DATA SCIENCE WITH MACHINE LEARNING: CLASSIFICATION

This lecture is based on course by E. Fox and C. Guestrin, Univ of Washington

11/01/2022

WFAiS UJ, Informatyka Stosowana I stopień studiów

What is a classification?

From features to predictions

Overwiew of the content

Linear classifier

An inteligent restaurant review system

Positive reviews not positive about everything

Sample review:

Watching the chefs create incredible edible art made the <u>experience</u> very unique.

My wife tried their <u>ramen</u> and it was pretty forgettable.

All the <u>sushi</u> was delicious! Easily best <u>sushi</u> in Seattle.

Classifying sentiment of review

Note: we'll start talking about 2 classes, and address multiclass later

A (linear) classifier: scoring a sentence

Coefficient
1.0
1.2
1.7
-1.0
-2.1
-3.3
0.0

...

Input **x**_i: Sushi was <u>great</u>, the food was <u>awesome</u>, but the service was <u>terrible</u>.

Score(xi) = 1.2+1.7 -2.1 = 0.8 >0 => y = +1 positive review

Called a linear classifier, because output is weighted sum of input.

10

...

Training a classifier = Learning the coefficients

Decision boundary example

Word	Coefficient	
#awesome	1.0	\frown Coord(y) 10 House one 15 House
#awful	-1.5	Score(x) = 1.0 #awesome - 1.5 #awro

Decision boundary

Decision boundary separates positive & negative predictions

- For linear classifiers:
 - When 2 coefficients are non-zero
 - → line
 - When 3 coefficients are non-zero
 - ➔ plane
 - When many coefficients are non-zero
 hyperplane
- For more general classifiers
 - ➔ more complicated shapes

Flow chart:

Coefficients of classifier

12

General notation

Output: $y \not{\sim} \{-1, +1\}$ Inputs: $\mathbf{x} = (\mathbf{x}[1], \mathbf{x}[2], ..., \mathbf{x}[d])$ d-dim vector

Notational conventions: **x**[j] = jth input (*scalar*) h_j(**x**) = jth feature (*scalar*) **x**_i = input of ith data point (*vector*) **x**_i[j] = jth input of ith data point (*scalar*)

Simple hyperplane

. . .

Model: $\hat{y}_i = sign(Score(\mathbf{x}_i))$

$$Score(\mathbf{x}_{i}) = w_{0} + w_{1}\mathbf{x}_{i}[1] + ... + w_{d}\mathbf{x}_{i}[d] = \mathbf{w}^{2}$$

feature 1 = 1 feature 2 = \mathbf{x} [1] ... e.g., #awesome feature 3 = \mathbf{x} [2] ... e.g., #awful

feature $d+1 = \mathbf{x}[d] \dots e.g.$, #ramen

D-dimensional hyperplane

More generic features...

Model: $\hat{y}_i = sign(Score(\mathbf{x}_i))$ $Score(\mathbf{x}_i) = w_0 h_0(\mathbf{x}_i) + w_1 h_1(\mathbf{x}_i) + \dots + w_D h_D(\mathbf{x}_i)$ $= \sum w_j h_j(\mathbf{x}_i) (= \mathbf{W}^{\mathsf{T}} h(\mathbf{x}_i))$ feature $1 = h_0(\mathbf{x}) \dots e.g., 1$ *feature 2* = $h_1(x)$... e.g., x[1] = #awesomefeature $3 = h_2(x) \dots e.g., x[2] = #awful$ or, $log(\mathbf{x}[7]) \mathbf{x}[2] = log(\#bad) \times \#awful$ or, tf-idf("awful") ...

feature $D+1 = h_D(\mathbf{x}) \dots$ some other function of $\mathbf{x}[1], \dots, \mathbf{x}[d]$

16

Linear classifierClass probability

How confident is your prediction?

- 18
- Thus far, we've outputted a prediction +1 or -1
- But, how sure are you about the prediction?

