i]) x_i$$

Approach 1: set gradient to 0

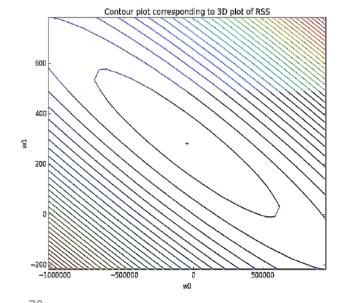
24

$$\nabla RSS(w_0, w_1) = \begin{bmatrix} -2 \sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] \\ -2 \sum_{i=1}^{N} [y_i - (w_0 + w_1 x_i)] x_i] \end{bmatrix}$$
This method is called
,,Closed form solution''
above the slope
of the slope
bottom term:
 $Z y_i x_i - \hat{w}_0 Z x_i - \hat{w}_1 Z x_i^* = 0$
 $\hat{w}_1 = \frac{Z y_i x_i - \frac{Z y_i Z x_i}{N}}{Z x_i^* - \frac{Z y_i Z x_i}{N}}$

Approach 2: gradient descent

25

$$\nabla RSS(w_0, w_1) = \begin{bmatrix} -2 \sum_{i=1}^{N} [y_i - \hat{y}_i(w_0, w_1)] \\ -2 \sum_{i=1}^{N} [y_i - \hat{y}_i(w_0, w_1)] x_i \end{bmatrix}$$



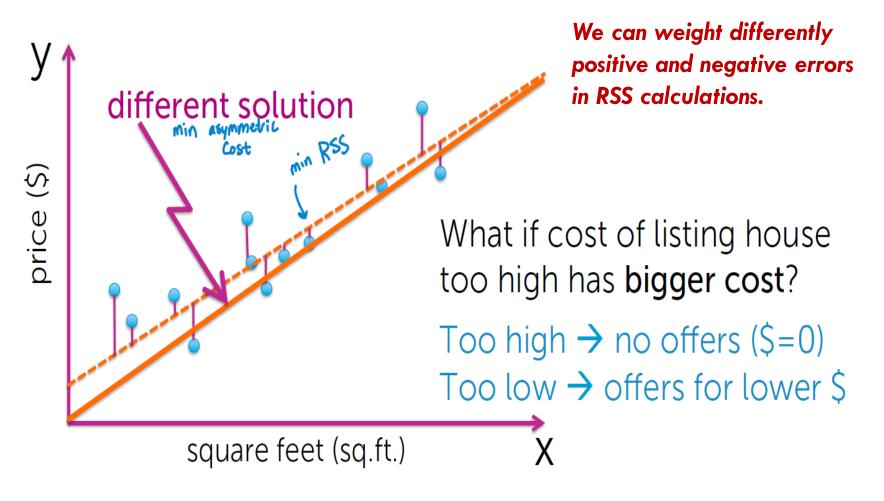
while not converged (-2).(-11)

$$\begin{bmatrix} W_{0}^{(k+1)} \\ W_{1}^{(k+1)} \end{bmatrix} \leftarrow \begin{bmatrix} W_{0}^{(k)} \\ W_{1}^{(k)} \end{bmatrix} + 271 \begin{bmatrix} \sum_{i=1}^{k} [Y_{i} - \hat{Y}_{i}(W_{0}^{(k)}, W_{1}^{(k)})] \\ \sum_{i=1}^{k} [Y_{i} - \hat{Y}_{i}(W_{0}^{(k)}, W_{1}^{(k)})] X_{i} \end{bmatrix}$$
If overall, under predicting \hat{Y}_{i} , then $\mathbb{Z}[Y_{i} - \hat{Y}_{i}]$ is positive
 $\longrightarrow W_{0}$ is going to increase
similar invultion for W_{1} , but multiply by Xi

Comparing the approaches

- For most ML problems, cannot solve gradient = 0
- Even if solving gradient = 0 is feasible, gradient descent can be more efficient
- Gradient descent relies on choosing stepsize and convergence criteria

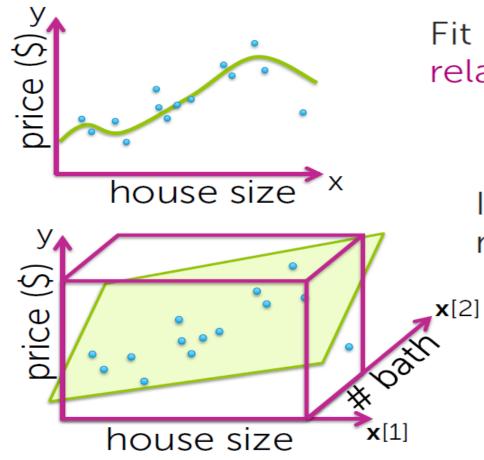
Asymmetric cost functions



28

MULTIPLE REGRESSION

Multiple regression



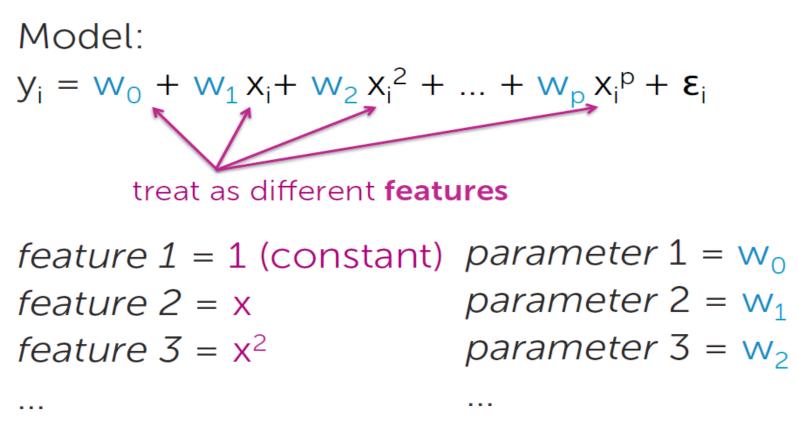
Fit more complex relationships than just a line

Incorporate more inputs

- Square feet
- # bathrooms
 - # bedrooms
 - Lot size
 - Year built

Polynomial regression

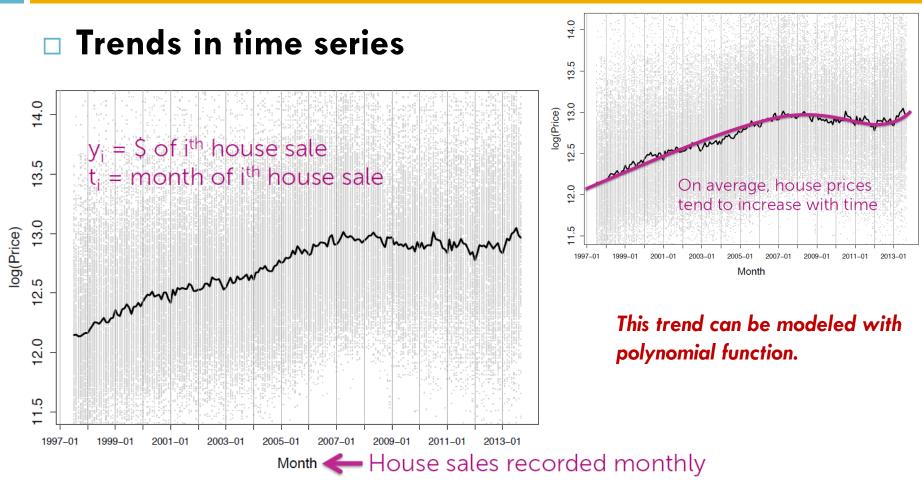
30



feature $p+1 = x^p$

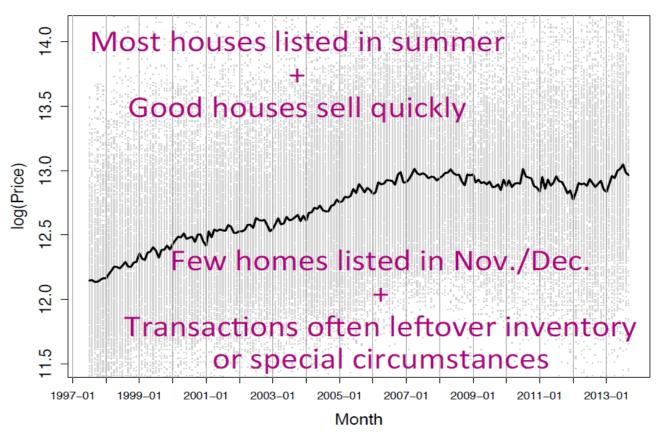
parameter $p+1 = w_p$

Other functional forms of one input



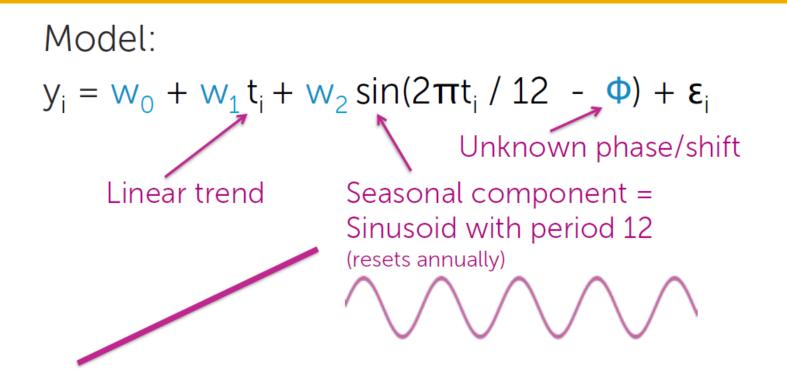
Other functional forms of one input

Seasonality



Example of detrending

33



Trigonometric identity: sin(a-b) = sin(a)cos(b) - cos(a)sin(b) $\rightarrow sin(2\pi t_i / 12 - \Phi) = sin(2\pi t_i / 12)cos(\Phi) - cos(2\pi t_i / 12)sin(\Phi)$

Example of detrending

Equivalently, $y_i = w_0 + w_1 t_i + w_2 \sin(2\pi t_i / 12) + w_3 \cos(2\pi t_i / 12) + \varepsilon_i$

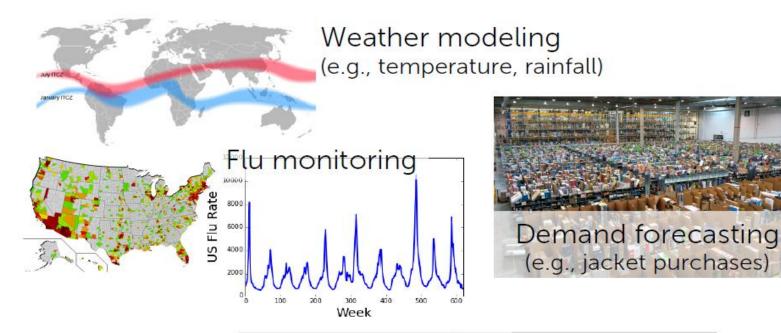
feature 1 = 1 (constant)

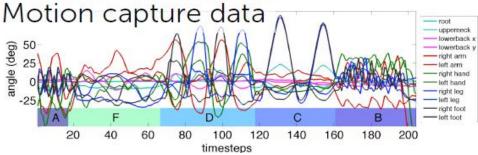
feature 2 = t

feature $3 = \sin(2\pi t/12)$

feature 4 = $\cos(2\pi t/12)$

Other examples of seasonality





Generic basic expansion

36

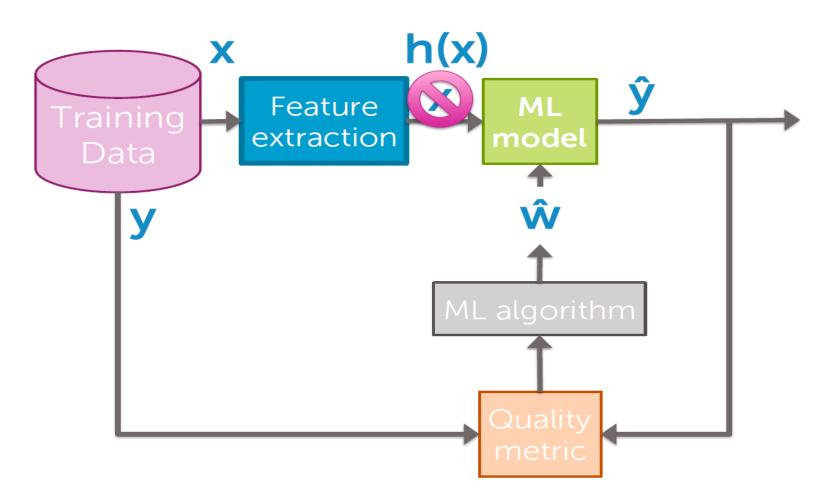
. . .

Model: $y_{i} = \underset{D}{w_{0}}h_{0}(x_{i}) + \underset{1}{w_{1}}h_{1}(x_{i}) + ... + \underset{D}{w_{D}}h_{D}(x_{i}) + \varepsilon_{i}$ $= \sum_{j=0}^{D} \underset{j=0}{w_{j}}h_{j}(x_{i}) + \varepsilon_{i}$

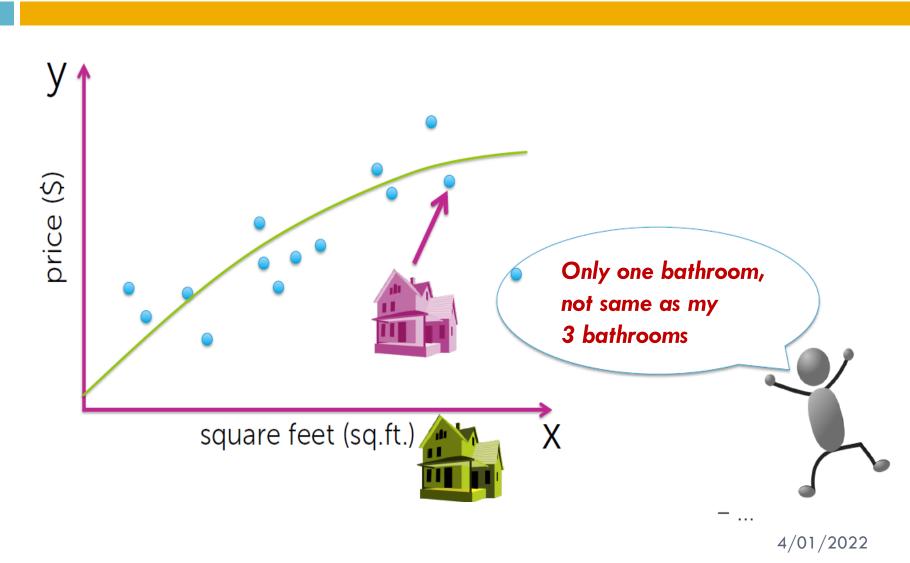
feature 1 = $h_0(x)$...often 1 (constant) feature 2 = $h_1(x)$... e.g., x feature 3 = $h_2(x)$... e.g., x^2 or sin($2\pi x/12$)

feature $D+1 = h_D(x)... e.g., x^p$

More realistic flow chart



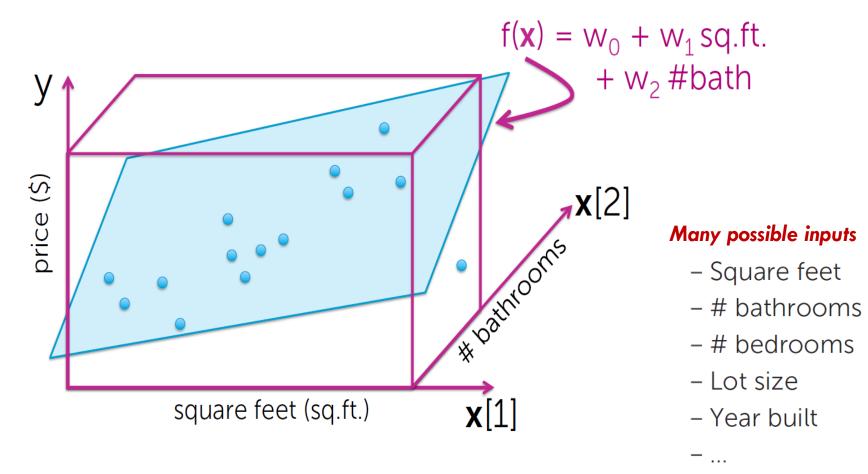
Incorporating multiple inputs



38_

Incorporating multiple inputs

39



General notation

Output: $y \not \sim scalar$ Inputs: $\mathbf{x} = (\mathbf{x}[1], \mathbf{x}[2], ..., \mathbf{x}[d])$ d-dim vector

Notational conventions:

Simple hyperplane

41

Noise term Model: $y_i = w_0 + w_1 x_i [1] + ... + w_d x_i [d] + \varepsilon_i$ feature 1 = 1feature 2 = x[1] ... e.g., sq. ft.feature 3 = x[2] ... e.g., #bath. . . feature $d+1 = \mathbf{x}[d] \dots e.g.$, lot size

More generally: D-dimensional curve

...

