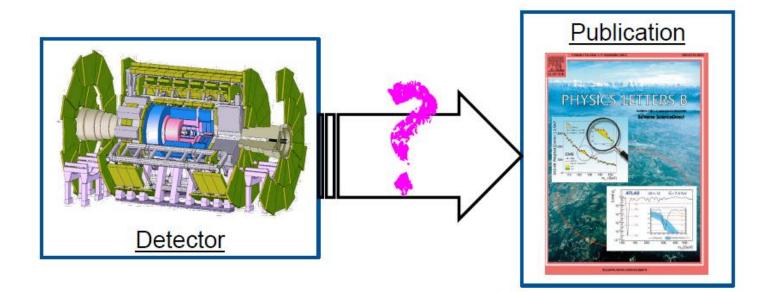
Introduction to particle physics: experimental part

RAW data to Physics

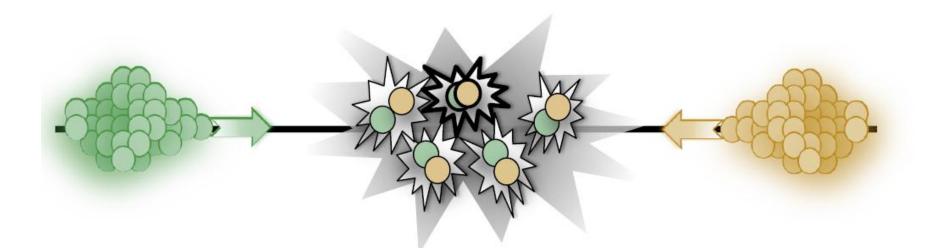
• The road from collisions to physics publications

From RAW data to Standard Model particles

 About measuring properties of the final particles created from protonproton collisions

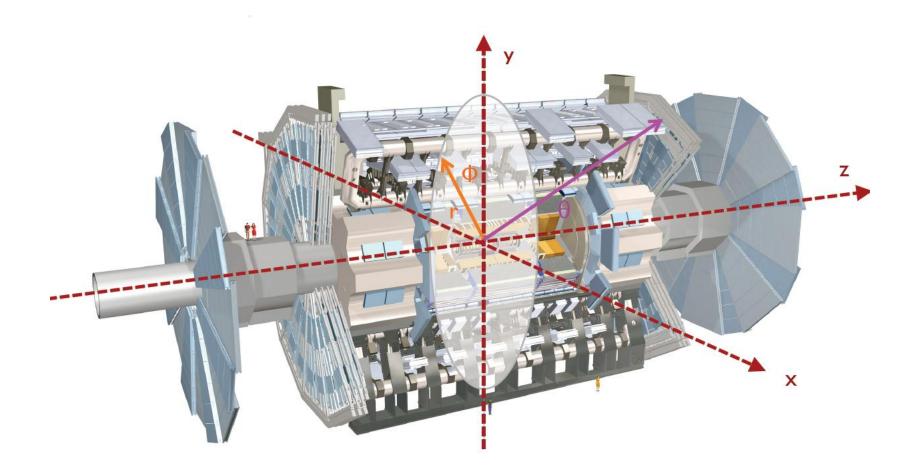

From Standard Model particles to measurements and searches

• About how we analys data using ingredients we have constructed


Large fraction of slides from A. Sfyrla lectures at CERN Summer School 2018

Prof. dr hab. Elżbieta Richter-Wąs

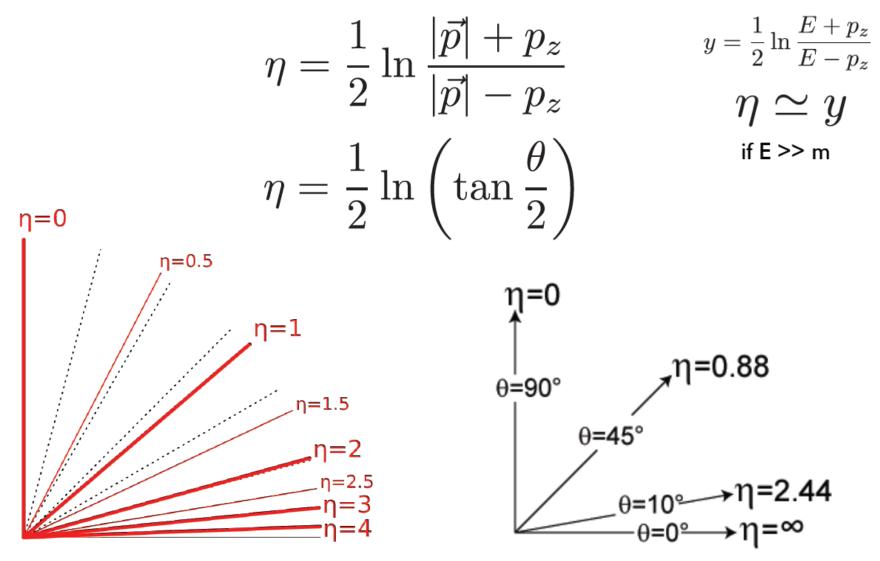
How do we deal with physics events from when they leave the detector till when they make it into our publications?


What is an event?

Proton bunches >10¹¹ protons/bunch colliding at 13 TeV and at ~30 MHz in Run-2 collided at 7/8TeV and at ~20 MHz in Run-1

In 2018: Up to 60 p-p collisions / bunch crossing

Collider experiment coordinates


Rapidity

Lorentz factor
$$\gamma = \frac{1}{\sqrt{1-\beta^2}} = \cosh \varphi$$
 Hyperbolic cosine of "rapidity"
 $E = m \cosh \varphi$ $\varphi = \tanh^{-1} \frac{E}{|\vec{p}|} = \frac{1}{2} \ln \frac{E+|\vec{p}|}{E-|\vec{p}|}$