Conditional probability

19

Probability a review with 3 "awesome" and 1 "awful" is positive is 0.9

y = sentiment	x = review text
+1	All the sushi was delicious! Easily best sushi in Seattle.
+1	Sushi was awesome & everything else was awesome ! The service was awful , but overall awesome place!
-1	My wife tried their ramen, it was pretty forgettable.
+1	The sushi was good, the service was OK
+1	awesome awesome awful awesome
-1	awesome awesome awful awesome
+1	awesome awesome awful awesome
	y = sentiment +1 +1 -1 -1 +1 +1 +11 +1 +1 +1 +1 +1 +1 +1

l expect 90% of rows with reviews containing 3 "awesome" & 1 "awful" to have y = +1 (Exact number will vary for each specific dataset)

Interpreting conditional probabilities

How confident is your prediction?

Learn conditional probabilities from data

Training data: N observations (\mathbf{x}_{i}, y_{i})

x[1] = #awesome	x [2] = #awful	y = sentiment
2	1	+1
0	2	-1
3	3	-1
4	1	+1

Predicting class probabilities

- Estimating P(y|x) improves interpretability:
 - Predict $\hat{y} = +1$ and tell me how sure you are

Why not just use regression to build classifier?

Link function

Link function: squeeze real line into [0,1]

Logistic regression classifier: linear score with logistic link function

Simplest link function: sign(z)

But, sign(z) only outputs -1 or +1, no probabilities in between

Logistic function (sigmoid, logit)

$$sigmoid($$
Score $) = \frac{1}{1 + e^{-$ Score}}

						1.0
Score	-∞	-2	0.0	+2	+∞	<u>وَ</u> 0.8
sigmoid(Score)	0.0	0.12	0.5	0.88	1.0	0.6 S) 0.6 0.4 is 0.2
						0.0 -6 -4 -2 0 2 4

11/01/2022

Score

Logistic regression model

31

 $P(y=+1|x_i,w) = sigmoid(Score(x_i))$

Effect of coefficients

Effect of coefficients on logistic regression model

Flow chart:

ML

model

Learning logistic regression model

Training a classifier = Learning the coefficients

Categorical inputs

- Numeric inputs:
 - #awesome, age, salary,...
 - Intuitive when multiplied by coefficient
 - e.g., 1.5 #awesome
- Categorical inputs:

Numeric value, but should be interpreted as category (98195 not about 9x larger than 10005)

Zipcode (10005, 98195,...)

How do we multiply category by coefficient??? Must convert categorical inputs into numeric features

Encoding categories as numeric features

Multiclass classification

37

1 versus all

Estimate $\hat{P}(y=A|x)$ using 2-class model

1 versus all

1 versus all: simple multiclass classification using C 2-class models

Summary: Logistic regression classifier

40

Linear classifier Parameters learning

Maximizing likelihood (probability of data)

Data point	x [1]	x [2]	у	Choose w to maximize
x ₁ ,y ₁	2	1	+1	$P(y_{=}+1 \chi_{i_1}\omega)=P(y_{=}+1 \chi_D]=\xi,\chi_D]=1,\omega)$
x ₂ ,y ₂	0	2	-1	P(g=-1 X2,w)
x ₃ ,y ₃	3	3	-1	P(y=-1 x3,w)
x ₄ ,y ₄	4	1	+1	P(y=+1 X4, w)
x ₅ ,y ₅	1	1	+1	
x ₆ ,y ₆	2	4	-1	
x ₇ ,y ₇	0	3	-1	
x ₈ ,y ₈	0	1	-1	
x ₉ ,y ₉	2	1	+1	

Maximum likelihood estimation (MLE)

Learn logistic regression model with MLE

Flow chart:

ML algorithm

44

Find "best" classifier

45

Maximize likelihood over all possible w_0, w_1, w_2

Maximizing likelihood

46

Gradient ascent

Convergence criteria

For convex functions, optimum occurs when

$$\frac{dl}{dw} = 0$$

In practice, stop when

$$\frac{d\ell}{dw} < \epsilon$$

 $\frac{d\omega}{\omega^{(4)}} + \frac{1}{tokrance}$

Algorithm:

while not converged $w^{(t+1)} \leftarrow w^{(t)} + \eta \frac{d\ell}{dw}$

Gradient ascent

Moving to multiple dimensions: Gradients

The log trick, often used in ML...