Model:

$$y_{i} = \underset{D}{W_{0}} h_{0}(\mathbf{x}_{i}) + \underset{D}{W_{1}} h_{1}(\mathbf{x}_{i}) + ... + \underset{D}{W_{D}} h_{D}(\mathbf{x}_{i}) + \boldsymbol{\varepsilon}_{i}$$

$$= \sum_{j=0}^{D} \underset{M_{j}}{W_{j}} h_{j}(\mathbf{x}_{i}) + \boldsymbol{\varepsilon}_{i}$$

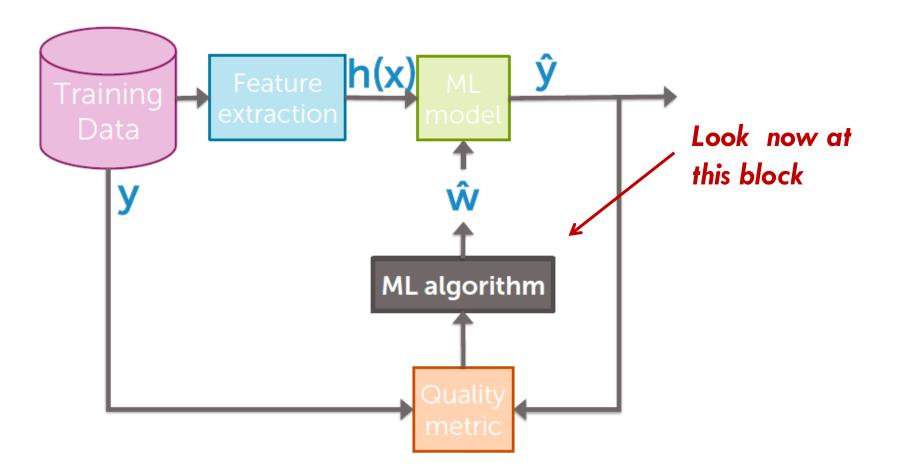
More on notation

observations (x_i,y_i) : N
inputs x[j] : d
features h_i(x) : D

feature $1 = h_0(\mathbf{x}) \dots e.g., 1$ feature $2 = h_1(\mathbf{x}) \dots e.g., \mathbf{x}[1] = sq. ft.$ feature $3 = h_2(\mathbf{x}) \dots e.g., \mathbf{x}[2] = \#bath$ or, $log(\mathbf{x}[7]) \mathbf{x}[2] = log(\#bed) \times \#bath$

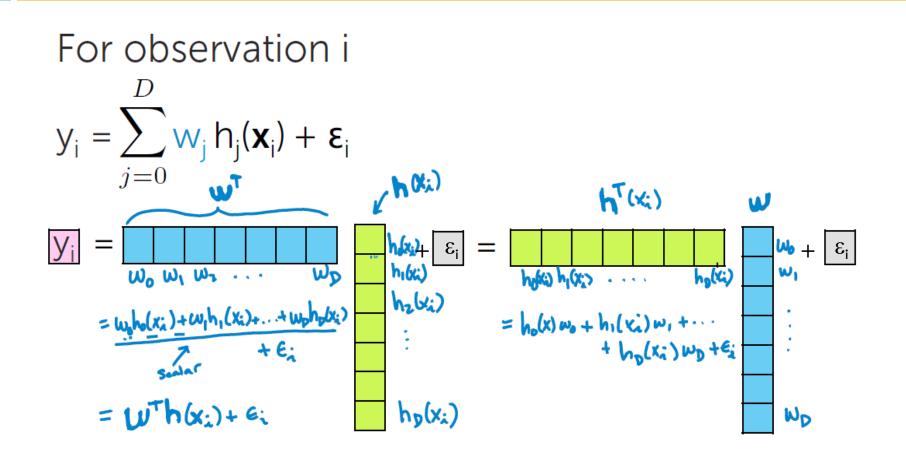
feature $D+1 = h_D(\mathbf{x})$... some other function of $\mathbf{x}[1], ..., \mathbf{x}[d]$

Fitting in D-dimmensions

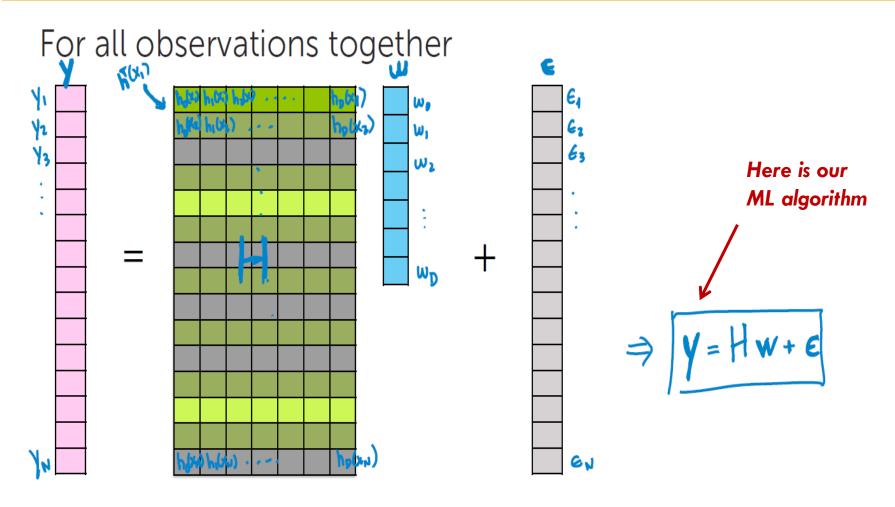


Rewriting in vector notation

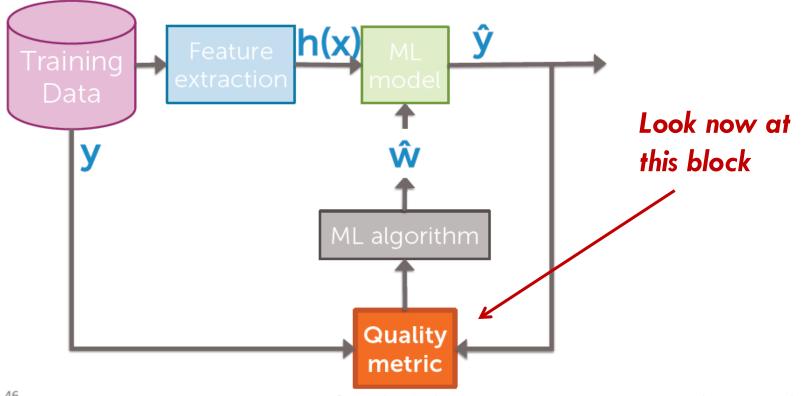
44



Rewriting in matrix notation



Fitting in D-dimmensions



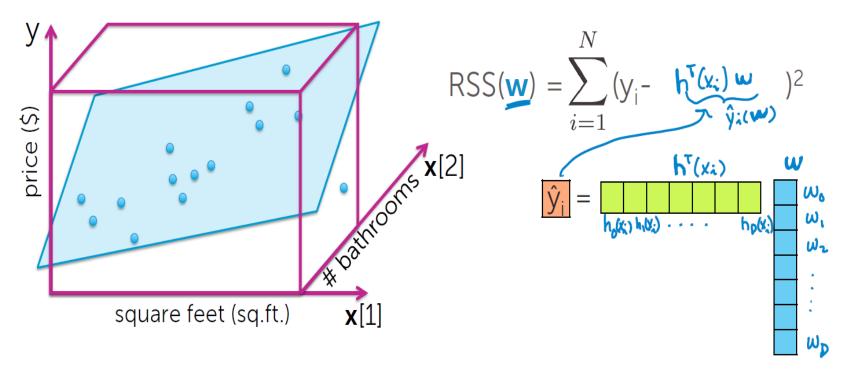
©2015 Emily Fox & Carlos Guestrin

Machine Learning Specialization

Cost function in D-dimmension

47

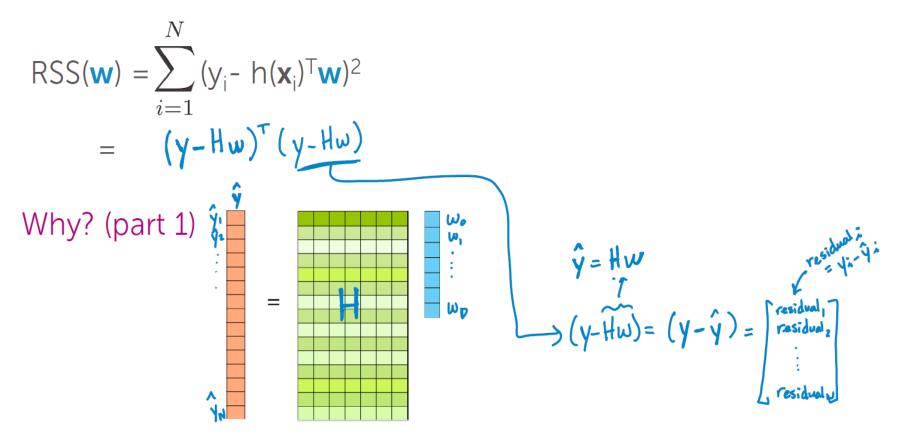
RSS in vector notation



Cost function in D-dimmension

48

RSS in matrix notation



Regression model for D-dimmension

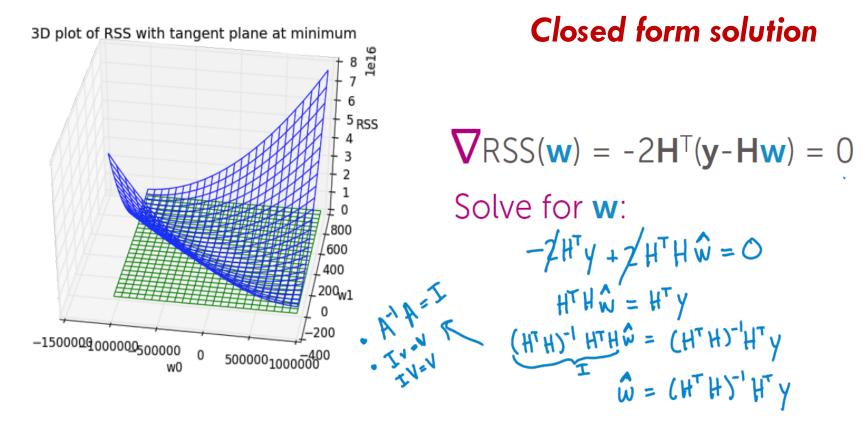
Gradient of RSS

$$\nabla RSS(\mathbf{w}) = \nabla [(\mathbf{y} - \mathbf{H}\mathbf{w})^{\top}(\mathbf{y} - \mathbf{H}\mathbf{w})]$$
$$= -2\mathbf{H}^{\top}(\mathbf{y} - \mathbf{H}\mathbf{w})$$

Why? By analogy to 1D case: $\frac{d}{dw} (y-hw)(y-hw) = \frac{d}{dw} (y-hw)^2 = 2 \cdot (y-hw)'(-h)$ = -2h(y-hw)

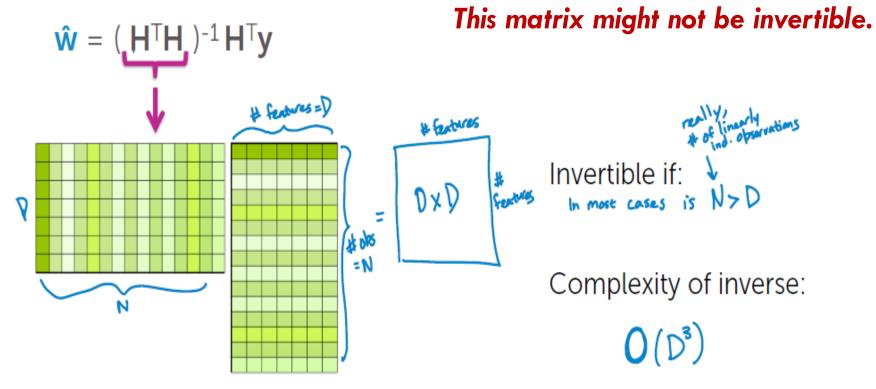
Regression model for D-dimmension

Approach 1: set gradient to zero



Closed-form solution

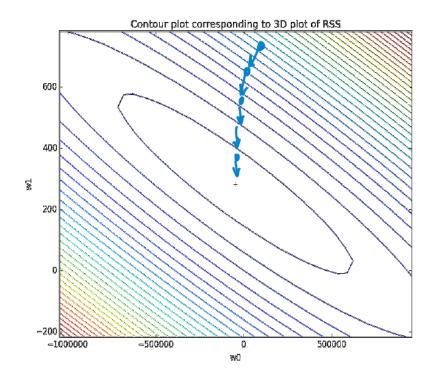
51



This might not be CPU feasible.

Regression model for D-dimmension

Approach 2: gradient descent



We initialise our solution somewhere and then ...

while not converged $\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \eta \nabla RSS(\mathbf{w}^{(t)})$ $-2\mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w})$ $\leftarrow \mathbf{w}^{(t)} + 2\eta \mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}^{(t)})$ $\widetilde{\mathbf{y}}(\mathbf{w}^{(t)})$

Gradient descent

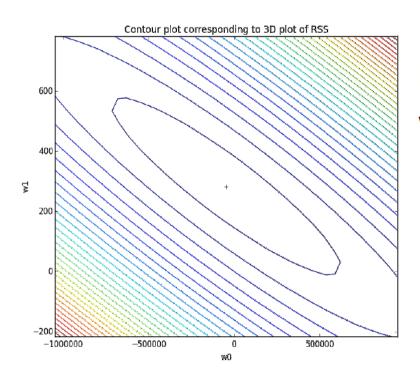
$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - h(\mathbf{x}_i)^{\mathsf{T}} \mathbf{w})^2$$
$$= \sum_{i=1}^{N} (y_i - w_0 h_0(x_i) - w_1 h_1(x_i) - \dots - w_0 h_0(x_i))^2$$

Partial with respect to w_j . $\sum_{i=1}^{N} 2(y_i - w_0 h_0(x_i) - w_1 h_1(x_i) - w_0 h_0(x_i))^{t} + (-h_j(x_i))^{t} + (-h_j(x_i))^{t}$

Update to jth feature weight: $w_j^{(t+1)} \leftarrow w_j^{(t)} - \eta(-2\sum_{i=1}^{2} h_j(x_i)(y_i - h_i(x_i)\omega^{(t)}))$

Summary of gradient descent

Extremely useful algorithm in several applications

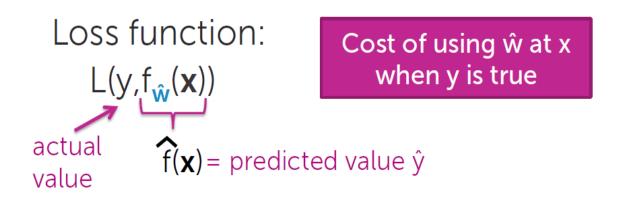


init $\mathbf{w}^{(1)}=0$ (or randomly, or smartly), $\underline{t}=1$ while $\|\nabla RSS(\mathbf{w}^{(t)})\| > \varepsilon$ for j=0,...,D $partial[j] = -2\sum_{i=1}^{N} h_j(\mathbf{x}_i)(y_i - \hat{y}_i(\mathbf{w}^{(t)}))$ $\mathbf{w}_j^{(t+1)} \leftarrow \mathbf{w}_j^{(t)} - \eta$ partial[j] $t \leftarrow t + 1$

ACCESSING PERFORMANCE

Measuring loss

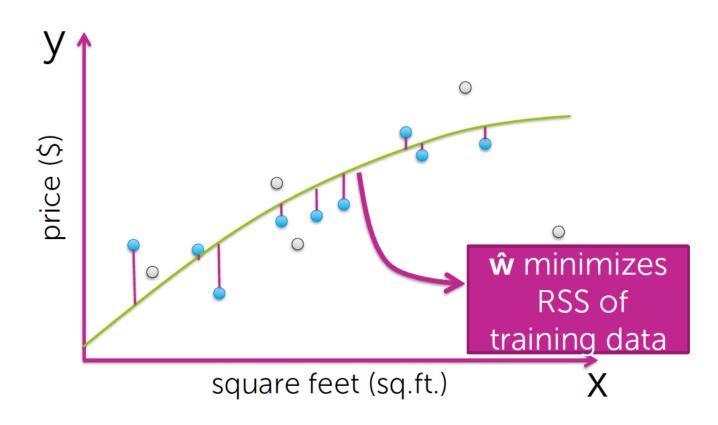
"Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful." George Box, 1987.