Particle physicists prefer to use modified rapidity along beam axis

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$$

Pseudorapidity

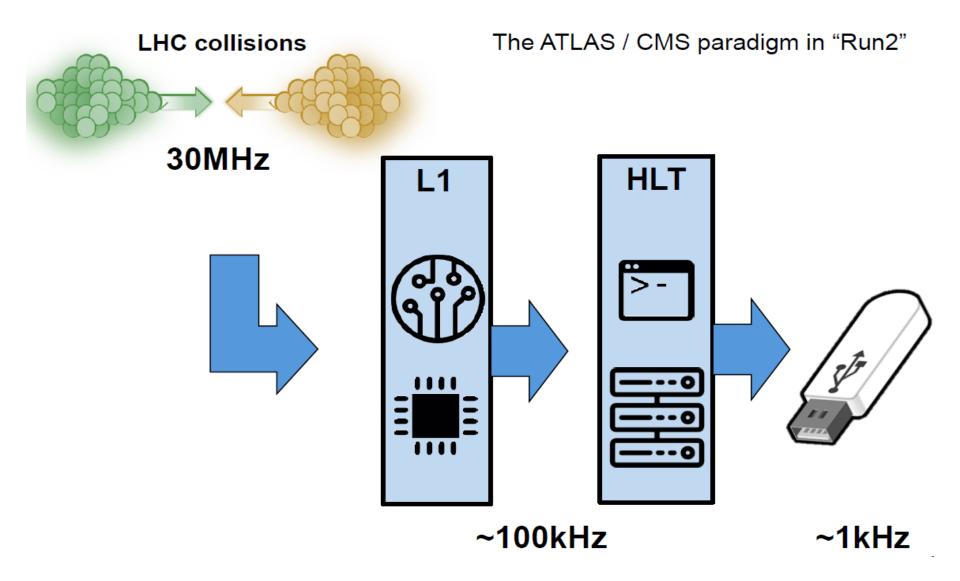
Transverse variables

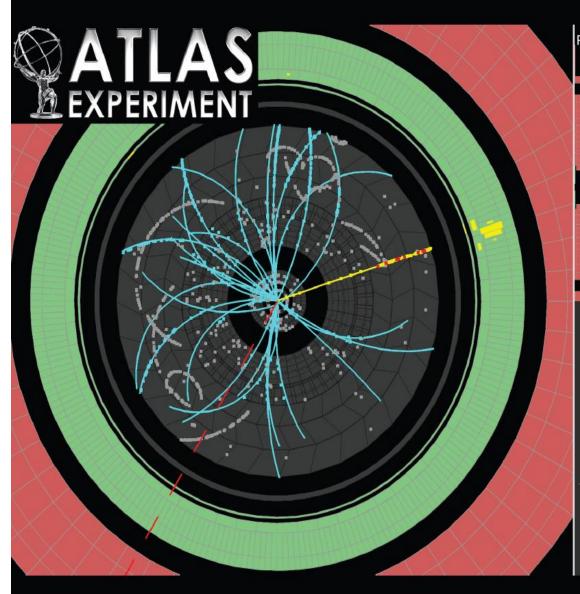
- At hadron colliders, a significant and unknown fraction of the beam energy in each event escapes down the beam pipe.
- Net momentum can only be constrained in the plane transverse to the beam z-axis!

$$\sum p_{\mathbf{x}}(i) = 0 \qquad \sum p_{\mathbf{y}}(i) = 0$$

Missing transverse energy and transverse mass

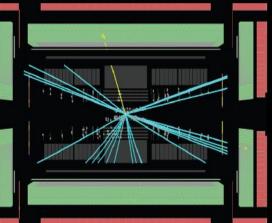
 If invisible particle are created, only their transverse momentum can be constrained: missing transverse energy


$$E_T^{\text{miss}} = \sum p_T(i)$$

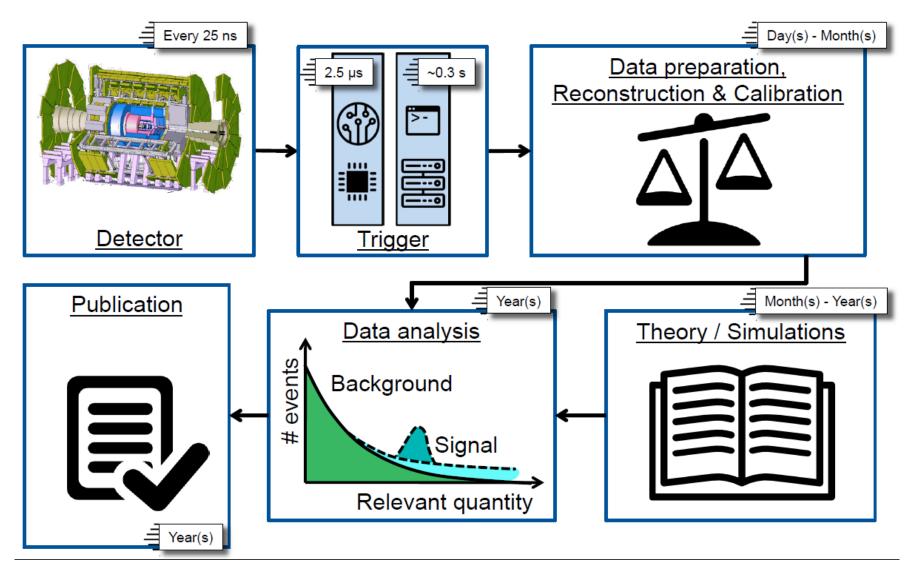

 If a heavy particle is produced and decays in two particles one of which is invisible, the mass of the parent particle can constrained with the transverse mass quantity

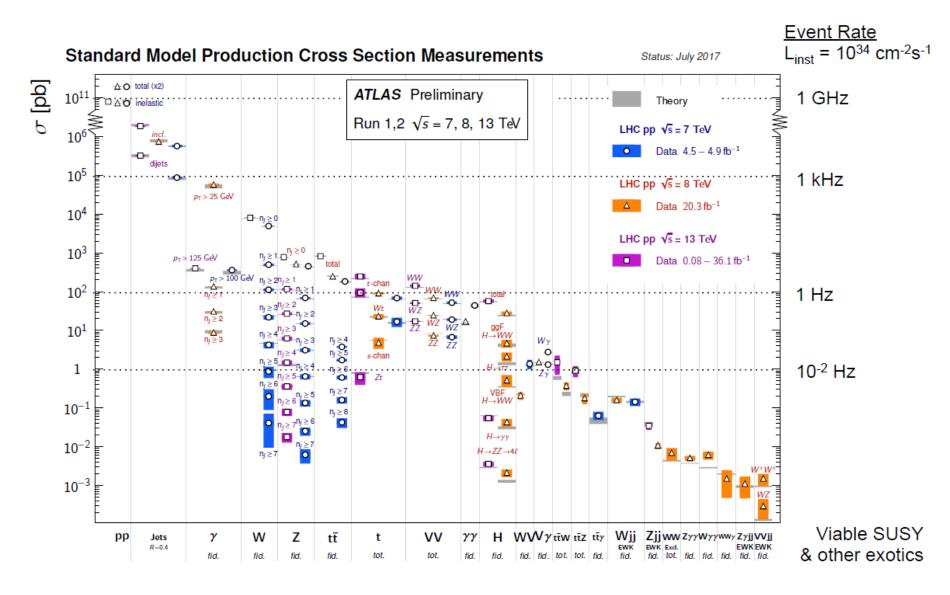
$$M_T^2 \equiv [E_T(1) + E_T(2)]^2 - [\mathbf{p}_T(1) + \mathbf{p}_T(2)]^2$$

= $m_1^2 + m_2^2 + 2[E_T(1)E_T(2) - \mathbf{p}_T(1) \cdot \mathbf{p}_T(2)]$

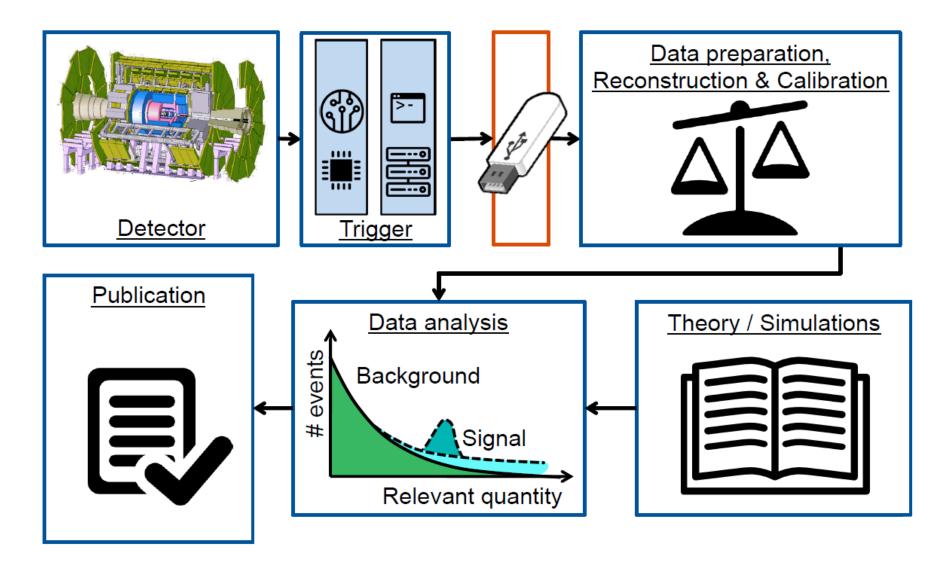

if $m_1 = m_2 = 0$ $M_T^2 = 2|\boldsymbol{p}_T(1)||\boldsymbol{p}_T(2)|(1 - \cos \phi_{12})|$