Derivative for logistic regression

Derivative of (log-)likelihood

Derivative for logistic regression

Computing derivative

$\frac{\partial \ell(\mathbf{w}^{(t)})}{\partial \mathbf{w}_j} = \sum_{i=1}^N h_j(\mathbf{x}_i) \left(\mathbbm{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)}) \right)$										
$W_0^{(t)}$ $W_1^{(t)}$ $W_2^{(t)}$	$\begin{array}{c} (t) & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & -2 \end{array}$		<u>DR</u> DN,							
h, (1) = 11 a	the same			_						
x [1]	x [2]	У	P(y=+1 x _i ,w)	Contribution to derivative for w ₁	Total derivatives					
2	1	+1	0.5	2(1-0.5) = 1						
0	2	-1	0.02	0 (0-0.02) = 0	$\frac{\partial \chi(w,y)}{\partial w_1} = 1 + 0 - 0.15 + 0.48 = 1.33$					
3	3	-1	0.05	3 (0 - 0.05)= - 0.15	$w^{(4+1)} = w^{(1)} + n \partial \ell(w^{(0)}) \qquad n = 0.1$					
4	1	+1	0.88	4(1-0.88)=0.48	$= + 0.1 + 1.33 = .1 ^{33} 5$					

52

If step size is too small, can take a long time to converge

53

54

Careful with step sizes that are too large

55

Very large step sizes can even cause divergence or wild oscillations

Simple rule of thumb for picking step size $\boldsymbol{\eta}$

- Unfortunately, picking step size requires a lot of trial and error ⊗
- Try a several values, exponentially spaced
 - Goal: plot learning curves to
 - find one <u>n</u> that is too small (smooth but moving too slowly)
 - find one η that is too large (oscillation or divergence)
- Try values in between to find "best" η

Le exponentially space, pick one that leads best training data likelihood

 Advanced tip: can also try step size that decreases with iterations, e.g.,

Flow chart: final look at it

57

Linear classifierOverfitting & regularization

Training a classifier = Learning the coefficients

59

Classification error & accuracy

- 60
- Error measures fraction of mistakes

- Best possible value is 0.0

- Often, measure accuracy
 - Fraction of correct predictions

error = # Mistakes Total number of dots points

- Best possible value is 1.0

Decision boundary example

Learned decision boundary

Quadratic features (in 2d)

Degree 6 features (in 2d)

Degree 20 features (in 2d)

Often, overfitting associated with very large estimated coefficients ŵ

66

Overfitting in logistic regression

The subtle (negative) consequence of overfitting in logistic regression

Logistic regression model

Remember about this probability interpretation

Effect of coefficients on logistic regression model

With increasing coefficients model becomes overconfident on predictions

Input **x**: #awesome=2, #awful=1

Learned probabilities

Quadratic features: learned probabilities

70

Overfitting \rightarrow overconfident predictions

71

Quality metric \rightarrow penelazing large coefficients

Desired total cost format

Want to balance:

- i. How well function fits data
- ii. Magnitude of coefficients

Measure of magnitude of logistic regression coefficients

What summary # is indicative of size of logistic regression coefficients?

74

Visualizing effect of regularisation

Degree 20 features, effect of regularization penalty λ

Effect of regularisation

Coefficient path

Visualizing effect of regularisation

Degree 20 features: regularization reduces "overconfidence"

Sparse logistic regression

L1 regularised logistic regression

80

Decision trees

What makes a loan risky?

81

Classifier: decision trees

82

Quality metric: Classification error

Error measures fraction of mistakes

Error = <u># incorrect predictions</u> # examples

- Best possible value : 0.0
- Worst possible value: 1.0

Find the tree with lowest classification error

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

How do we find the best tree?

Exponentially large number of possible trees makes decision tree learning hard! (NP-hard problem)

Simple (greedy) algorithm finds good tree

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Greedy decision tree learning

• Step 1: Start with an empty tree

Step 2: Select a feature to split data

- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 &
 continue (recurse) on this split

Problem 1: Feature split selection

Problem 2: Stopping condition

Recursion

How do we select the best feature to split on?