Examples: (assuming loss for underpredicting = overpredicting) Absolute error: $L(y, f_{\hat{w}}(\mathbf{x})) = |y - f_{\hat{w}}(\mathbf{x})|$ Squared error: $L(y, f_{\hat{w}}(\mathbf{x})) = (y - f_{\hat{w}}(\mathbf{x}))^2$

Accessing the loss

Use training data



Compute training error

1. Define a loss function $L(y, f_{\hat{w}}(\mathbf{x}))$

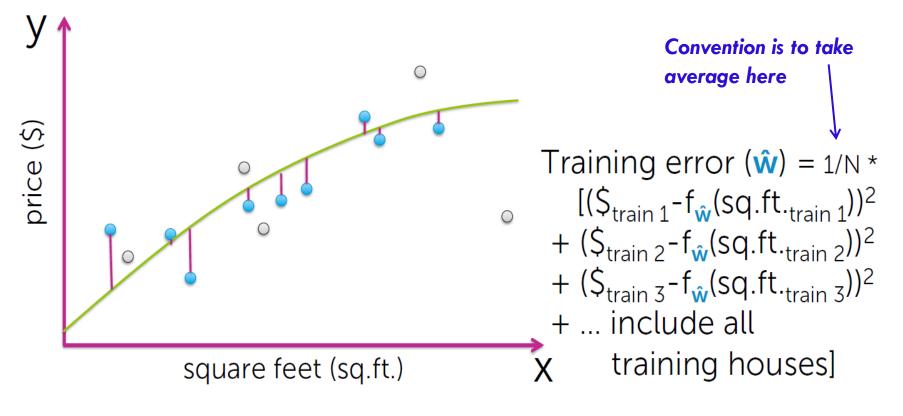
- E.g., squared error, absolute error,...
- 2. Training error
 - = avg. loss on houses in training set = $\frac{1}{N} \sum_{i=1}^{N} L(y_i, f_{\hat{w}}(\mathbf{x}_i))$

fit using training data

Training error

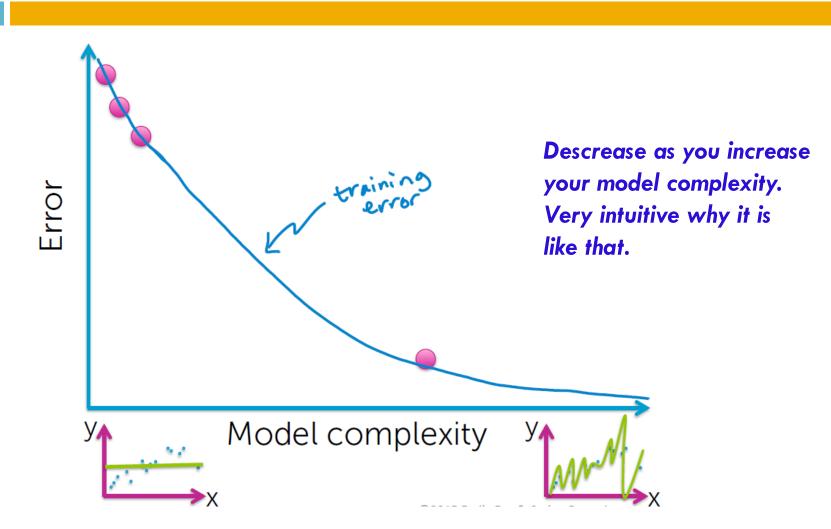
59

Use squared error loss $(y-f_{\hat{w}}(\mathbf{x}))^2$



Training error vs. model complexity

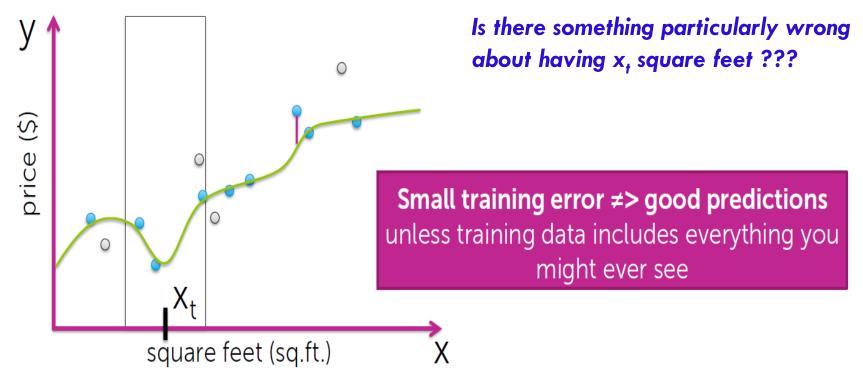
60



Is training error a good measure?

Issue: Training error is overly optimistic

because ŵ was fit to training data

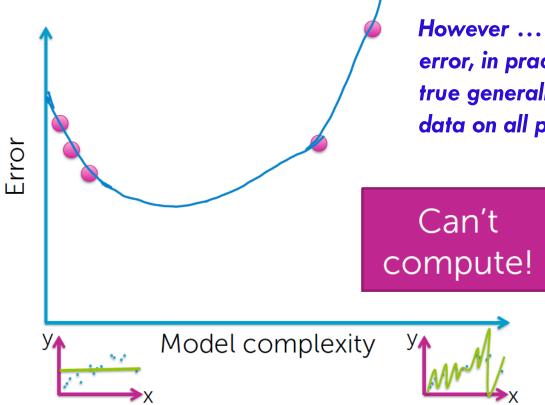


Generalisation (true) error

Really want estimate of loss over all possible (î,\$) pairs

Generalisation error vs model complexity

63



However ... in contrast to the training error, in practice we cannot really compute true generalisation error. We don't have data on all possible houses in the area.

Forming a test set

Hold out some (â,\$) that are *not* used for fitting the model

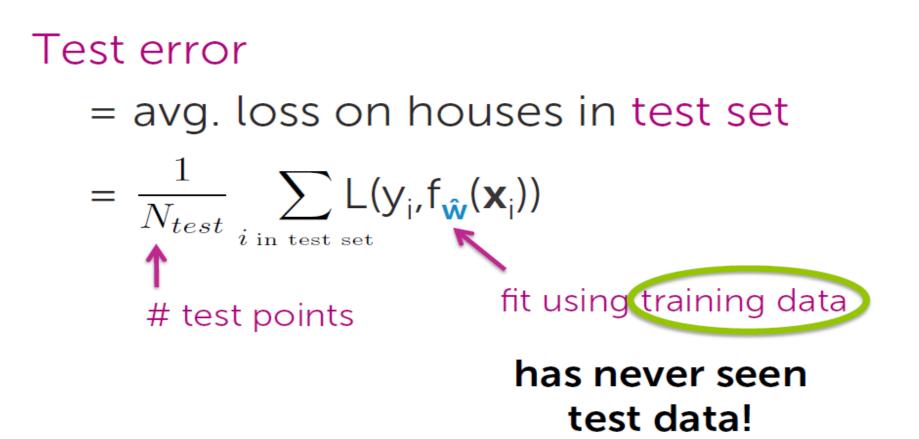
We want to approximate generalisation error.

Test set: proxy for ,,everything you might see"

Training set

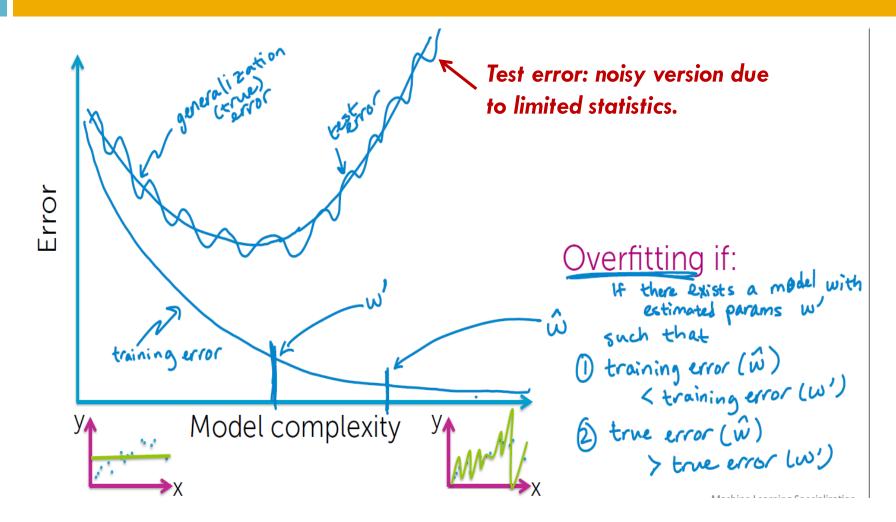
Test set

Compute test error

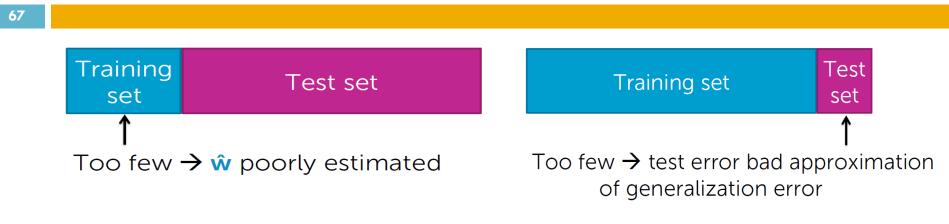


Training, true and test error vs. model complexity. Notion of overfitting.

66



Training/test splits



Typically, just enough test points to form a reasonable estimate of generalization error

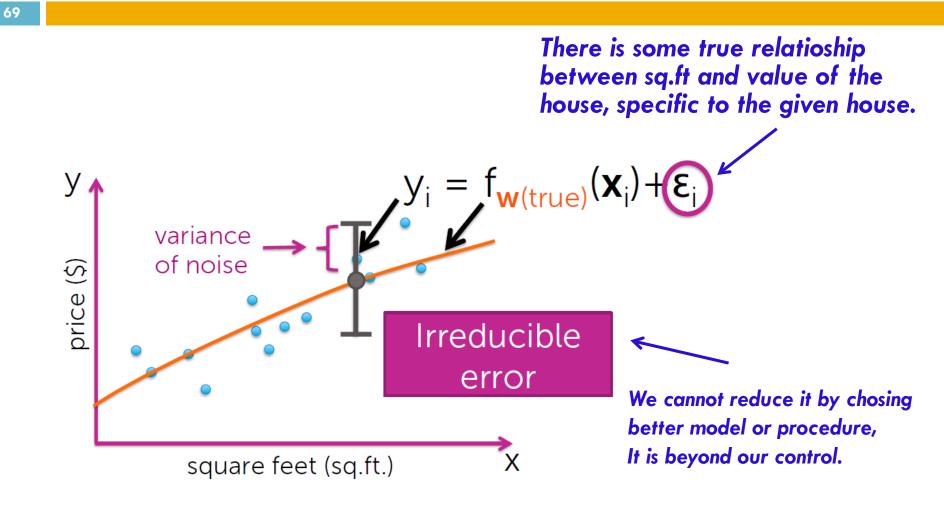
If this leaves too few for training, other methods like **cross validation** (will see later...)

Three sources of errors

In forming predictions, there are 3 sources of error:

- 1. Noise
- 2. Bias
- 3. Variance

Data are inherently noisy

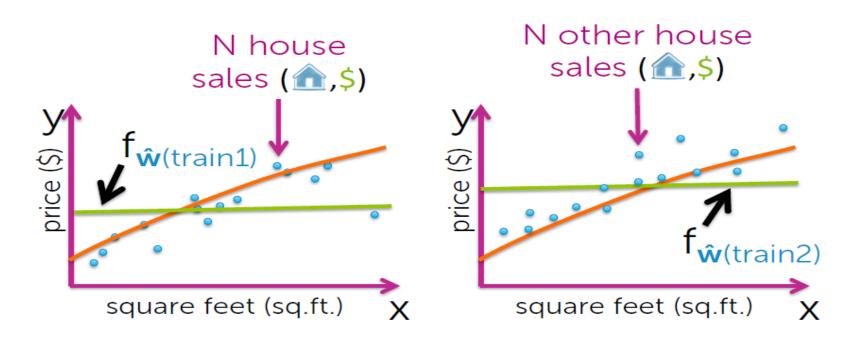


Bias contribution

70

This contribution we can control.

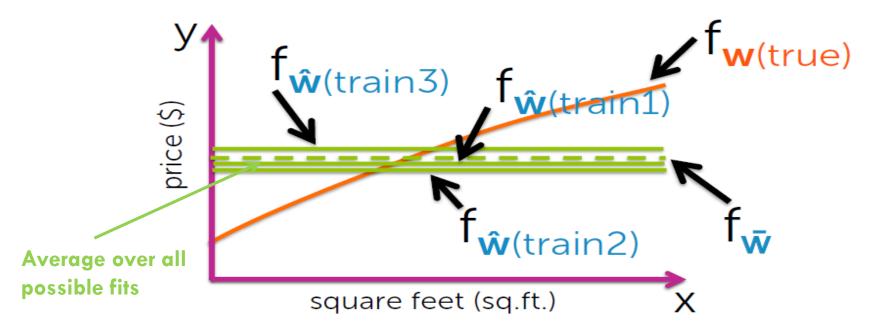
Assume we fit a constant function



Bias contribution

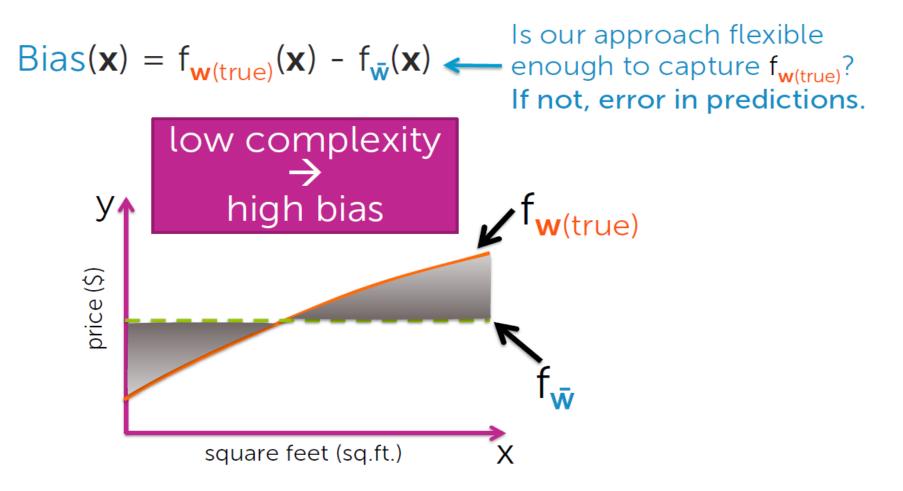
71

Over all possible size N training sets, what do I expect my fit to be?