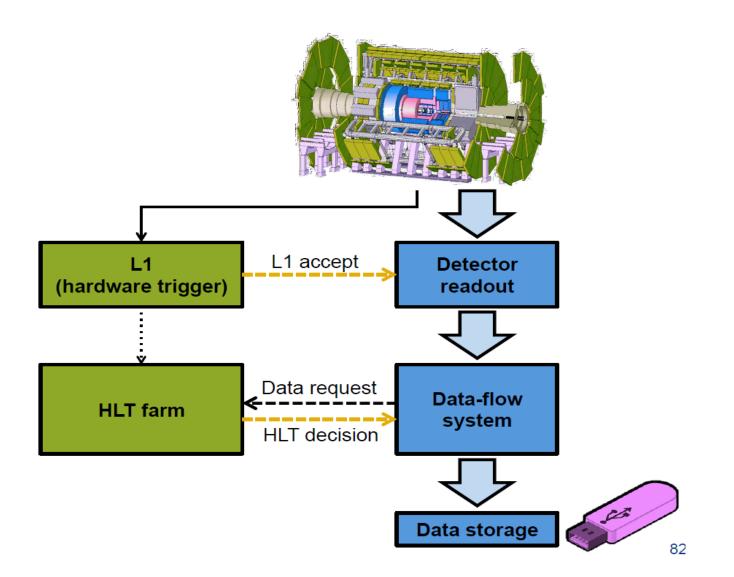
Triggering on physics

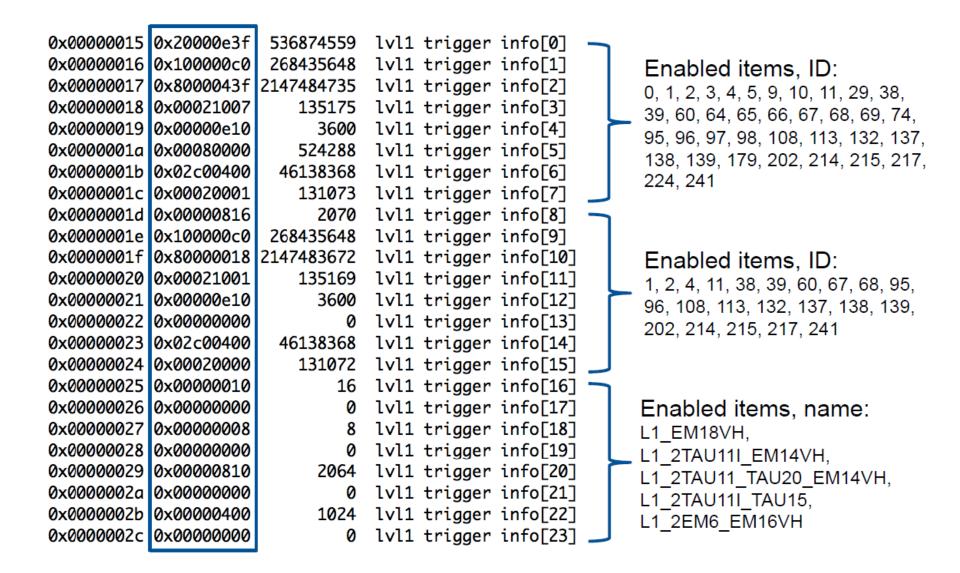

Run Number: 152409, Event Number: 5966801 Date: 2010-04-05 06:54:50 CEST


W→ev candidate in 7 TeV collisions

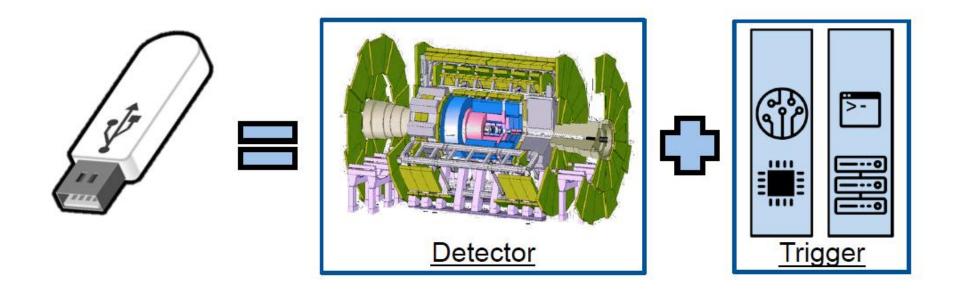
 $p_{T}(e+) = 34 \text{ GeV}$ $\eta(e+) = -0.42$ $E_{T}^{miss} = 26 \text{ GeV}$ $M_{T} = 57 \text{ GeV}$

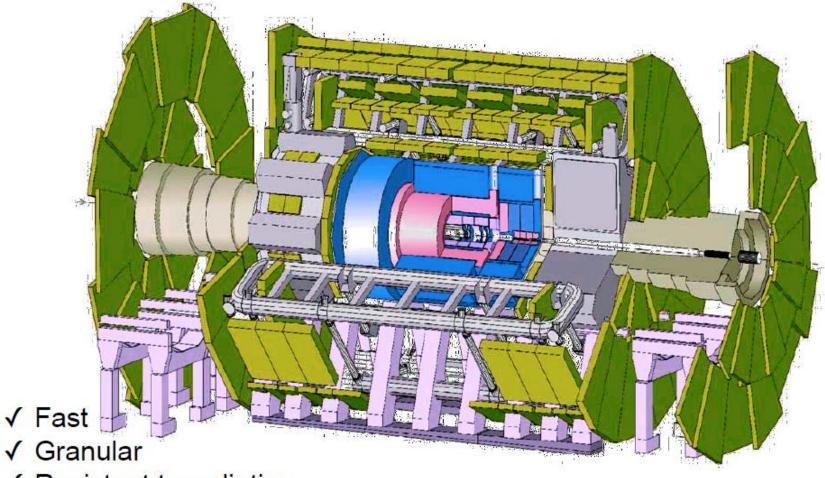

An event's lifetime


Reminder: $\sigma = \frac{\# \text{ events}}{L}$


An events's lifetime

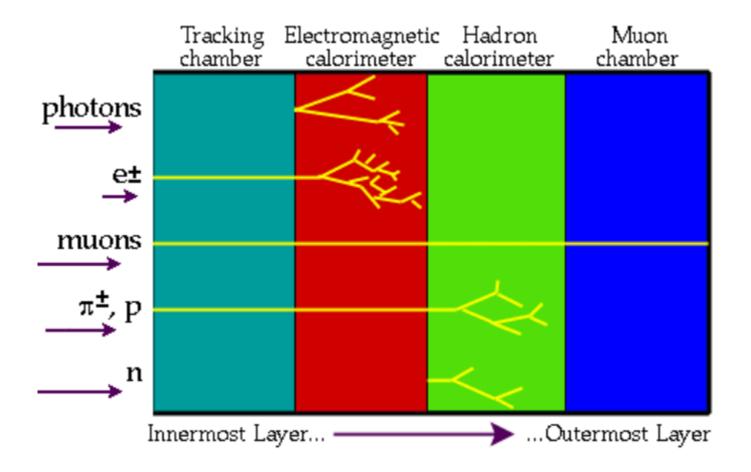
The Data Acquisition (DAQ)


What does raw contain?