88

Classification error

Classification error

Error =	4+6 40
=	0.22

Tree	Classification error
(root)	0.45
Split on credit	0.2
Split on term	0.25

Choice 1 vs Choise 2

Greedy decision tree learning algorithm

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

Greedy decision tree algorithm

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

Stopping conditions 1 & 2

Recursion

Decision trees vs logistic regression

Logistic regression

Decision trees vs logistic regression

Depth 1: Split on x[1]

Decision tree vs logistic regression

Comparing decision boundaries

97

Overfitting in decision trees

Overfitting in decision tree

98

What happens when we increase depth?

Overfitting in decision tree

Deeper trees \rightarrow lower training error

Early stopping

- 1. Limit tree depth: Stop splitting after a certain depth
- 2. Classification error: Do not consider any split that does not cause a sufficient decrease in classification error
- Minimum node "size": Do not split an intermediate node which contains too few data points

Greedy decision tree learning

Strategies for handling missing data

Handling missing data

Missing value skipping: Ideas 1 & 2

Idea 1: Skip data points where any feature contains a missing value

 Make sure only a few data points are skipped

Idea 2: Skip an entire feature if it's missing for many data points

 Make sure only a few features are skipped

Handling missing data

Common (simple) rules for purification by imputation

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	?	low	safe
fair	?	high	safe

Impute each feature with missing values:

- 1. Categorical features use mode: Most popular value (mode) of non-missing x_i
- 2. Numerical features use average or median: Average or median value of non-missing x_i

Many advanced methods exist, e.g., expectation-maximization (EM) algorithm

Handling missing data

Missing value imputation: Pros and Cons

Pros

- Easy to understand and implement
- Can be applied to any model (decision trees, logistic regression, linear regression,...)
- Can be used at prediction time: use same imputation rules

Cons

• May result in systematic errors

Example: Feature "age" missing in all banks in Washington by state law

Idea 3: addapt algorithm

106

Add missing values to the tree definition

11/01/2022

1.1

Feature split selection with missing data

Idea 3: addapt algorithm

Explicitly handling missing data by learning algorithm: Pros and Cons

Pros

- Addresses training and prediction time
- More accurate predictions

Cons

- Requires modification of learning algorithm
 - Very simple for decision trees
Ensemble classifiers and boosting

Simple classifiers

Simple (weak) classifiers are good!

Simple classifiers

Finding a classifier that's just right

Can they be combined?

Boosting question

"Can a set of weak learners be combined to create a stronger learner?" *Kearns and Valiant (1988)*

Amazing impact: • simple approach • widely used in industry • wins most Kaggle competitions

Ensemble methods

Ensemble classifier

- Goal:
 - Predict output y
 - Either +1 or -1
 - From input **x**
- Learn ensemble model:
 - Classifiers: $f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_T(\mathbf{x})$
 - Coefficients: $\hat{w}_1, \hat{w}_2, ..., \hat{w}_T$
- Prediction:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

Boosting

Boosting = Focus learning on "hard" points

Weighted data

Learning on weighted data: More weight on "hard" or more important points

- Weighted dataset:
 - Each \mathbf{x}_i , y_i weighted by $\boldsymbol{\alpha}_i$
 - More important point = higher weight α_i
- Learning:
 - Data point j counts as α_i data points
 - E.g., $\alpha_i = 2 \rightarrow \text{count point twice}$

Weighted data

Learning from weighted data in general

- Usually, learning from weighted data
 - Data point i counts as α_i data points
- E.g., gradient ascent for logistic regression:

Sum over data points

$$\mathbf{w}_{j}^{(t+1)} \leftarrow \mathbf{w}_{j}^{(t)} + \eta \sum_{i=1}^{N} \mathbf{W}(\mathbf{x}_{i}) \left(\mathbb{1}[y_{i} = +1] - P(y = +1 \mid \mathbf{x}_{i}, \mathbf{w}^{(t)}) \right)$$

Weigh each point by α_i

Boosting = greedy learning ensembles from data

Boosting convergence & overfitting

Boosting question revisited

"Can a set of weak learners be combined to create a stronger learner?" *Kearns and Valiant (1988)*

Boosting

Boosting convergence & overfitting

After some iterations, training error of boosting goes to zero!!!