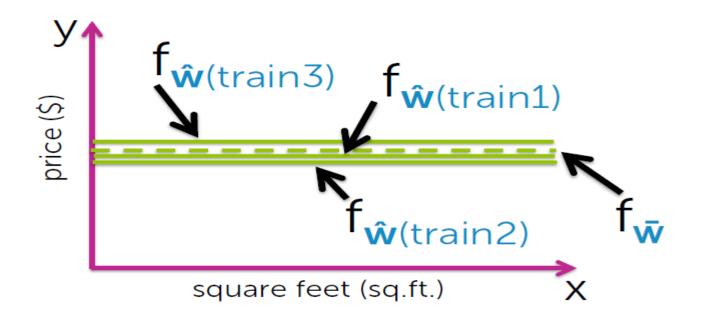
Bias contribution

72



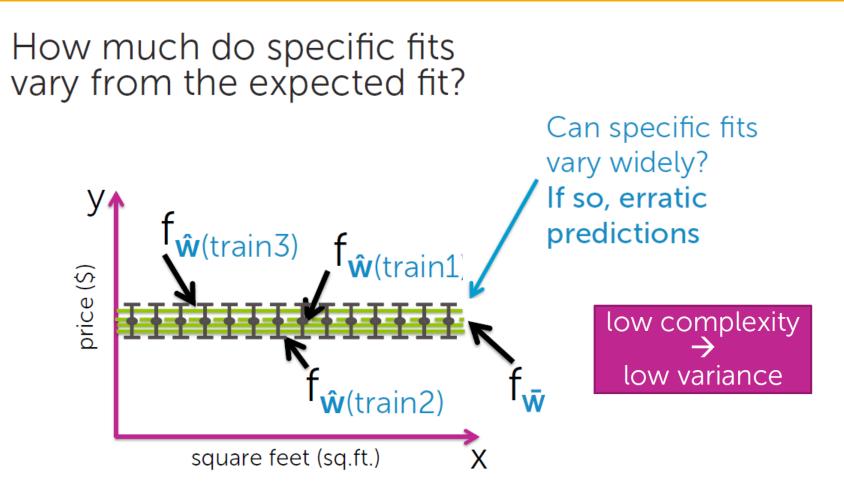
Variance contribution

How much do specific fits vary from the expected fit?



Variance contribution

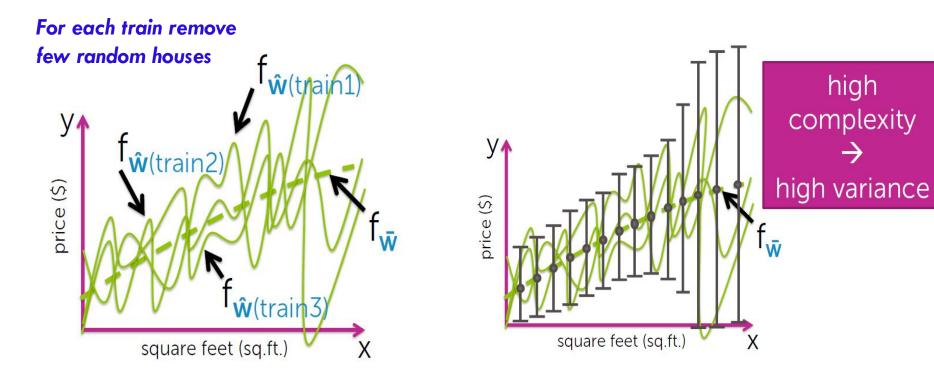
74



Variance of high complexity models

75

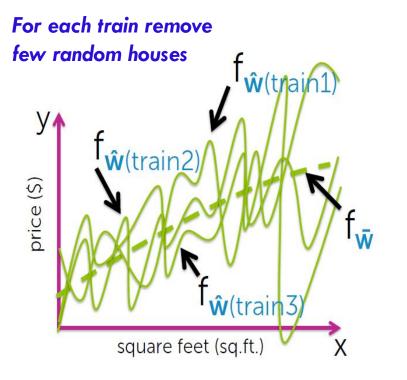
Assume we fit a high-order polynomial

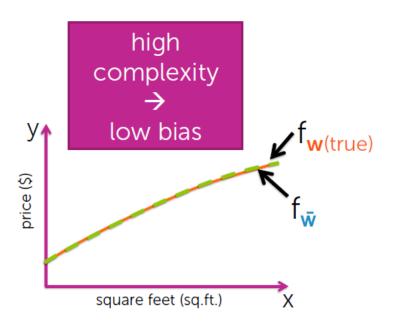


Bias of high complexity models

76

Assume we fit a high-order polynomial

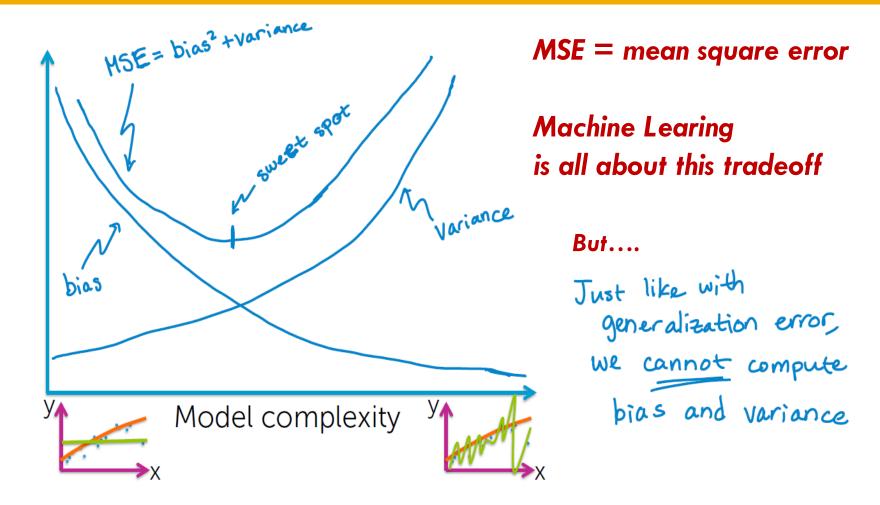




High complexity models are very flexible, pick better average trends.

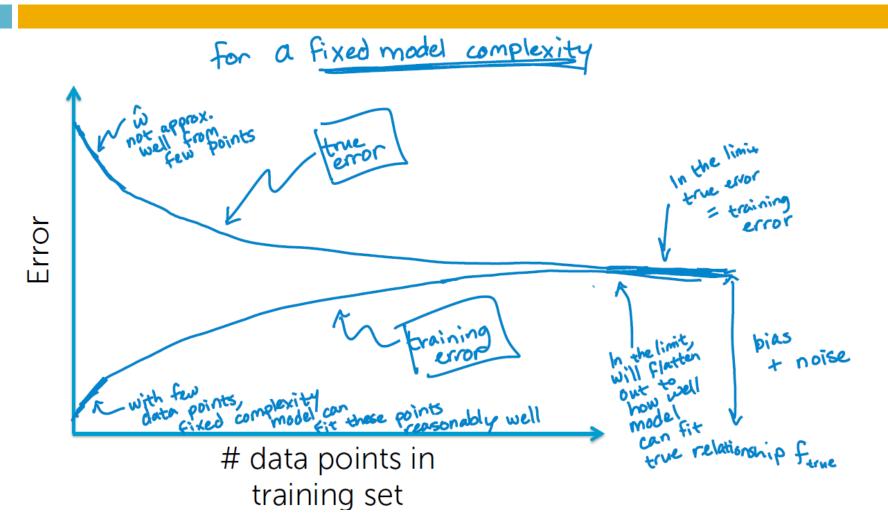
Bias -variance tradeoff

77



Errors vs amount of data

78



The regression/ML workflow

- 1. Model selection Often, need to choose tuning parameters λ controlling model complexity (e.g. degree of polynomial)
- 2. Model assessment Having selected a model, assess the generalization error

Hypothetical implementation

Training set

Test set

1. Model selection

For each considered model complexity λ :

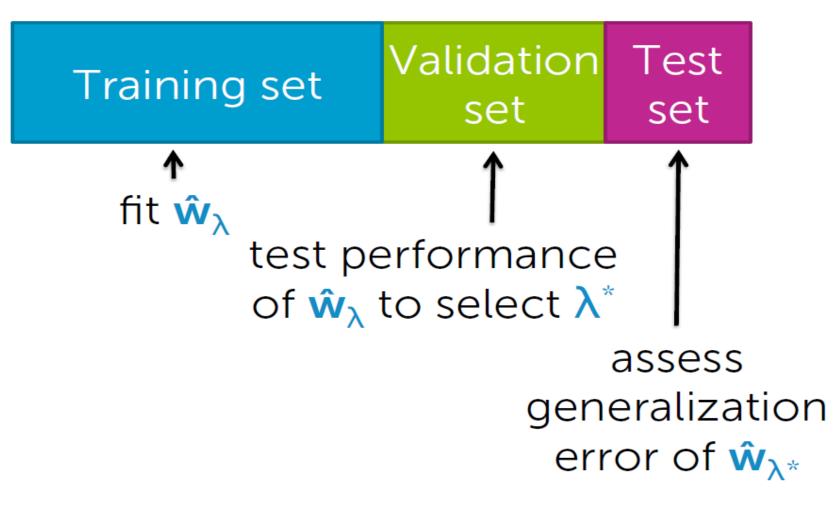
- i. Estimate parameters \hat{w}_{λ} on training data
- ii. Assess performance of $\hat{\mathbf{w}}_{\lambda}$ on test data
- iii. Choose λ^* to be λ with lowest test error

2. Model assessment

Overly optimistic!

Compute test error of \hat{w}_{λ^*} (fitted model for selected complexity λ^*) to approx. generalization error

Practical implementation

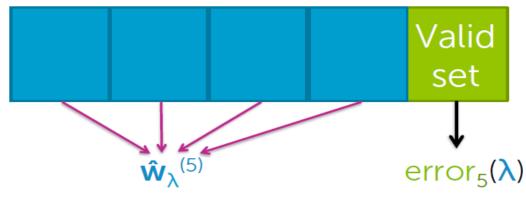


Typical splits

Training set	Validation set	Test set
80%	10%	10%
50%	25%	25%

K-fold cross validation

K-fold cross validation



For k=1,...,K

- 1. Estimate $\hat{\mathbf{w}}_{\lambda}^{(k)}$ on the training blocks
- 2. Compute error on validation block: $error_k(\lambda)$

Compute average error: $CV(\lambda) = \frac{1}{K} \sum_{k=1}^{K} error_{k}(\lambda)$

What value of K

Formally, the best approximation occurs for validation sets of size 1 (K=N)

leave-one-out cross validation

Computationally intensive

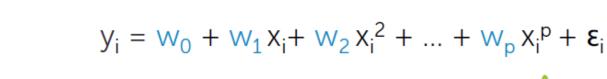
– requires computing N fits of model per λ

Typically, K=5 or 10

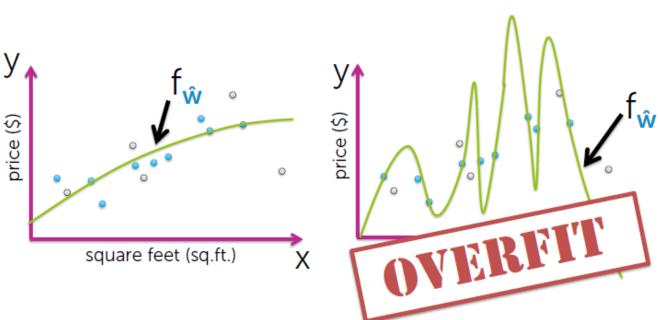
5-fold CV 10-fold CV

RIDGE REGRESSION

Flexibility of high-order polynomials



86



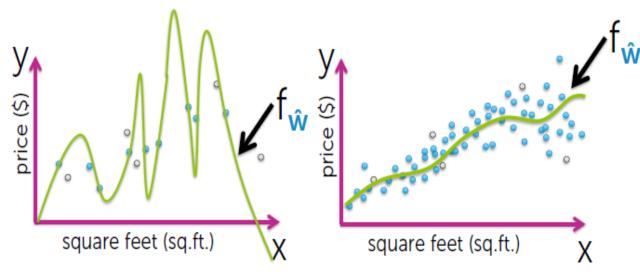
Symptoms for overfitting: often associated with very large value of estimated parameters \hat{w}

How does # of observations influence overfitting?

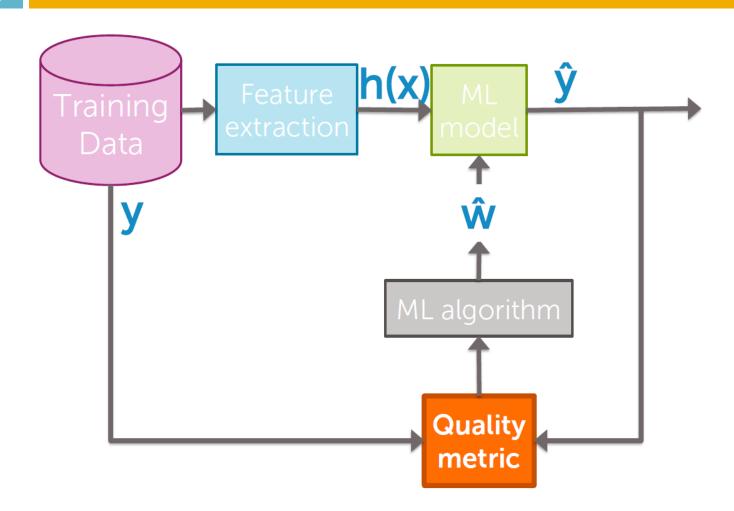
Few observations (N small) → rapidly overfit as model complexity increases Many observations (N very large)

 \rightarrow harder to overfit

87



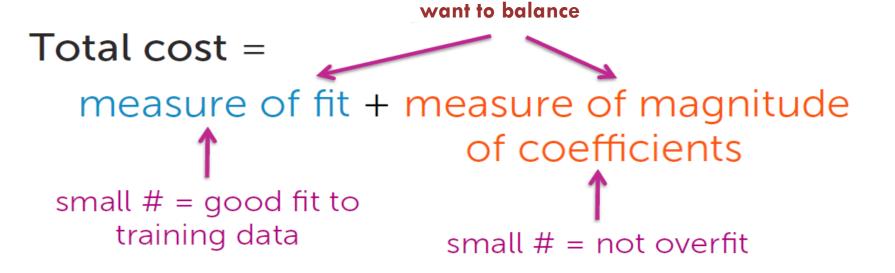
Lets improve quality metric blok



Desire total cost format

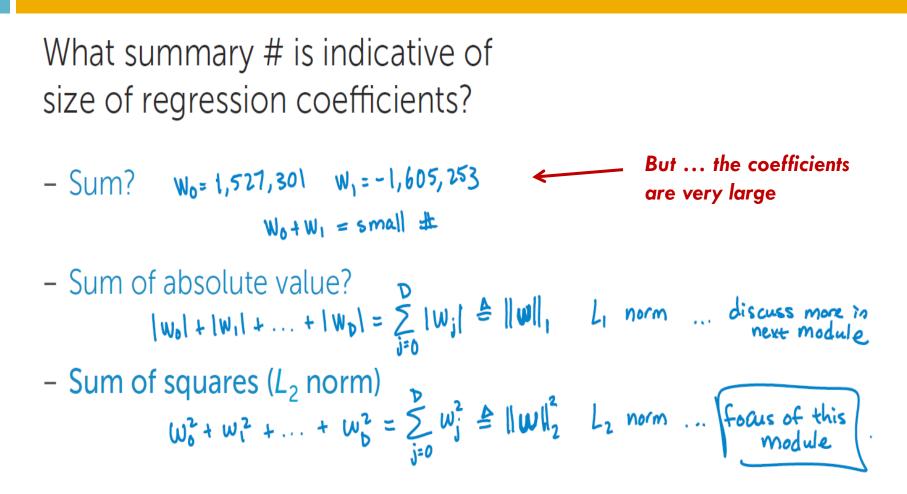
Want to balance:

- i. How well function fits data
- ii. Magnitude of coefficients

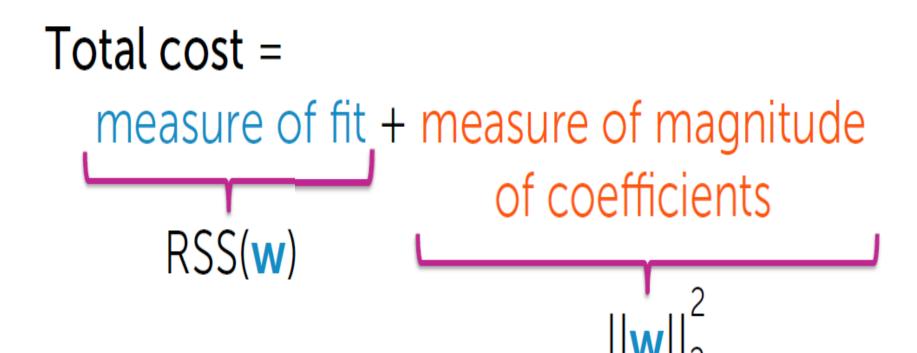


Measure of magnitude of regression coefficients

90



Consider specific total cost



Consider resulting objectives

92

What if
$$\hat{\psi}$$
 selected to minimize

$$RSS(\psi) + \lambda ||\psi||_{2}^{2}$$

$$RSS(\psi) + \lambda ||\psi||_{2}^{2}$$

$$RSS(\psi) + \lambda ||\psi||_{2}^{2}$$

$$Luning parameter = balance of fit and magnitude
If $\lambda = 0$:
reduces to minimizing RSS(ψ), as before (old solution) $\rightarrow \hat{\psi}^{LS}$ (least squares
If $\lambda = \infty$:
For solutions where $\hat{\psi} \neq 0$, then total cost is ∞
If $\hat{\psi} = 0$, then total cost is ∞
If $\hat{\psi} = 0$, then total cost is ∞
If λ in between: Then $0 \notin \|\hat{\psi}\|_{2}^{2} + \|\hat{\psi}^{LS}\|_{2}^{3}$$$