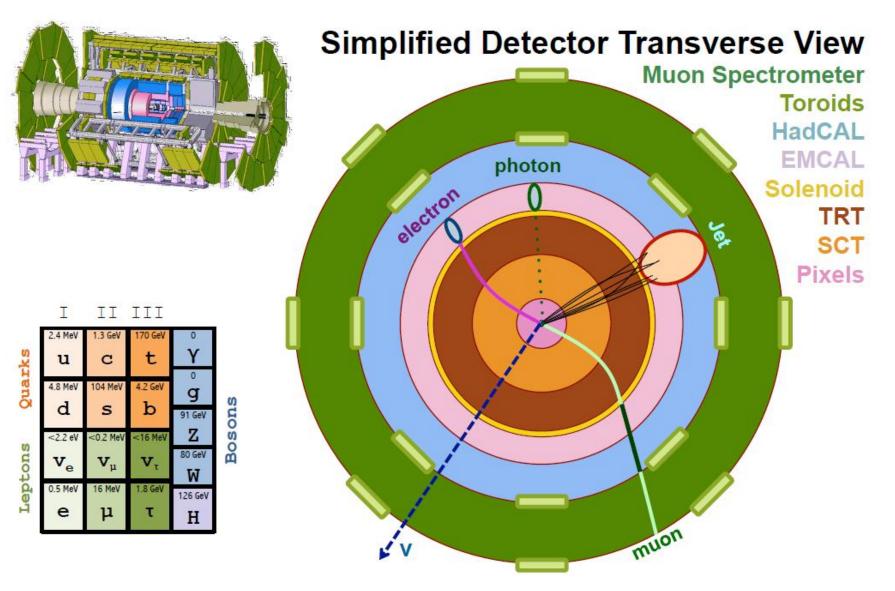

What does raw contain?

	ger info[0]	1,11.4	536874559	0x20000e3f	0~00000015
More than 300K such	ger info[1]		268435648	0x100000c0	
	ger info[2]		2147484735	0x8000043f	
words in each event,	ger info[3]		135175	0x00021007	
corresponding to the full	ger info[4]		3600	0x00000e10	
	ger info[5]		524288	0x00080000	
data from all the	ger info[6]		46138368	0x02c00400	
detector components.	ger info[7]		131073	0x00020001	0x0000001c
	ger info[8]	lvl1 t	2070	0x00000816	0x0000001d
	ger info[9]	lvl1 t	268435648	0x100000c0	0x0000001e
© Data size: 1-1.5MB /	ger info[10]	lvl1 t	2147483672	0x80000018	0x0000001f
event depending on the	ger info[11]	lvl1 t	135169	0x00021001	0x00000020
	ger info[12]	lvl1 t	3600	0x00000e10	0x00000021
compression. Pretty	ger info[13]	lvl1 t	0	0×000000000	0x00000022
consistent between	ger info[14]		46138368	0x02c00400	0x00000023
	ger info[15]		131072	0x00020000	
ATLAS and CMS.	ger info[16]		16	0x00000010	
	ger info[17]		0	0x000000000	
Challenge:	ger info[18]		8	0x0000008	
© Challenge:	ger info[19]		0	0x00000000	
make sense out of all	ger info[20]		2064	0x00000810	
these numbers!!	ger info[21]		0	0x00000000	
	ger info[22]		1024	0x00000400	
	ger info[23]	LVL1 t	0	0x00000000	0X0000002c

What does raw contain?

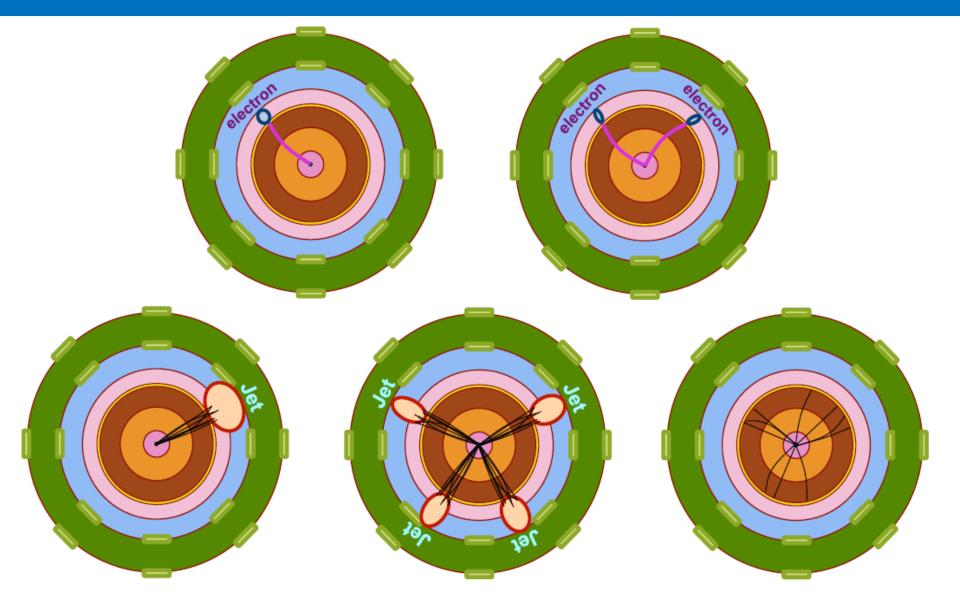


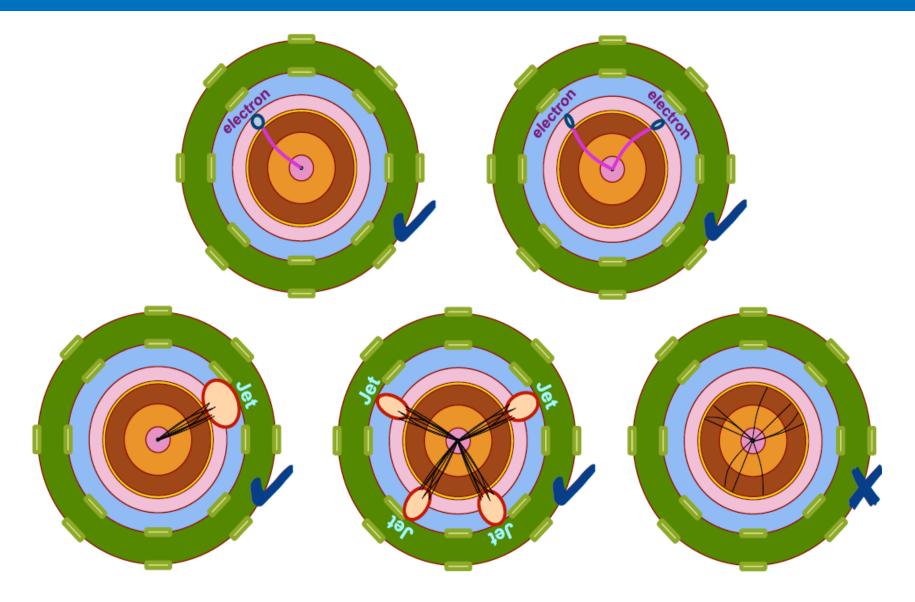
A detector (e.g. ATLAS)