Boosted decision stumps on toy dataset

Example

121

Example

122

Boosting tends to be robust to overfitting

Boosting: summary

Variants of boosting and related algorithms

There are hundreds of variants of boosting, most important:

Gradient boosting

 Like AdaBoost, but useful beyond basic classification

Many other approaches to learn ensembles, most important:

Boosting: summary

Impact of boosting (spoiler alert... HUGE IMPACT)

Amongst most useful ML methods ever created

Extremely useful in computer vision

 Standard approach for face detection, for example

Used by **most winners** of ML competitions (Kaggle, KDD Cup,...) Malware classification, credit fraud detection, ads click through rate estimation, sales forecasting, ranking webpages for search, Higgs boson detection,...

Most deployed ML systems use model ensembles

 Coefficients chosen manually, with boosting, with bagging, or others

Classification: summary

Details Derivative of likelihood for logistic regression

The log trick, often used in ML...

Log-likelihood function

Goal: choose coefficients w maximizing likelihood:

$$\ell(\mathbf{w}) = \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

Math simplified by using log-likelihood – taking (natural) log:

$$\ell\ell(\mathbf{w}) = \ln \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

Log-likelihood function

129

Using log to turn products into sums $\lim_{i \to 1} f_i = \sum_{i=1}^{N} \lim_{i \to 1} F_i$

• The log of the product of likelihoods becomes the sum of the logs:

$$\ell\ell(\mathbf{w}) = \ln \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$
$$= \sum_{i=1}^{N} \ln P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

Rewritting log-likelihood

For simpler math, we'll rewrite likelihood with indicators:

$$\ell\ell(\mathbf{w}) = \sum_{i=1}^{N} \ln P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

$$= \sum_{i=1}^{N} [\mathbbm{1}[y_i = +1] \ln P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) + \mathbbm{1}[y_i = -1] \ln P(y = -1 \mid \mathbf{x}_i, \mathbf{w})]$$
Indicator function
$$\int \int \mathcal{Y}_{i=+1}$$

$$i \neq y_i = -1$$

Logistic regression model: P(y=-1|x,w)

Probability model predicts y=+1:

 $P(y=+1|x,w) = \frac{1}{1 + e^{-w h(x)}}$

• Probability model predicts y=-1: $P(y=-1|x,w) = 1 - P(y=+1|x,w) = 1 - \frac{1}{1+e^{-w\tau h(x)}}$ $(= \frac{1+e^{w\tau h(x)}}{1+e^{-w\tau h(x)}} = \frac{e^{-w\tau h(x)}}{1+e^{-w\tau h(x)}}$

132

Plugging in logistic function for 1 data point

$$P(y = +1 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top}h(\mathbf{x})}} \quad P(y = -1 | \mathbf{x}, \mathbf{w}) = \frac{e^{-\mathbf{w}^{\top}h(\mathbf{x})}}{1 + e^{-\mathbf{w}^{\top}h(\mathbf{x})}}$$

$$\frac{\ell\ell(\mathbf{w}) = \mathbf{1}[y_i = +1] \ln P(y = +1 | \mathbf{x}_i, \mathbf{w}) + \mathbf{1}[y_i = -1] \ln P(y = -1 | \mathbf{x}_i, \mathbf{w})$$

$$= \mathbf{1}[y_i = +1] \ln \frac{1}{1 + e^{-\mathbf{w}^{\top}h(\mathbf{x})}} + (1 - \mathbf{1}[\overline{y}_i = +1]) \ln \frac{e^{-\omega^{\top}h(\mathbf{x}_i)}}{1 + e^{-\omega^{\top}h(\mathbf{x}_i)}}$$