Ridge regression: bias-variance tradeoff

Large λ : high bias, low variance (e.g., $\hat{\mathbf{w}} = 0$ for $\lambda = \infty$) In essence, λ controls mode

Small λ :

controls model complexity

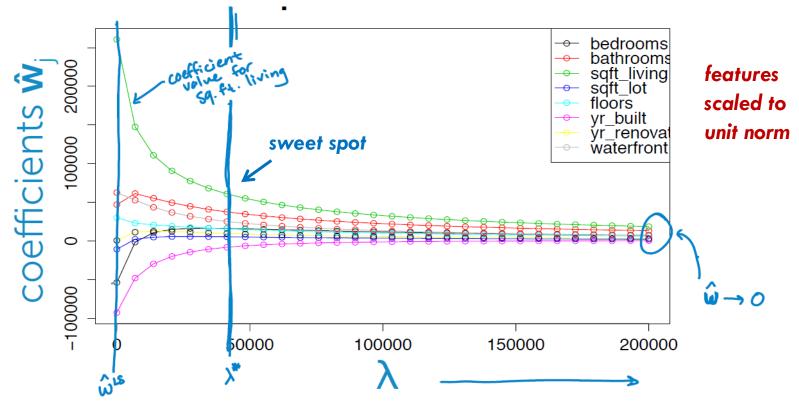
low bias, high variance

(e.g., standard least squares (RSS) fit of high-order polynomial for $\lambda = 0$)

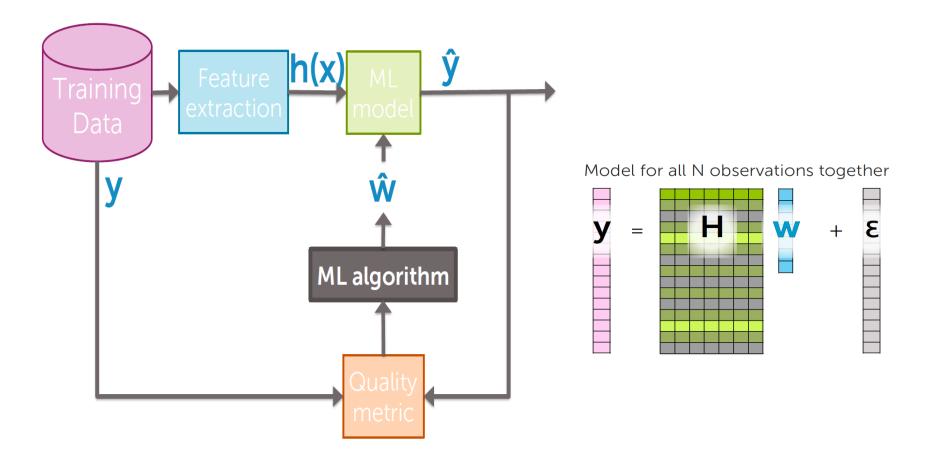
Ridge regression: coefficients path

94

What happens if we refit our high-order polynomial, but now using **ridge regression**?

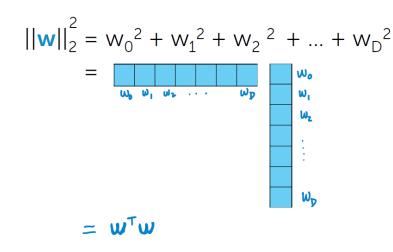


Flow chart



Ridge regression: cost in matrix notation

In matrix form, ridge regression cost is: $RSS(w) + \lambda ||w||_{2}^{2}$ $= (y-Hw)^{T}(y-Hw) + \lambda w^{T}w$



Gradient of ridge regresion cost

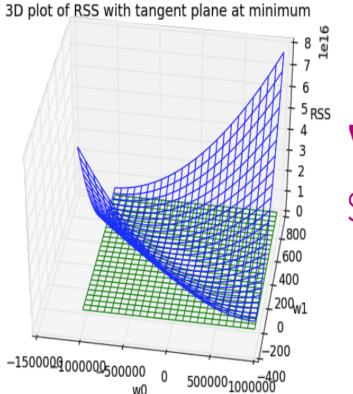
$$\nabla [RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{2}^{2}] = \nabla [(\mathbf{y} - \mathbf{H}\mathbf{w})^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}) + \lambda \mathbf{w}^{\mathsf{T}}\mathbf{w}]$$
$$= [\mathbf{y} - \mathbf{H}\mathbf{w})^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w})] + \lambda [\mathbf{w}^{\mathsf{T}}\mathbf{w}]$$
$$-2\mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}) = 2\mathbf{w}$$

Why? By analogy to 1d case...

 $\mathbf{w}^{\mathsf{T}}\mathbf{w}$ analogous to \mathbf{w}^2 and derivative of $\mathbf{w}^2=2\mathbf{w}$

Ridge regression: closed-form solution

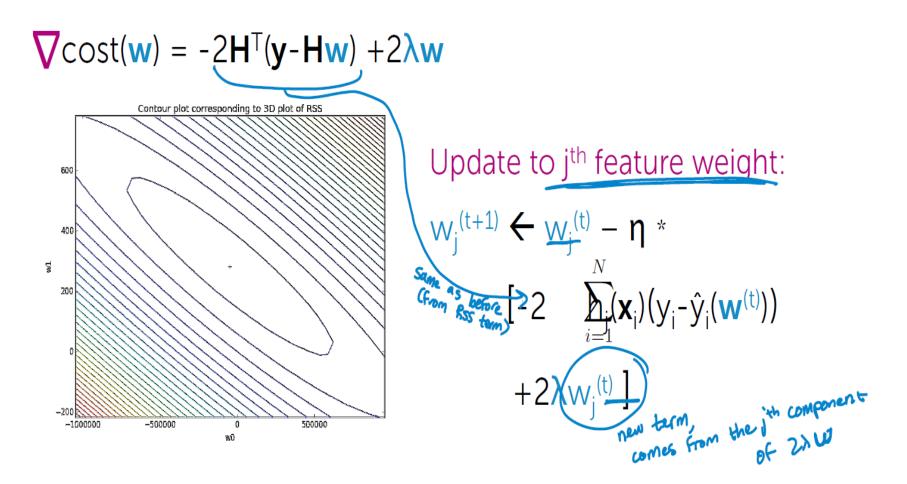
98



$$\nabla \text{cost}(\mathbf{w}) = -2\mathbf{H}^{\mathsf{T}}(\mathbf{y} - \mathbf{H}\mathbf{w}) + 2\mathbf{\lambda}\mathbf{I}\mathbf{w} = 0$$

Solve for $\mathbf{W}'_{*} + \mathbf{H}^{\mathsf{T}}\mathbf{H}\hat{\mathbf{w}} + \mathbf{\lambda}\mathbf{I}\hat{\mathbf{w}} = 0$
 $\mathbf{H}^{\mathsf{T}}\mathbf{H}\hat{\mathbf{w}} + \mathbf{\lambda}\mathbf{I}\hat{\mathbf{w}} = \mathbf{H}^{\mathsf{T}}\mathbf{y}$
 $(\mathbf{H}^{\mathsf{T}}\mathbf{H} + \mathbf{\lambda}\mathbf{I})\hat{\mathbf{w}} = \mathbf{H}^{\mathsf{T}}\mathbf{y}$
 $\hat{\mathbf{w}}^{\mathsf{s}}^{\mathsf{s}}(\mathbf{H}^{\mathsf{T}}\mathbf{H} + \mathbf{\lambda}\mathbf{I})^{-1}\mathbf{H}^{\mathsf{T}}\mathbf{y}$

Ridge regression: gradient descent



Summary of ridge regression algorithm

init $\mathbf{w}^{(1)} = 0$ (or randomly, or smartly), t=1while $||\nabla RSS(\mathbf{w}^{(t)})|| > \epsilon$

for j=0,...,Dpartial[j] = -2 $\sum_{i=1}^{N} (\mathbf{x}_i)(\mathbf{y}_i - \hat{\mathbf{y}}_i(\mathbf{w}^{(t)}))$ $\mathbf{w}_j^{(t+1)} \leftarrow (1-2\eta\lambda)\mathbf{w}_j^{(t)} - \eta$ partial[j] $t \leftarrow t+1$

How to handle the intercept

101

. . .

Recall multiple regression model

Model: $y_{i} = \underset{D}{\mathsf{w}_{0}} h_{0}(\mathbf{x}_{i}) + \underset{1}{\mathsf{w}_{1}} h_{1}(\mathbf{x}_{i}) + ... + \underset{D}{\mathsf{w}_{D}} h_{D}(\mathbf{x}_{i}) + \varepsilon_{i}$ $= \sum_{j=0}^{D} \underset{i}{\mathsf{w}_{j}} h_{j}(\mathbf{x}_{i}) + \varepsilon_{i}$

feature 1 = $h_0(\mathbf{x})$...often 1 (constant) feature 2 = $h_1(\mathbf{x})$... e.g., $\mathbf{x}[1]$ feature 3 = $h_2(\mathbf{x})$... e.g., $\mathbf{x}[2]$

feature $D+1 = h_D(\mathbf{x})... e.g., \mathbf{x}[d]$

Do we penalize intercept?

102

Standard ridge regression cost: $RSS(w) + \lambda ||w||_{2}^{2}$ strength of penalty

Encourages intercept w_0 to also be small

Do we want a small intercept? Conceptually, not indicative of overfitting...

Do we penalize intercept?

Option 1: don't penalize intercept

Modified ridge regression cost: $RSS(w_{0,}w_{rest}) + \lambda ||w_{rest}||_{2}^{2}$

Option 2: Center data first

If data are first centered about 0, then favoring small intercept not so worrisome

Step 1: Transform y to have 0 mean
Step 2: Run ridge regression as normal (closed-form or gradient algorithms)

FEATURES SELECTION & LASSO REGRESSION

Why features selection?

Efficiency:

- If size(w) = 100B, each prediction is expensive
- If ŵ sparse, computation only depends on # of non-zeros
 many zeros

$$\hat{\mathbf{y}}_{i} = \sum_{\hat{w}_{j} \neq 0} \hat{w}_{j} \mathbf{h}_{j}(\mathbf{x}_{i})$$

Interpretability:

- Which features are relevant for prediction?

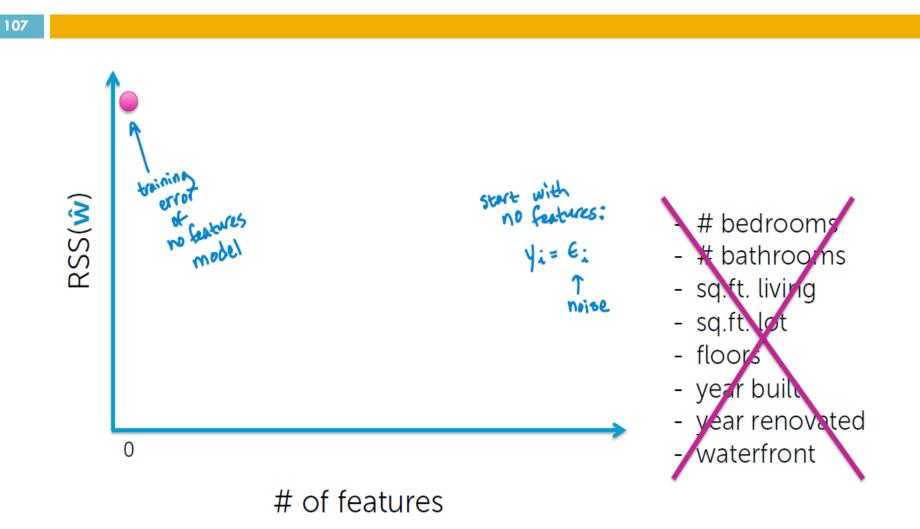
Sparcity

Housing application

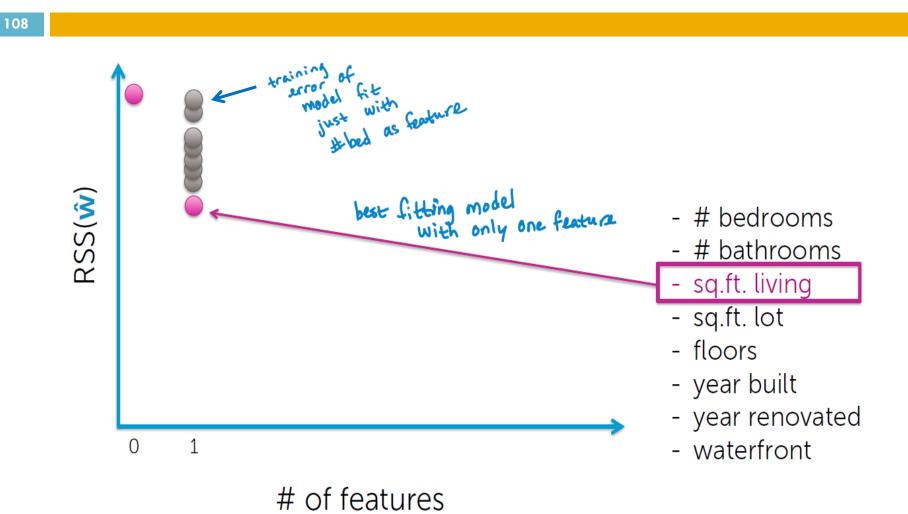
Lot size Single Family Year built Last sold price Last sale price/sqft Finished sqft Unfinished sqft Finished basement sqft # floors Flooring types Parking type Parking amount Cooling Heating Exterior materials Roof type Structure style

Dishwasher Garbage disposal Microwave Range / Oven Refrigerator Washer Dryer Laundry location Heating type Jetted Tub Deck Fenced Yard Lawn Garden Sprinkler System

Find best model of size: 0



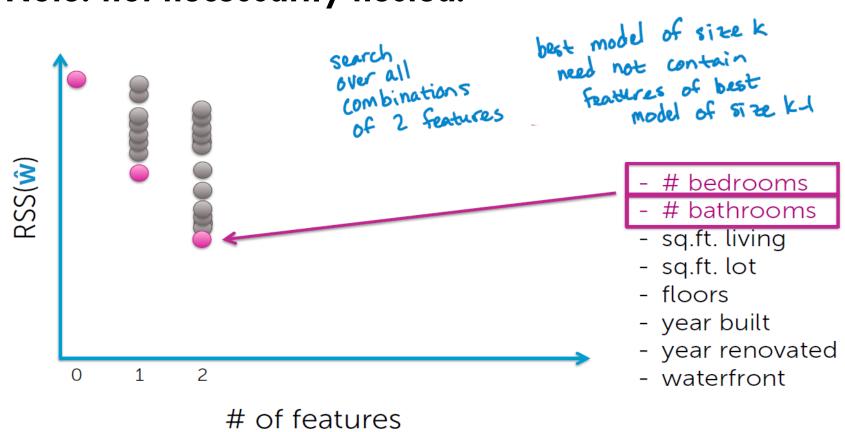
Find best model of size: 1



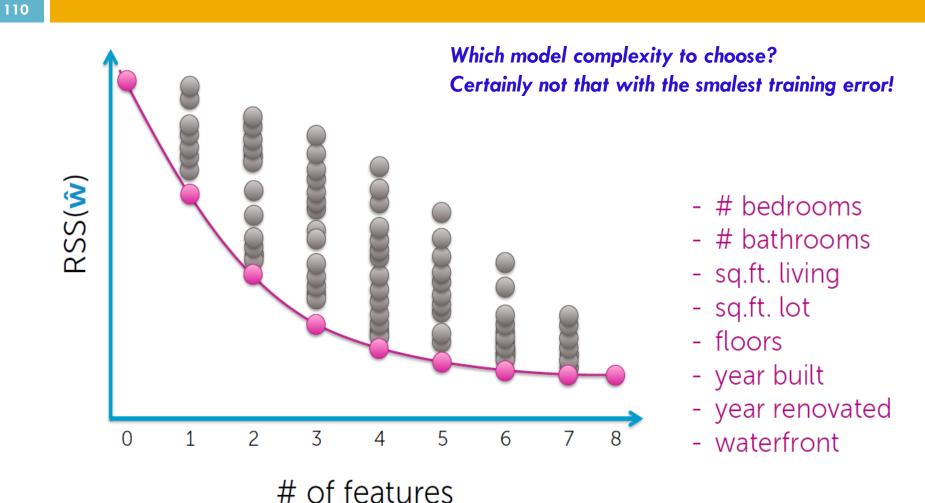
Find best model of size: 2

109

Note: not necessarily nested!