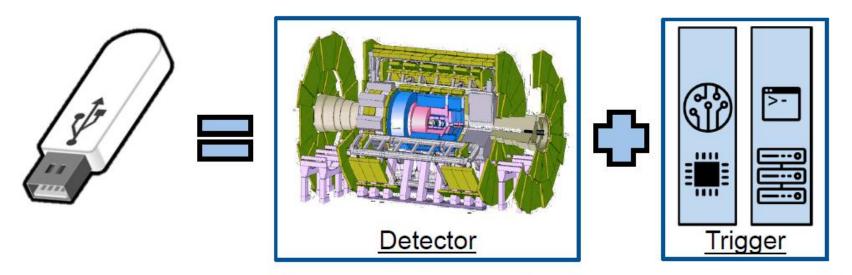


✓ Resistant to radiation

Particles through matter

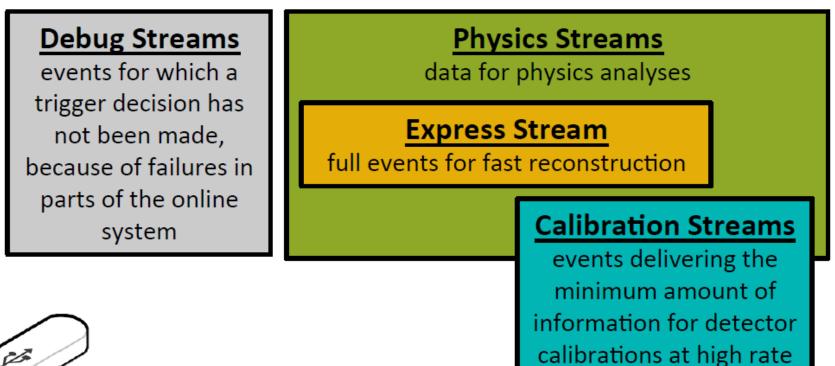

A detector (eg. ATLAS)


Reconstructing particles


Online reconstruction

Triggering on physics

This is what raw data contain!

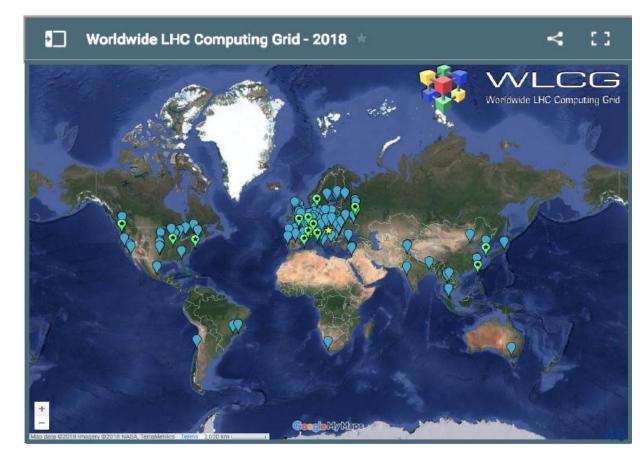


data to reconstruct offline!

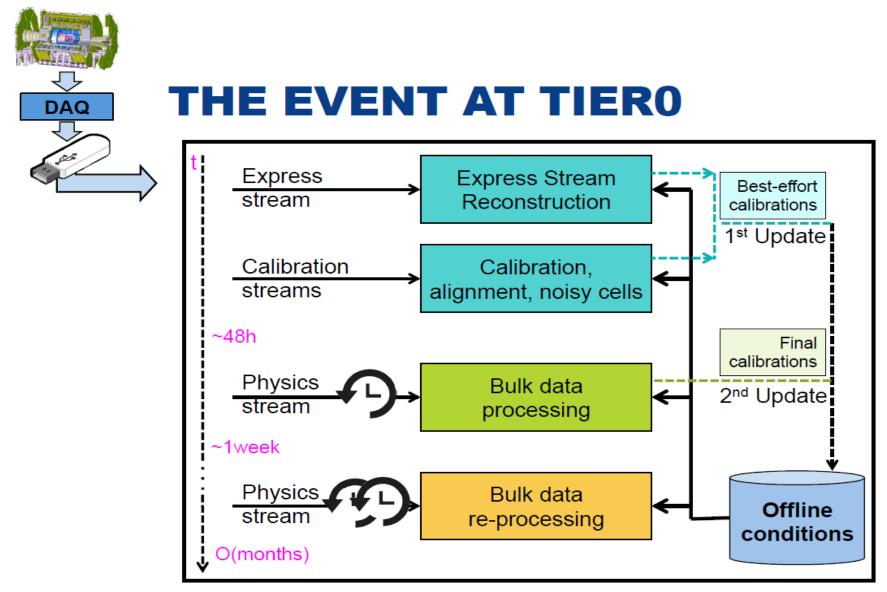
decision plus online reconstructed objects

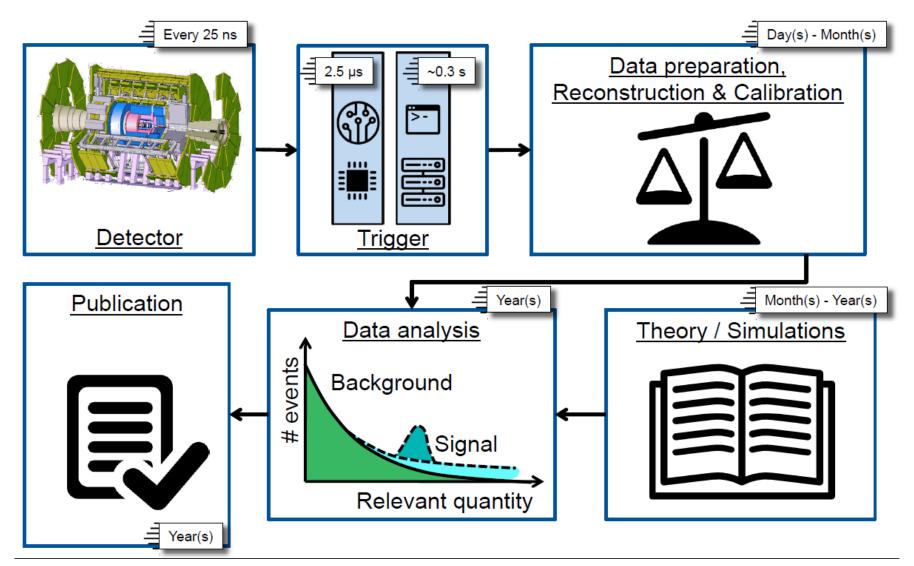
Streaming

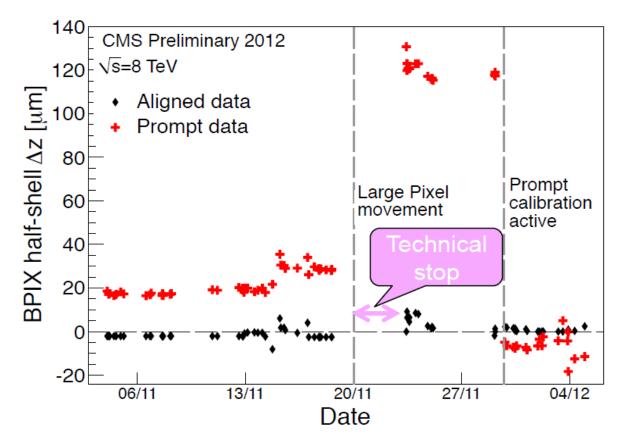
- Streaming is based on trigger decisions at all stages
- The Raw Data physics streams are generated at the HLT output level