$$= -\mathbf{1}[\overline{y}_i = +1] \ln(1 + e^{-\mathbf{w}^{\top}h(\mathbf{x}_i)}) + (1 - \mathbf{1}[\overline{y}_i = +1]) [-\omega^{\top}h(\mathbf{x}_i) - \ln(1 + e^{-\omega^{\top}h(\mathbf{x}_i)})]$$

$$= -(1 - \mathbf{1}[\overline{y}_i = +1]) \omega^{\top}h(\mathbf{x}_i) - \ln(1 + e^{-\omega^{\top}h(\mathbf{x}_i)})$$

$$= -(1 - \mathbf{1}[\overline{y}_i = +1]) \omega^{\top}h(\mathbf{x}_i) - \ln(1 + e^{-\omega^{\top}h(\mathbf{x}_i)})$$

$$= -(1 - \mathbf{1}[\overline{y}_i = +1]) \omega^{\top}h(\mathbf{x}_i) - \ln(1 + e^{-\omega^{\top}h(\mathbf{x}_i)})$$

$$= -(1 - \mathbf{1}[\overline{y}_i = +1]) \omega^{\top}h(\mathbf{x}_i) - \ln(1 + e^{-\omega^{\top}h(\mathbf{x}_i)})$$

$$= -(1 - \mathbf{1}[\overline{y}_i = +1]) \omega^{\top}h(\mathbf{x}_i) - \ln(1 + e^{-\omega^{\top}h(\mathbf{x}_i)})$$

$$= -(1 - \mathbf{1}[\overline{y}_i = +1]) \omega^{\top}h(\mathbf{x}_i) - \ln(1 + e^{-\omega^{\top}h(\mathbf{x}_i)})$$

$$= -(1 - \mathbf{1}[\overline{y}_i = +1]) \omega^{\top}h(\mathbf{x}_i) - \ln(1 + e^{-\omega^{\top}h(\mathbf{x}_i)})$$

$$= -(1 - \mathbf{1}[\overline{y}_i = +1]) \omega^{\top}h(\mathbf{x}_i) - \ln(1 + e^{-\omega^{\top}h(\mathbf{x}_i)})$$

$$= -(1 - \mathbf{1}[\overline{y}_i = +1]) \omega^{\top}h(\mathbf{x}_i) - \ln(1 + e^{-\omega^{\top}h(\mathbf{x}_i)})$$

133

Gradient for 1 data point $\ell\ell(\mathbf{w}) = -(1 - \mathbb{1}[y_i = +1])\mathbf{w}^\top h(\mathbf{x}_i) - \ln\left(1 + e^{-\mathbf{w}^\top h(\mathbf{x}_i)}\right)$ $\frac{\partial \mathcal{U}}{\partial w_{j}} = -(1 - \mathbb{I}[y_{i} = +1]) \frac{\partial}{\partial w_{j}} w^{T} h(x_{i}) - \frac{\partial}{\partial w_{j}} \ln(1 + e^{-w^{T} h(x_{i})})$) wth(x:) = h;(xi) = - (1-1[y:=+1]) hj(xi) + hj(xi) P(y=-1 |x;, w)) In (1+ e-wth(x:)) $= h_{j}(x_{i}) \left[1 [y_{i}=+1] - P(y_{i}=+1 | x_{i}, w) \right]$ $= -h_{j}(x_{i}) \quad \frac{e^{-\omega \tau h(x_{i})}}{1+e^{-\omega \tau h(x_{i})}}$ P(y=-1/2:, w)

Finally, gradient for all data points

Gradient for one data point:

$$h_j(\mathbf{x}_i) \Big(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) \Big)$$

Adding over data points:

 $\frac{\partial ll}{\partial w_j} = \sum_{i=1}^{N} h_j(x_i) \left(\mathbb{1} \mathbb{I} \mathbb{I} g_{i=+1} \right) - P(g_{i=+1} | x_i, w) \right) \left\{ \begin{array}{c} \ddots \end{array} \right\}$

DetailsADA boosting

AdaBoost: learning ensemble

[Freund & Schapire 1999]

- 136
- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T

• Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{I} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

AdaBoost: Computing coefficients w_t

- $f_t(\mathbf{x})$ is good $\rightarrow f_t$ has low training error
- Measuring error in weighted data?
 - Just weighted # of misclassified points