Find best model of size: N



Choosing model complexity

Option 1: Assess on validation set

Option 2: Cross validation

Option 3+: Other metrics for penalizing model complexity like BIC...

Complexity of "all subsets"

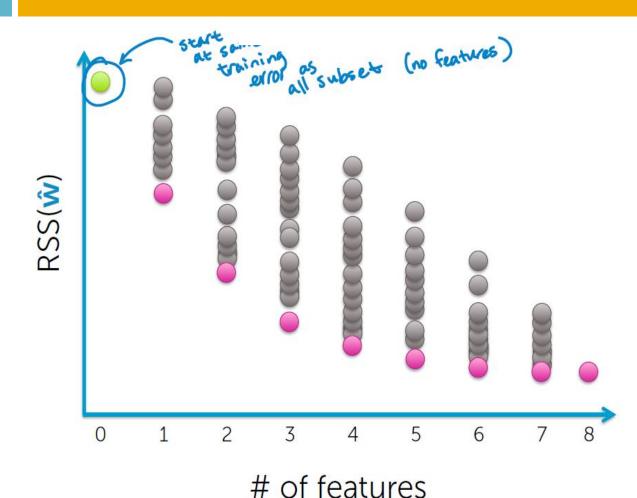
112

How many models were eva	aluated?	
 each indexed by features included)
$y_i = \varepsilon_i$	Cost Cost Contract Contract Cost Cost Cost Cost Cost Cost Cost Cos	2 ⁸ = 256 2 ³⁰ = 1,073,741,824
$y_i = w_0 h_0(\mathbf{x}_i) + \varepsilon_i$	[100000]	$2^{1000} = 1.071509 \times 10^{301}$ $2^{100B} = HUGE!!!!!!!$
$y_i = w_1 h_1(\mathbf{x}_i) + \varepsilon_i$	[010000]	
:	:	- 20.
$y_i = w_0 h_0(\mathbf{x}_i) + w_1 h_1(\mathbf{x}_i) + \varepsilon_i$	[110000]	Typically,
:	÷	computationally
$y_i = w_0 h_0(\mathbf{x}_i) + w_1 h_1(\mathbf{x}_i) + + w_D h_D(\mathbf{x}_i) + \varepsilon_i$	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & \ddots & 2 \end{bmatrix}$	infeasible

Greedy algorithm

Forward stepwise algorithm

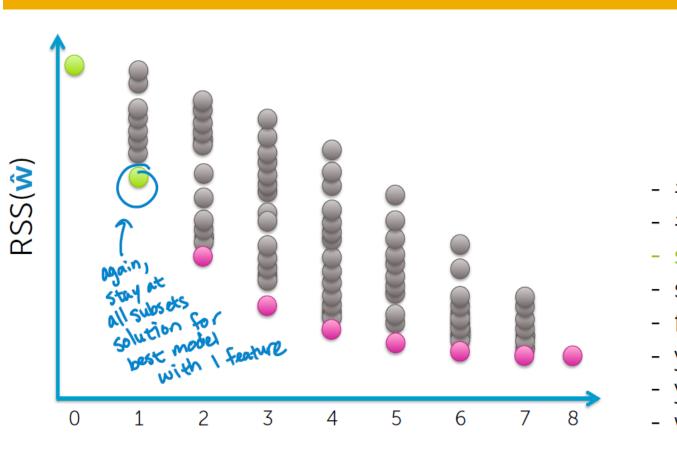
- 1. Pick a dictionary of features $\{h_0(\mathbf{x}),...,h_D(\mathbf{x})\}$
 - e.g., polynomials for linear regression
- 2. Greedy heuristic:
 - i. Start with empty set of features $F_0 = \emptyset$ (or simple set, like just $h_0(\mathbf{x}) = 1 \rightarrow y_i = w_0 + \varepsilon_i$)
 - ii. Fit model using current feature set F_t to get $\hat{\mathbf{w}}^{(t)}$
 - iii. Select next best feature $h_{i^*}(\mathbf{x})$
 - e.g., h_j(x) resulting in lowest training error when learning with F_t + {h_j(x)}
 - iv. Set $F_{t+1} \leftarrow F_t + \{h_{j*}(\mathbf{x})\}$
 - v. Recurse



114

- # bedrooms
- # bathrooms
- sq.ft. living
- sq.ft. lot
- floors
- year built
- year renovated
- waterfront

115



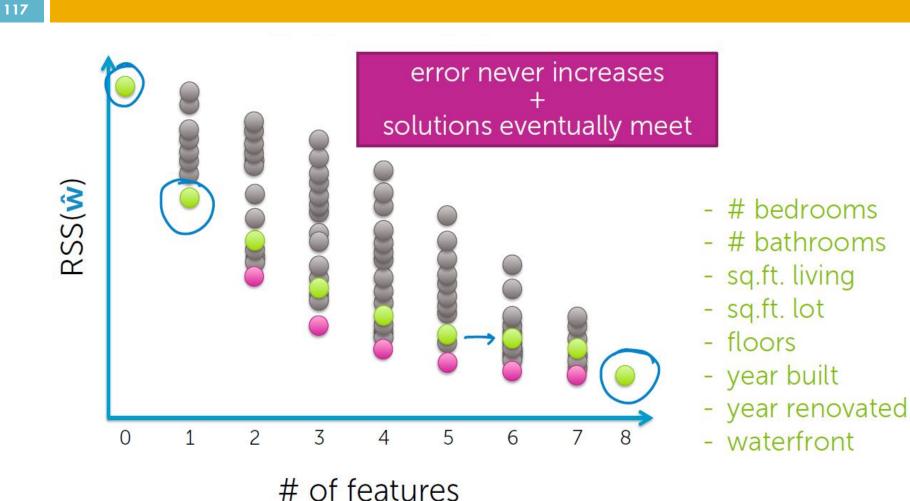
of features

- # bedrooms
- # bathrooms
- sq.ft. living
- sq.ft. lot
- floors
- year built
- year renovated
- waterfront

116



of features



Complexity of forward stepwise

How many models were evaluated?

- 1st step, D models
- 2nd step, D-1 models (add 1 feature out of D-1 possible)
- 3rd step, D-2 models (add 1 feature out of D-2 possible)

- How many steps?
- Depends

...

- At most D steps (to full model)

Other greedy algorithms

119

Instead of starting from simple model and always growing...

Backward stepwise:

Start with full model and iteratively remove features least useful to fit

Combining forward and backward steps: In forward algorithm, insert steps to remove features no longer as important

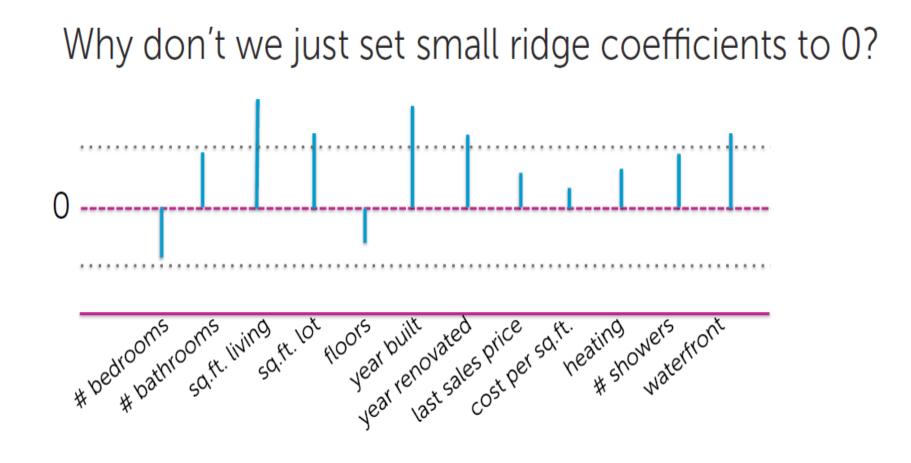
Lots of other variants, too.

Using regularisation for features selection

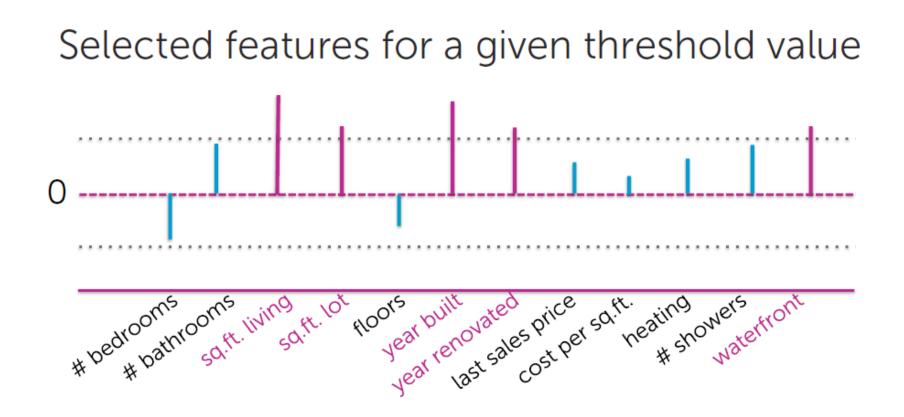
Instead of searching over a **discrete** set of solutions, can we use regularization?

- Start with full model (all possible features)
- "Shrink" some coefficients *exactly* to 0
 - i.e., knock out certain features
- Non-zero coefficients indicate "selected" features

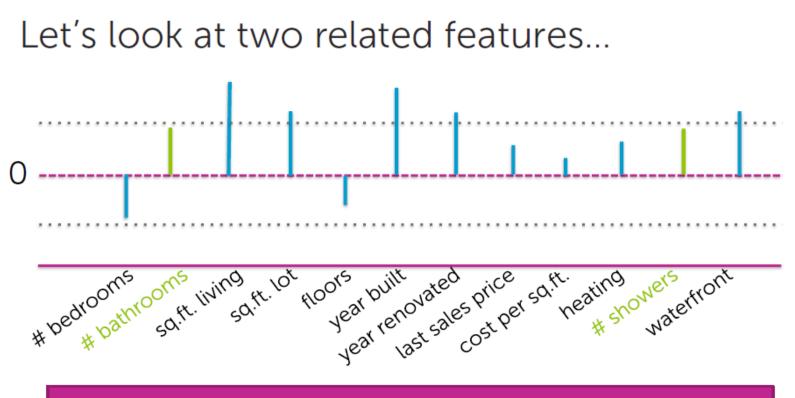
121



122

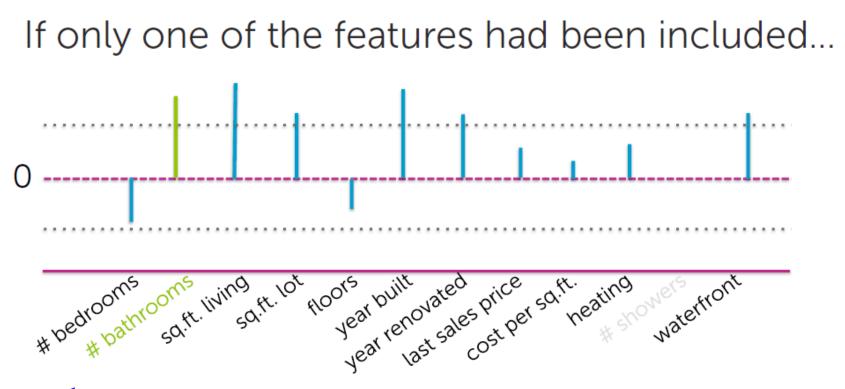


123



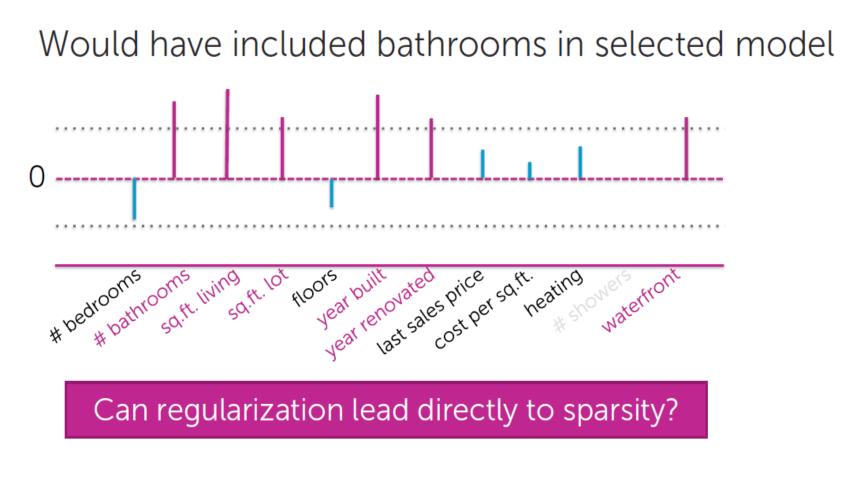
Nothing measuring bathrooms was included!

124

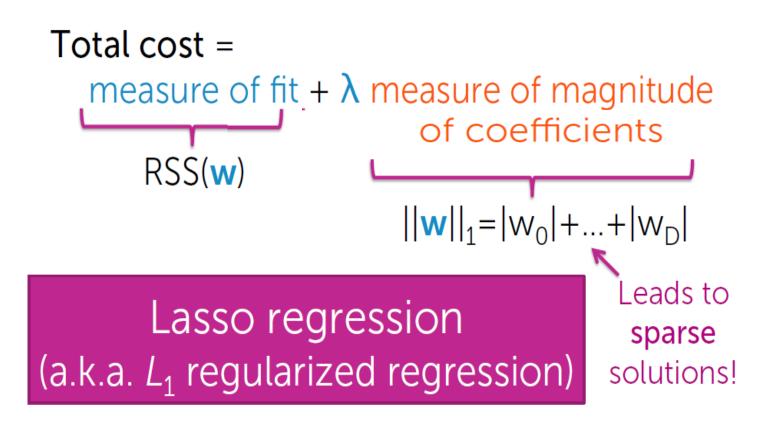


Remember: this is linear model. If we assume that #showers = #bathrooms and remove one of them from the model, coefficients will sum up.

125



Try this cost instead of ridge ...