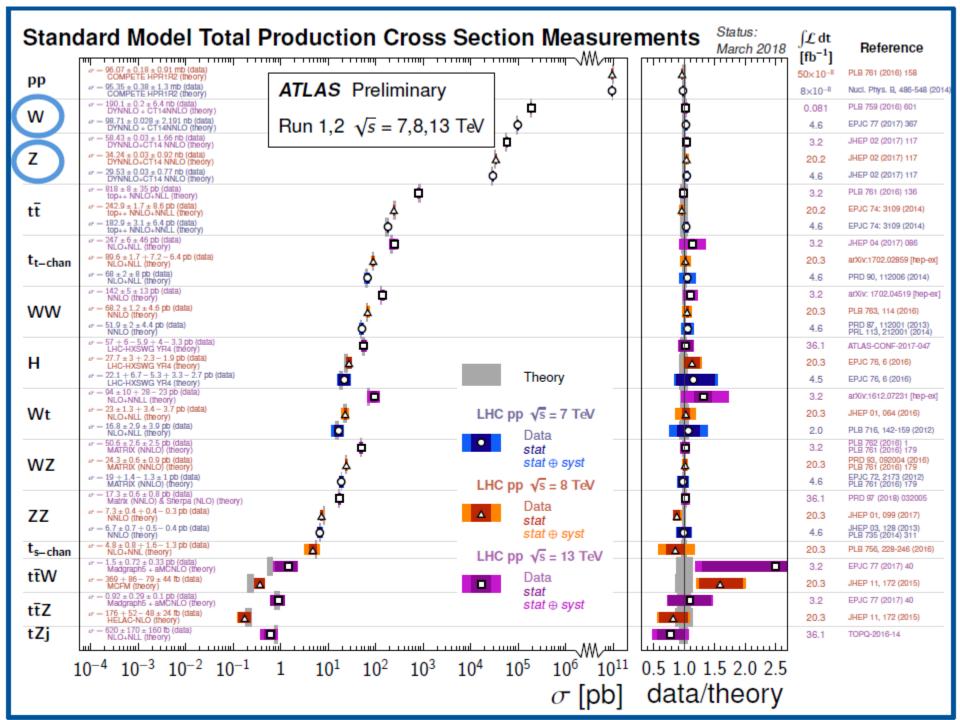


Huge amount of data ...


LHC delivered billions of recorded collision events to the LHC experiments from proton-proton and proton-lead collisions so far. This translates to many 100s PB of data recorded at CERN.

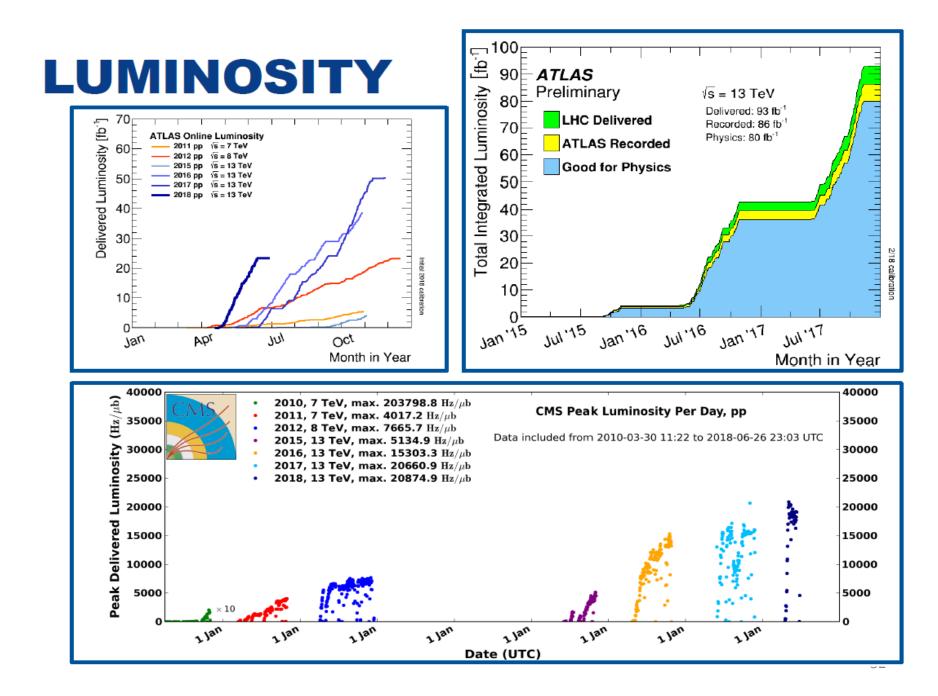

The challenge how to process and analyze the data and produce timely physics results was substantial but in the end resulted in a great success.


Huge amount of data ...

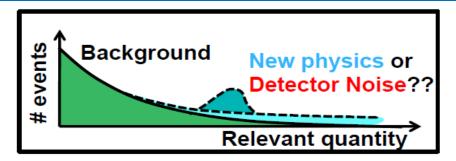

An event's lifetime

EG. alignment

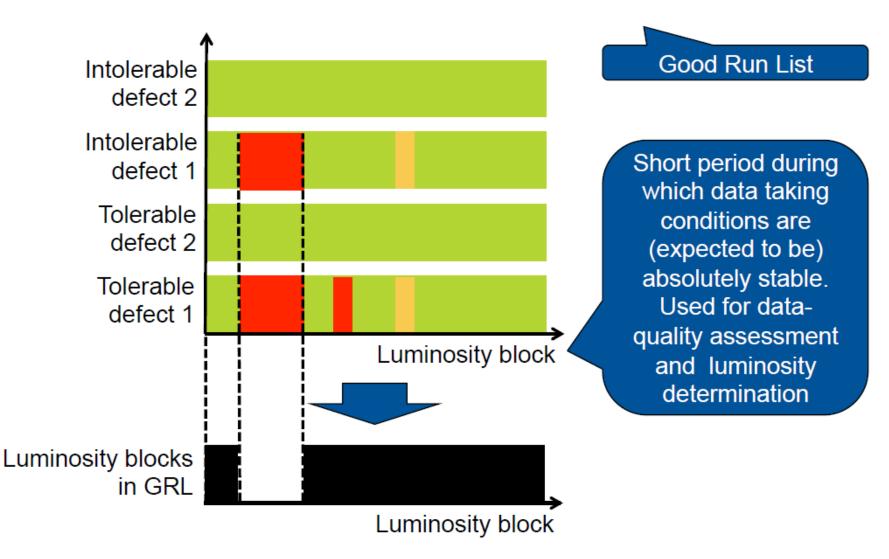
Day-by-day value of the relative longitudinal shift between the two half-shells of the BPIX as measured with the primary vertex residuals, for the last month of pp data taking in 2012.