Weighted classification error

- Total weight of mistakes:
- $= \sum_{i=1}^{n} \alpha_{i} \frac{1(\hat{y}_{i} \pm \hat{y}_{i})}{\prod_{i=1}^{n} \alpha_{i}}$ • Total weight of all points: $= \sum_{i=1}^{n} \alpha_{i}$
- Weighted error measures fraction of weight of mistakes:

- Best possible value is 0.0 - worstyl. 0 - Randon chusiker = 0.5

AdaBoost formula

139

AdaBoost: Formula for computing coefficient \hat{w}_t of classifier $f_t(x)$

AdaBoost: learning ensemble

• Start same weight for all points: $\alpha_i = 1/N$

• For t = 1,...,T
- Learn
$$f_t(\mathbf{x})$$
 with data weights α_i
- Compute coefficient \hat{w}_t
- Recompute weights α_i
 $\hat{w}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)$

• Final model predicts by: \int_{T}^{T}

$$\hat{y} = sign\left(\sum_{t=1}^{r} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

AdaBoost: updating weights $\alpha_{\rm i}$

141

Updating weights α_i based on where classifier $f_t(x)$ makes mistakes

AdaBoost: updating weights α_i

AdaBoost: Formula for updating weights α_i

$$\alpha_i \leftarrow \begin{bmatrix} \alpha_i e^{-\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) = y_i \leftarrow \text{correct} \\ \alpha_i e^{\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) \neq y_i \leftarrow \text{mistake} \end{bmatrix}$$

		$f_t(\mathbf{x}_i) = y_i$?		Multiply α_i by	Implication
Did f _t get x _i right?	Vac	Correct	2-3	e ^{-2.3} = 0.1	Decrese importance at Xi, y:
	No	Correct	0	e° =1	keep importance the same
		Mistake	2.3	$e^{2\cdot 3} = 9\cdot 98$	Increasing importance of x; y:
		M:s hake	0	e° = 1	keep importance she same

AdaBoost: learning ensemble

• Start same weight for all points: $\alpha_i = 1/N$

AdaBoost: normlizing weights α_i

144
AdaBoost: learning ensemble

145

146

t=1: Just learn a classifier on original data

148

t=2: Learn classifier on weighted data

 $f_1(\mathbf{x})^{\frac{4}{2}}_{-\frac{1}{2}}$

149

Ensemble becomes weighted sum of learned classifiers

150

Decision boundary of ensemble classifier after 30 iterations

AdaBoost: learning ensemple

151

- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn f_t(x): pick decision stump with lowest weighted training error according to α_i
 - Compute coefficient ŵ_t
 - Recompute weights α_i
 - Normalize weights ^α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

153

Finding best next decision stump f_t(x)

Consider splitting on each feature:

- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$: pick decision stump with lowest weighted training error according to α_i
 - Compute coefficient ŵ_t

– Recompute weights α_i

- Normalize weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

Income>\$100K?>

No

Risky

Yes

Safe

Updating weights	α _i
------------------	----------------

α _i ←	$\alpha_i e^{\hat{v}'} =$	α _i e ^{-0.69}	=	<mark>α</mark> i/2	, if $f_t(x_i) = y$
	$\alpha_i e^{\hat{W}_i} =$	α _i e ^{0.69}	=	2 α _i	, if $f_t(x_i) \neq y_i$

Credit	Income	У	ŷ	Previous weight α	New weight α
A	\$130K	Safe	Safe	0.5	0.5/2 = 0.25
В	\$80K	Risky	Risky	1.5	0.75
С	\$110K	Risky	Safe	1.5	2 * 1.5 = 3
A	\$110K	Safe	Safe	2	1
Α	\$90K	Safe	Risky	1	2
В	\$120K	Safe	Safe	2.5	1.25
С	\$30K	Risky	Risky	3	1.5
С	\$60K	Risky	Risky	2	1
В	\$95K	Safe	Risky	0.5	1
Α	\$60K	Safe	Risky	1	2
A	\$98K	Safe	Risky	0.5	1