Lasso regression

127

Just like ridge regression, solution is governed by a continuous parameter λ

$$RSS(\mathbf{w}) + \lambda ||\mathbf{w}||_{1}$$

$$\int \text{tuning parameter} = \text{balance of fit and sparsity}$$

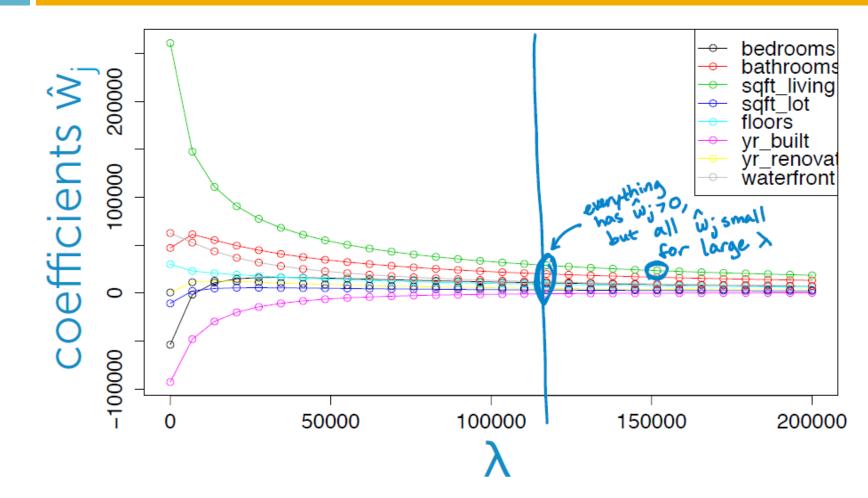
$$If \lambda = 0: \quad \hat{w}^{\text{lesso}} = \hat{w}^{\text{ls}} \quad (unregularized solution)$$

 $|f_{\lambda} = \infty; \quad \hat{\omega}^{base} = 0$

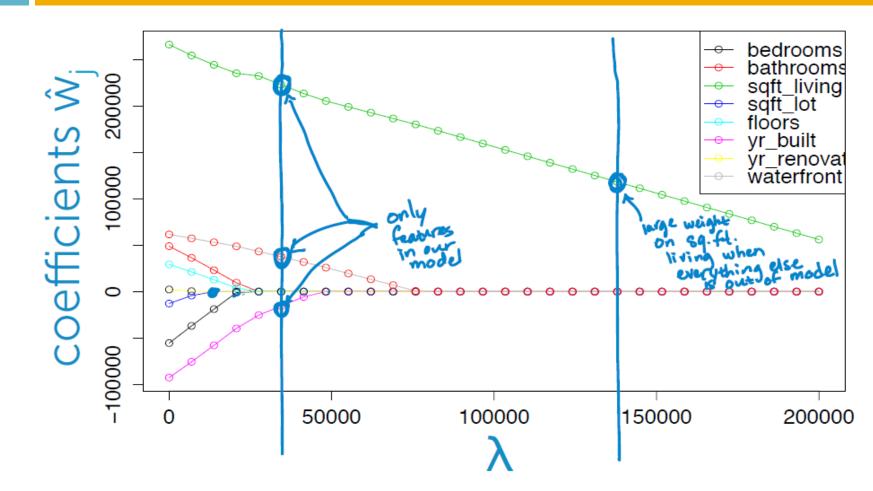
If λ in between: $\emptyset \leq \|\hat{w}^{\text{ress}}\|_{1} \leq \|\hat{w}^{\text{ress}}\|_{1}$

Coefficient path: ridge

128



Coefficient path: lasso



NONPARAMETRIC REGRESSION

Fit globaly vs fit locally

131

Parametric models Below f(x) is not really У↑ a polynomial function price (\$) price (\$) **Y** constant linear sq.ft. price (\$) sq.ft. Х Х y4 y 🛉 quadratic sq.ft. Х orice (S) price (\$) sq.ft. Х sq.ft. Х

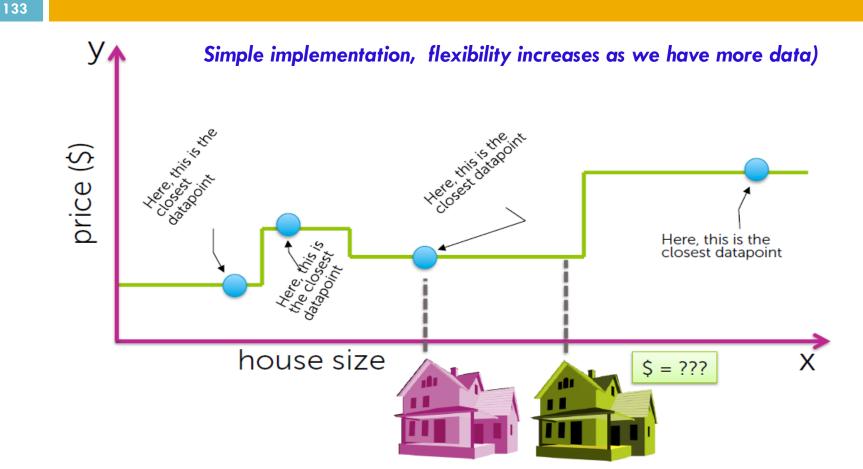
What alternative do we have?

If we:

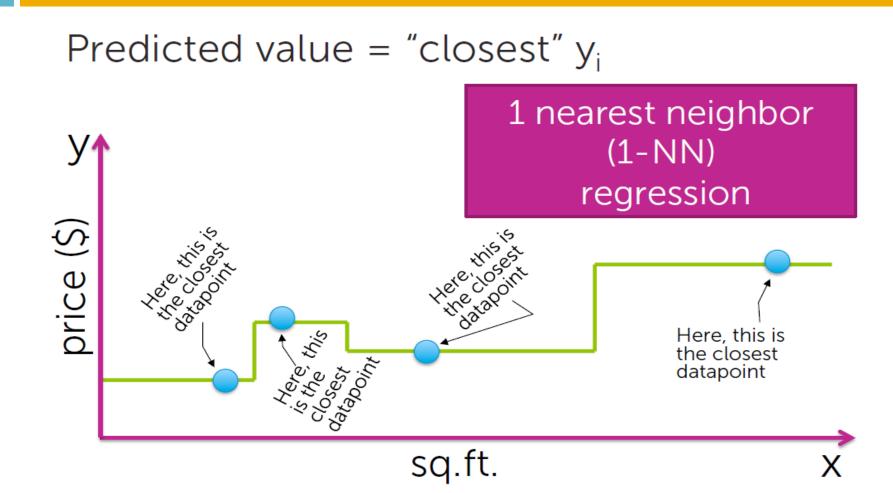
- Want to allow flexibility in f(x) having local structure
- Don't want to infer "structural breaks"

- What's a simple option we have?
- Assuming we have plenty of data...

Nearest Neighbor & Kernel Regression (nonparametric approach)



Fit locally to each data point

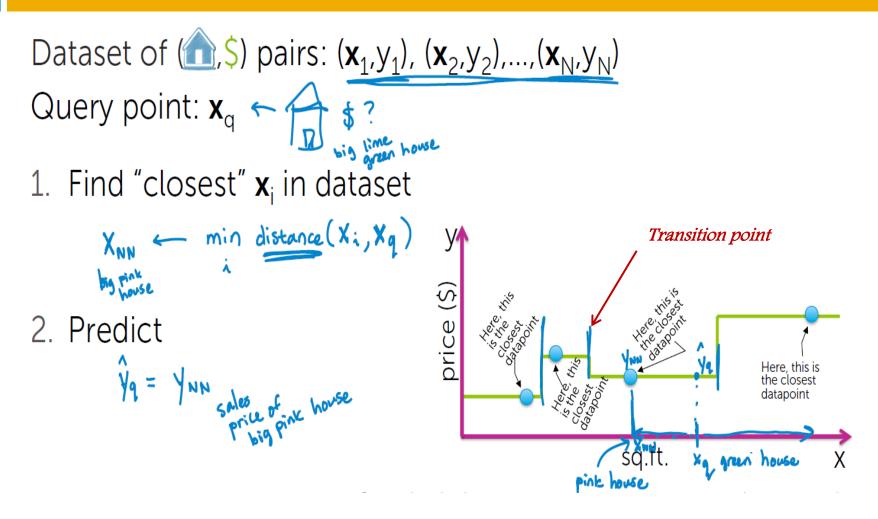


What people do naturally...

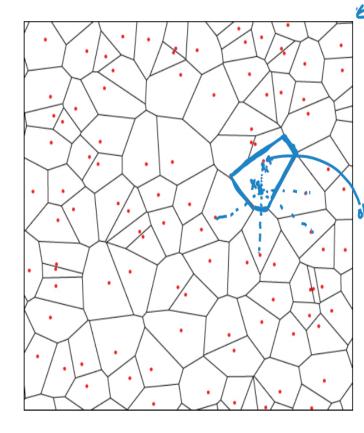
135

Real estate agent assesses value by finding sale of most similar house

1-NN regression more formally



Visualizing 1-NN in multiple dimensions



Voronoi tesselation (or diagram):

- Divide space into N regions, each
- containing 1 datapoint
 - Defined such that any
 x in region is "closest"
 to region's datapoint

Don't explicitly form!

Xq closer to X; than any other X; for iti.

Distance metrics: Notion of "closest"

In 1D, just Euclidean distance:

distance
$$(x_j, x_q) = |x_j - x_q|$$

In multiple dimensions:

- can define many interesting distance functions
- most straightforwardly, might want to weight different dimensions differently

Weighting housing inputs

Some inputs are more relevant than others

bedrooms # bathrooms sq.ft. living sq.ft. lot floors year built year renovated waterfront

Scaled Euclidan distance

140

Formally, this is achieved via

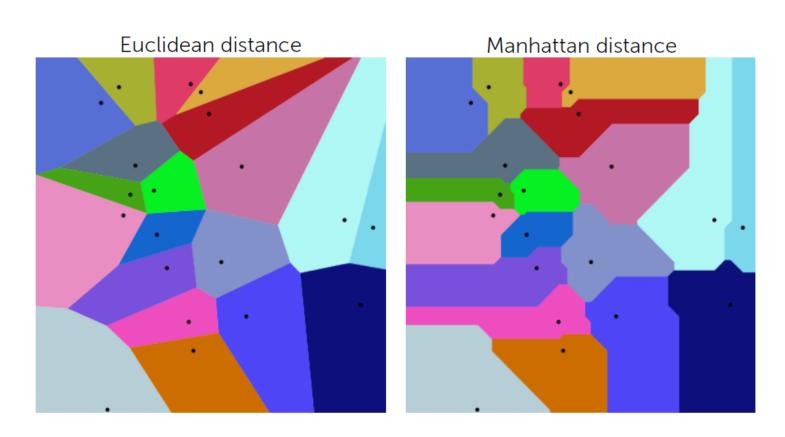
distance(
$$\mathbf{x}_{j}, \mathbf{x}_{q}$$
) =
 $\sqrt{a_{1}(\mathbf{x}_{j}[1] - \mathbf{x}_{q}[1])^{2} + ... + a_{d}(\mathbf{x}_{j}[d] - \mathbf{x}_{q}[d])^{2}}$

weight on each input (defining relative importance)

Other example distance metrics:

Mahalanobis, rank-based, correlation-based, cosine similarity, Manhattan, Hamming, ...

Different distance metrics

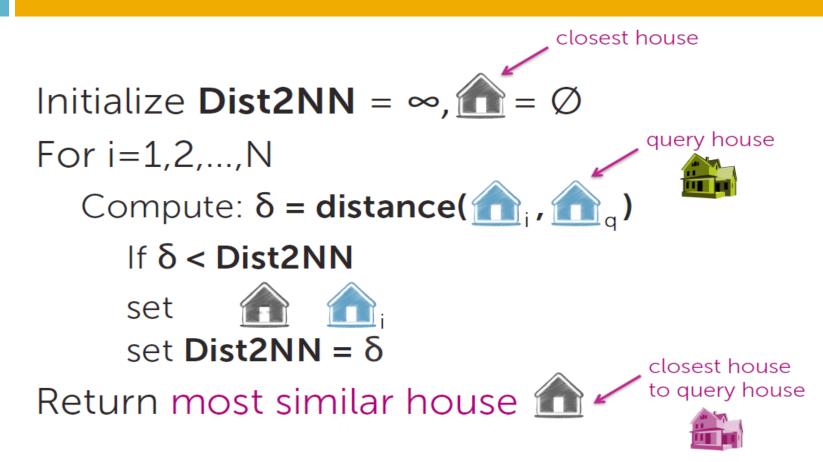


Performing 1-NN search

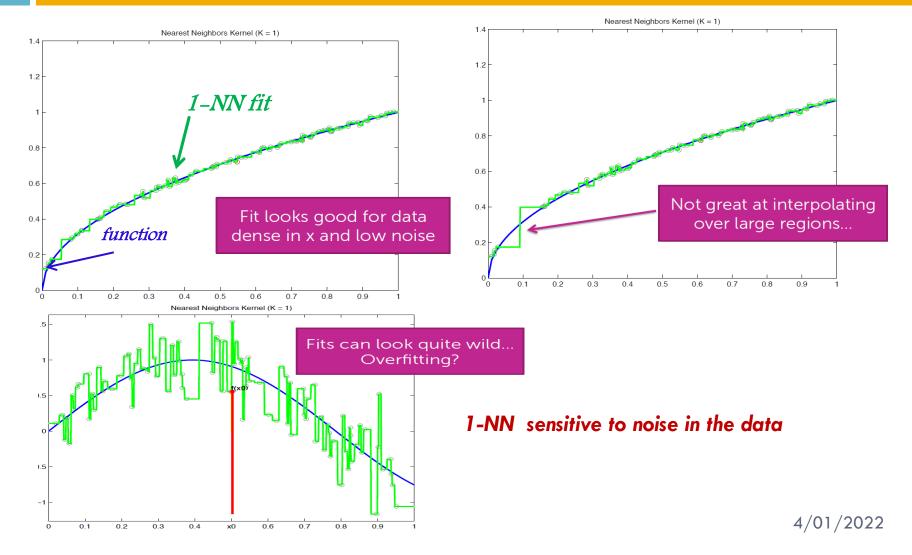
142

- Specify: Distance metric
- Output: Most similar house

1-NN algorithm



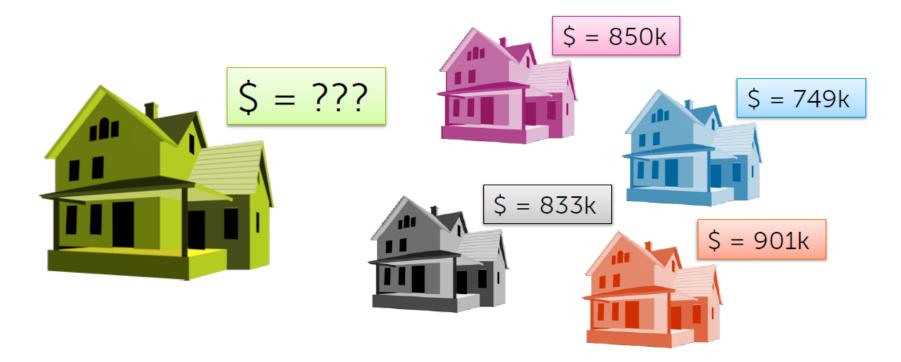
1-NN in practice



Get more "comps"

145

More reliable estimate if you base estimate off of a larger set of comparable homes



K-NN regression more formally

Dataset of $(\widehat{\mathbf{m}}, \$)$ pairs: $(\mathbf{x}_1, \mathbf{y}_1)$, $(\mathbf{x}_2, \mathbf{y}_2)$,..., $(\mathbf{x}_N, \mathbf{y}_N)$ Query point: \mathbf{x}_q

1. Find k closest x; in dataset (XNNI, XNNZ,..., XNNL) such that for any Xi not in nearest neighbor set, distance(Xi, Xq) Z distance (XNNL, Xq)

2. Predict

$$\hat{y}_{q} = \frac{1}{k} (y_{NN, + y_{NN_{2} + \dots + y_{NN_{k}}})$$

$$= \frac{1}{k} \underbrace{\xi}_{j=1}^{k} y_{UN_{j}}$$

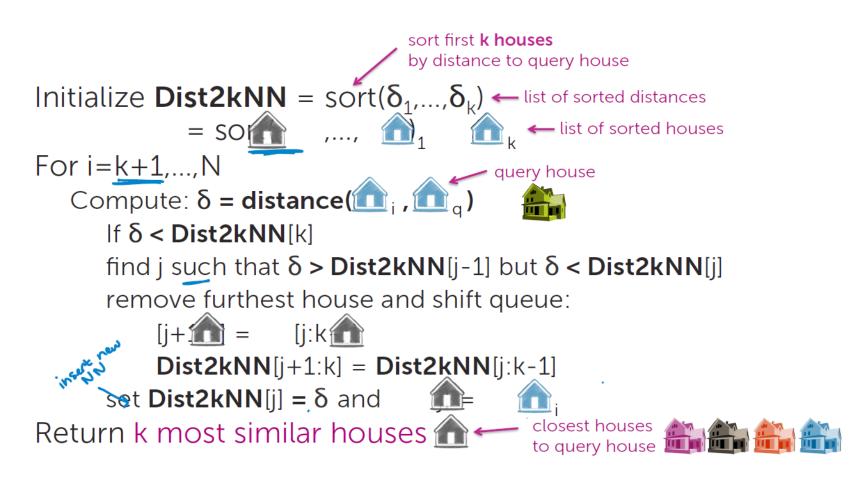
K-NN more formally

• Query house:

• Dataset:

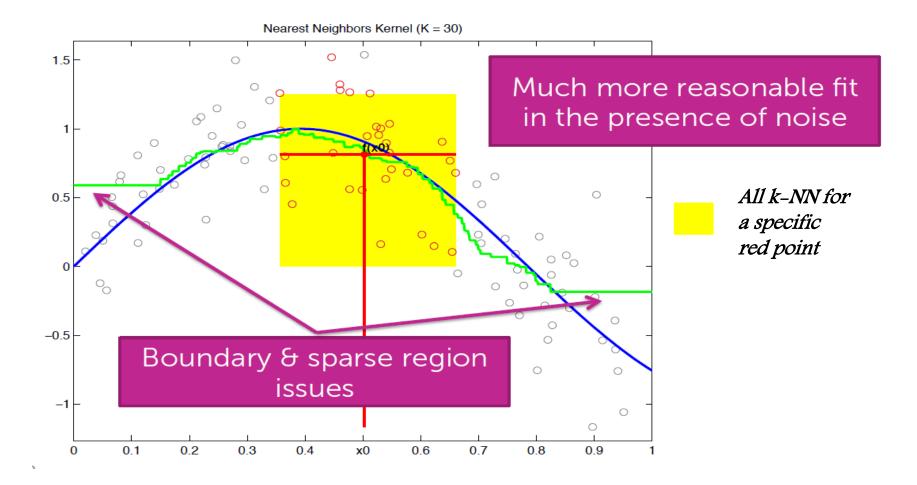
- Specify: Distance metric
- Output: Most similar houses

K-NN algorithm



K-NN in practice

149



K-NN in practice

150

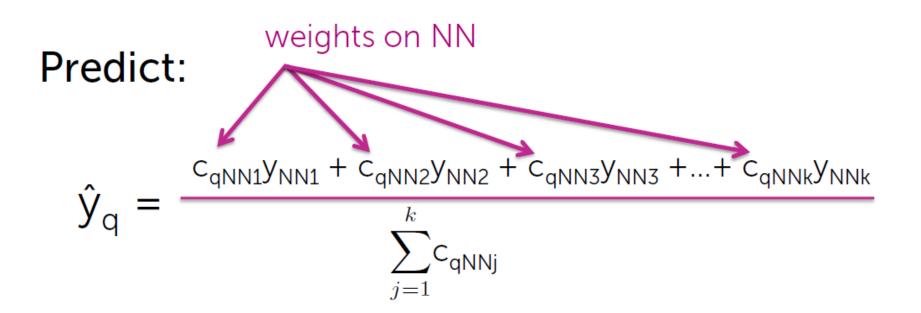
Issues with discontinuities

Overall predictive accuracy might be okay, but...

For example, in housing application:

- If you are a buyer or seller, this matters
- Can be a jump in estimated value of house going just from 2640 sq.ft. to 2641 sq.ft.
- Don't really believe this type of fit

Weigh more similar houses more than those less similar in list of k-NN



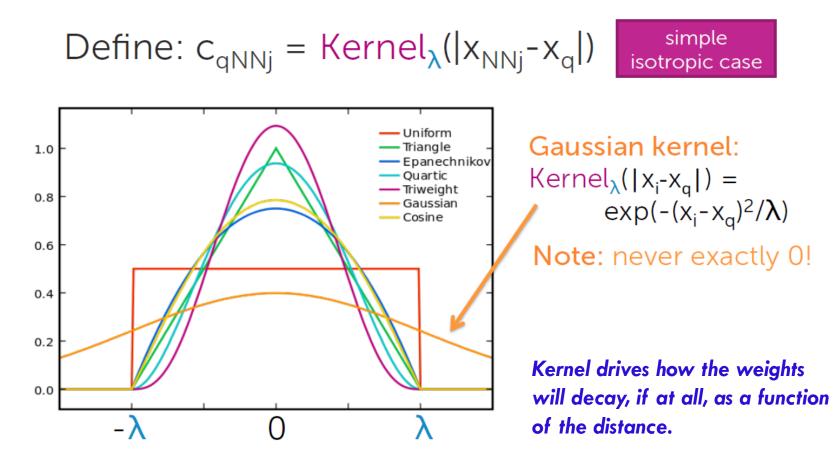
How to define weights

Want weight c_{qNNj} to be small when distance(**x**_{NNj}, **x**_q) large

and c_{qNNj} to be large when distance(\mathbf{x}_{NNj} , \mathbf{x}_{q}) small

Kernel weights for d=1

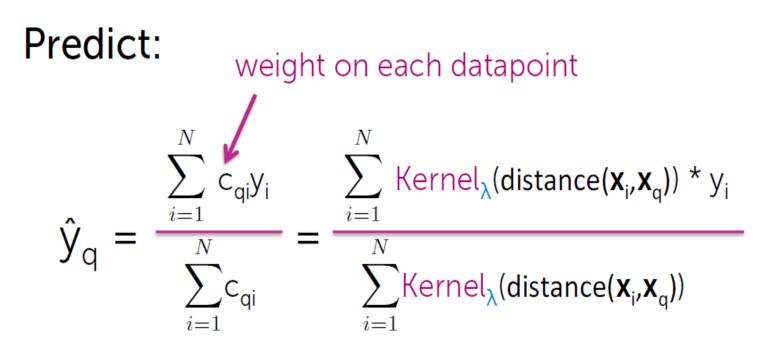
154



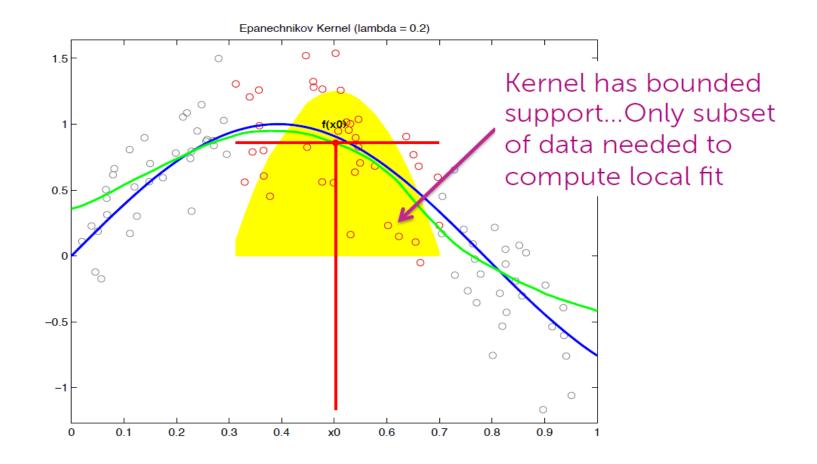
Kernel regression

155

Instead of just weighting NN, weight all points

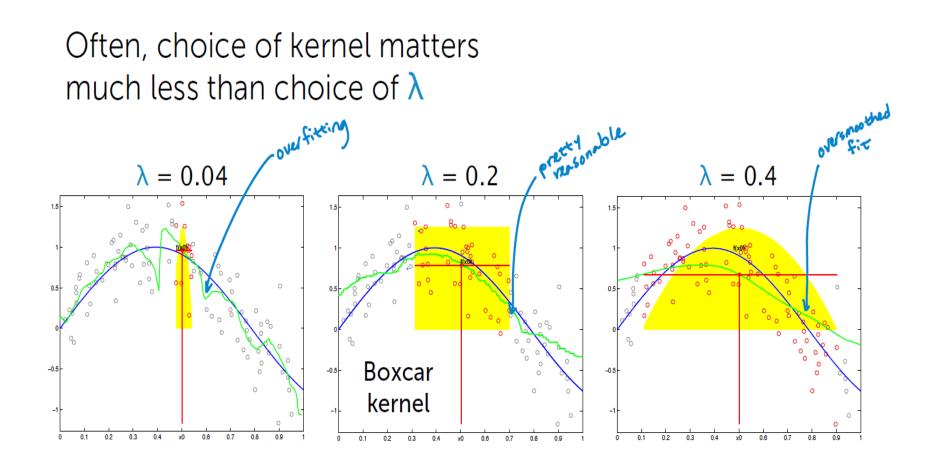


Kernel regression in practice



Choice of bandwith λ

157



Choosing λ (or k on k-NN)

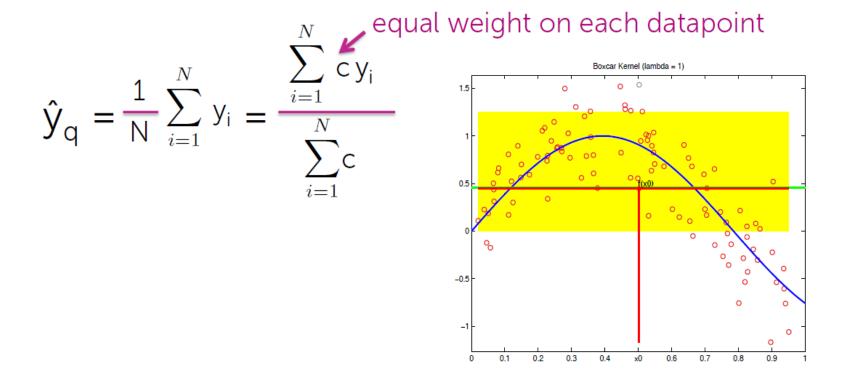
How to choose? Same story as always...

Cross Validation

Contrasting with global average

159

A globally constant fit weights all points equally



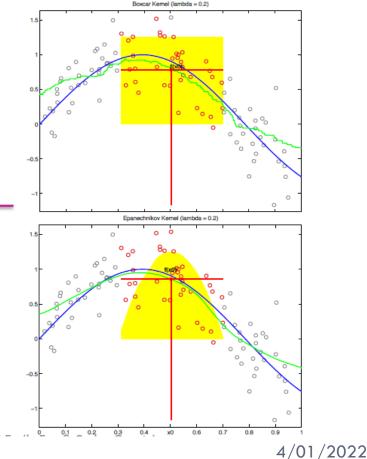
Contrasting with global average

160

Kernel regression leads to locally constant fit

 slowly add in some points and and let others gradually die off

$$\hat{\mathbf{y}}_{q} = \frac{\sum_{i=1}^{N} \text{Kernel}_{\lambda}(\text{distance}(\mathbf{x}_{i}, \mathbf{x}_{q})) * \mathbf{y}_{q}}{\sum_{i=1}^{N} \text{Kernel}_{\lambda}(\text{distance}(\mathbf{x}_{i}, \mathbf{x}_{q}))}$$



Local linear regression

So far, discussed fitting constant function locally at each point

 \rightarrow "locally weighted averages"

Can instead fit a line or polynomial locally at each point

 \rightarrow "locally weighted linear regression"

Local regression rules of thumb

- Local linear fit reduces bias at boundaries with minimum increase in variance
- Local quadratic fit doesn't help at boundaries and increases variance, but does help capture curvature in the interior
- With sufficient data, local polynomials of odd degree dominate those of even degree

Recommended default choice: local linear regression

Nonparametric approaches

k-NN and kernel regression are examples of nonparametric regression

General goals of nonparametrics:

- Flexibility
- Make few assumptions about f(x)
- Complexity can grow with the number of observations N

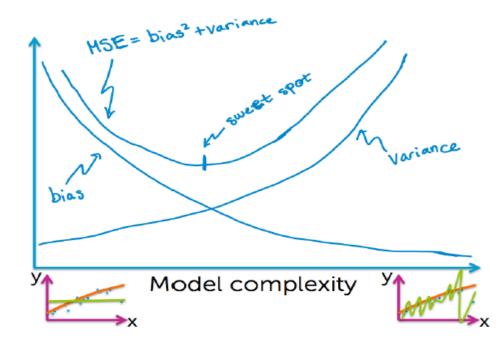
Lots of other choices:

- Splines, trees, locally weighted structured regression models...

Limiting behaviour of NN

Noiseless setting ($\epsilon_i = 0$)

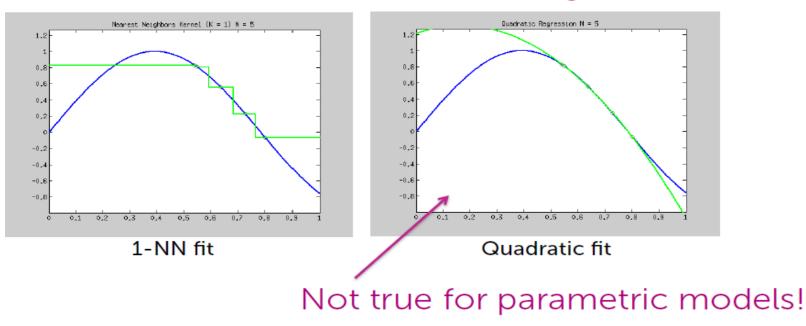
In the limit of getting an infinite amount of noiseless data, the MSE of 1-NN fit goes to 0



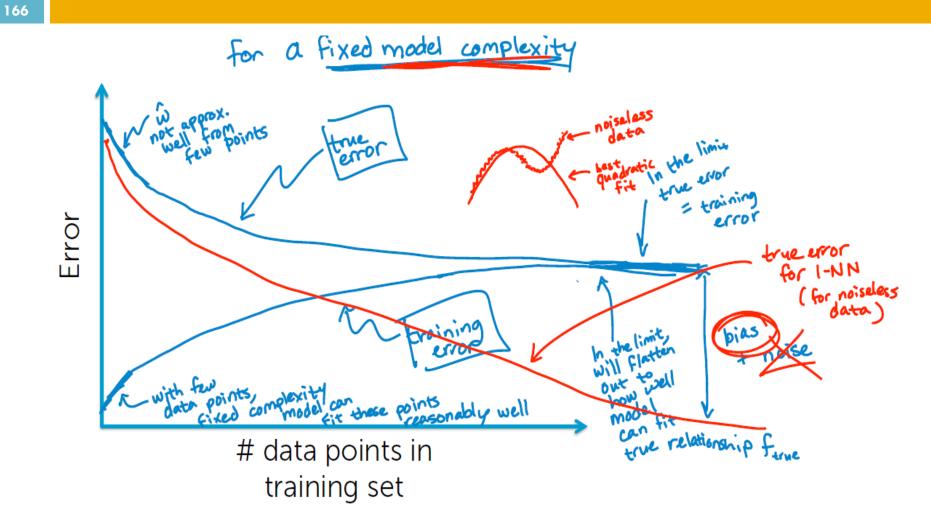
Limiting behaviour of NN

Noiseless setting ($\epsilon_i = 0$)

In the limit of getting an infinite amount of noiseless data, the MSE of 1-NN fit goes to 0



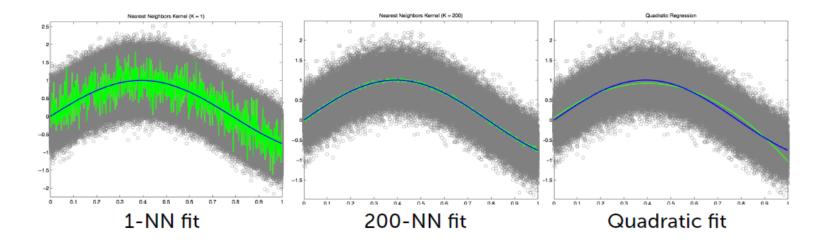
Error vs amount of data



Limiting behaviour of NN

Noisy data setting

In the limit of getting an infinite amount of data, the MSE of NN fit goes to 0 if k grows, too



Issues: NN and kernel methods

168

NN and kernel methods work well when the data cover the space, but...

- the more dimensions d you have, the more points N you need to cover the space
- need N = O(exp(d)) data points for good performance

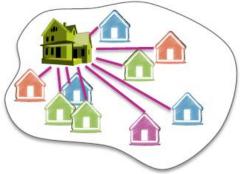
This is where parametric models become useful...

Issues: Complexity of NN search

Naïve approach: Brute force search

- Given a query point \mathbf{x}_{q}
- Scan through each point x₁, x₂,..., x_N
- O(N) distance computations per 1-NN query!
- O(Nlogk) per k-NN query!

What if N is huge??? (and many queries)



Will talk more about efficient methods in Clustering & Retrieval course

Summarising

Models	 Linear regression Regularization: Ridge (L2), Lasso (L1) Nearest neighbor and kernel regression
Algorithms	Gradient descentCoordinate descent
Concepts	 Loss functions, bias-variance tradeoff, cross-validation, sparsity, overfitting, model selection, feature selection