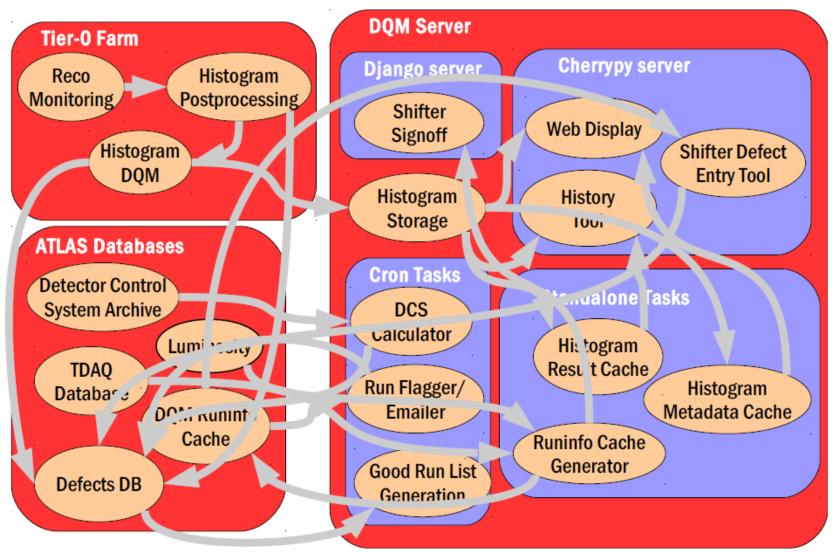


Luminosity determination


- A measurement of the number of collisions per cm² and second.
- Multiple methods used for determining luminosity: reducing uncertainties.
- Sormalization is done with beam-separation scan (Van-der-Meer scan). Requires careful control of beam parameters.

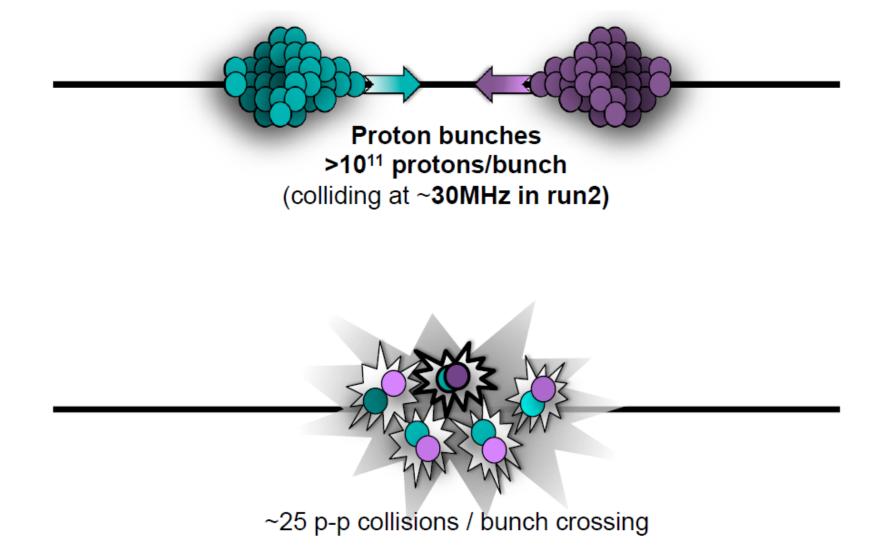
 Result: luminosity measurement with very small uncertainties (order of few %) with very fast turn-around time.


Data quality

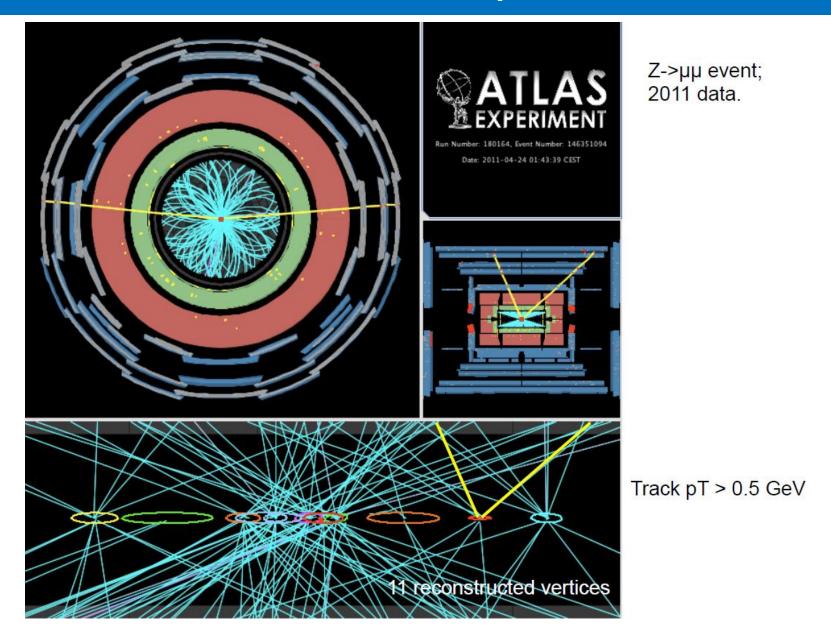

The data we analyze has to follow norms of quality such that our results are trustable.

- Online: Fast monitoring of detector performance during data taking, using dedicated stream, "express stream".
- Offline: More thorough monitoring at two instances:
 - Express reconstruction; fast turn-around.
 - Prompt reconstruction: larger statistics.
- What is monitored?
 - Noise in the detector.
 - Reconstruction (tracks, clusters, combined objects, resolution and efficiency).
 - Input rate of physics.
 - All compared to reference histograms of data that has been validated as "good".

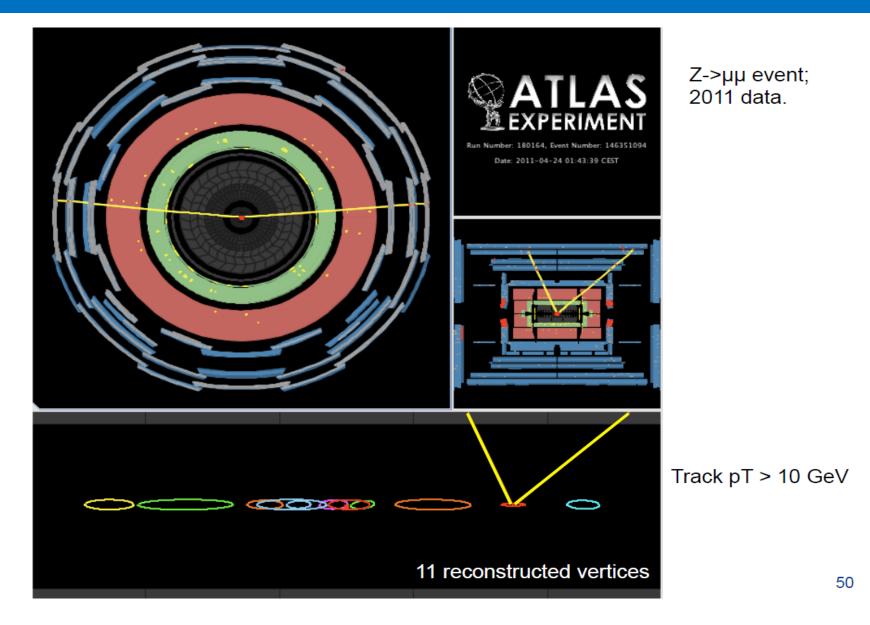
Data quality and "GRL"

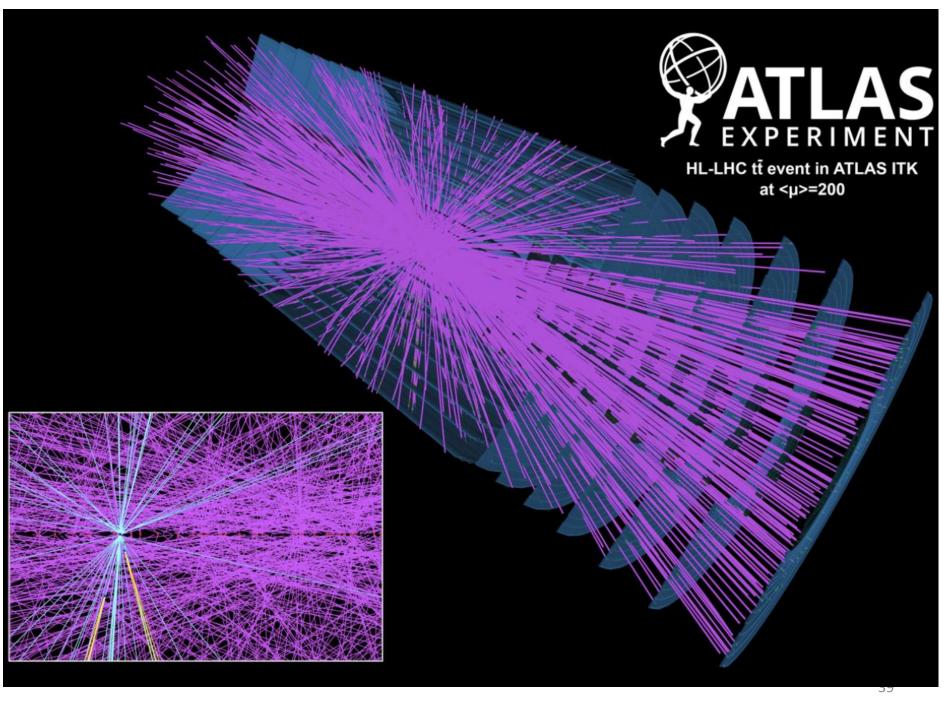


Data quality



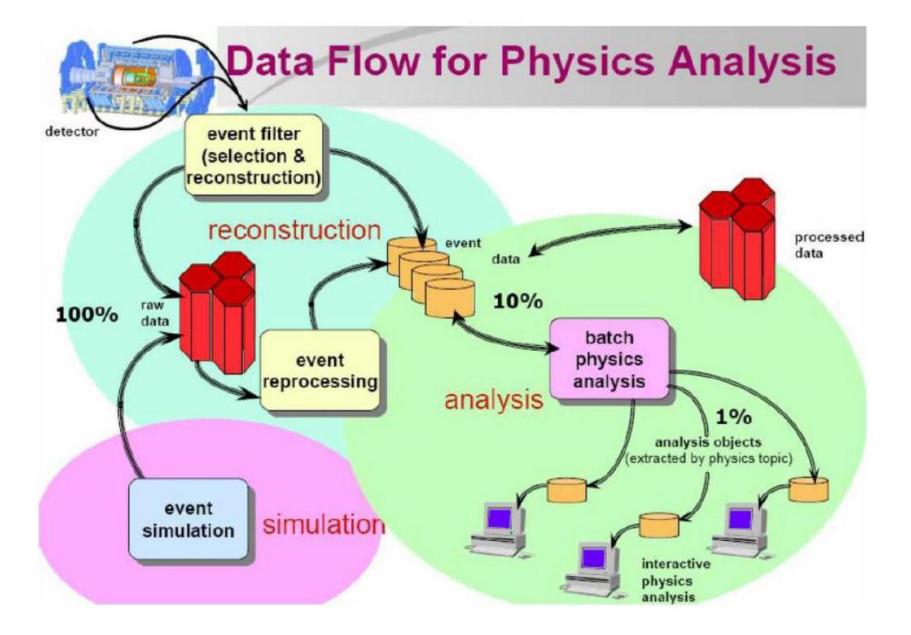
https://cds.cern.ch/record/2008725/files/ATL-SOFT-SLIDE-2015-179.pdf


Pile-up

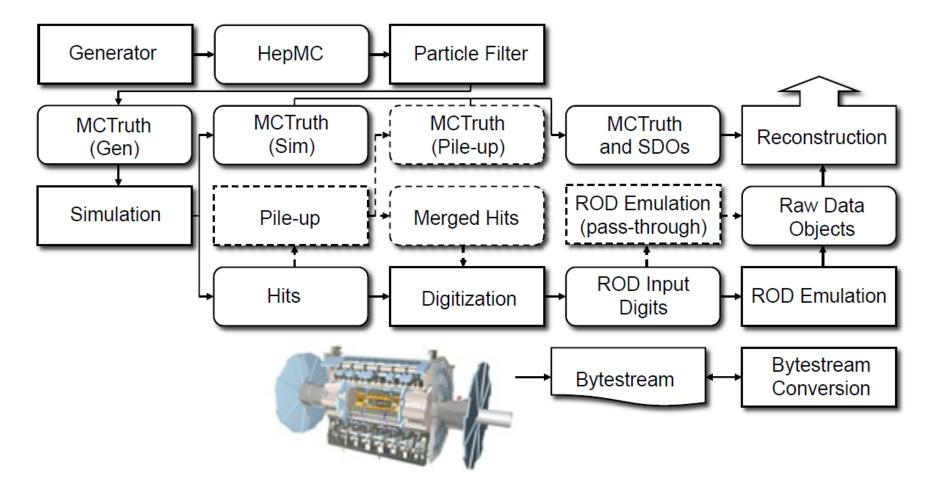


Pile-up

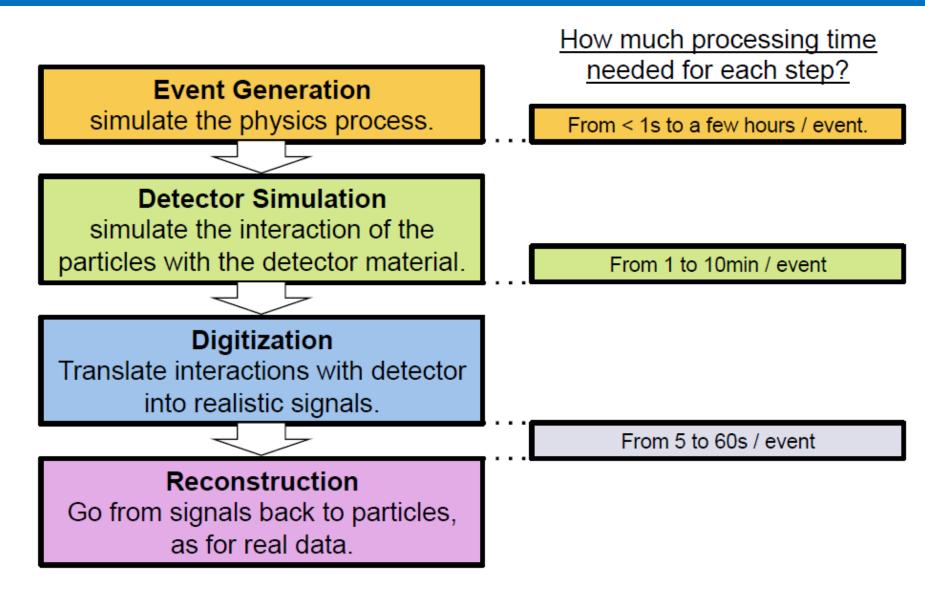
Pile-up

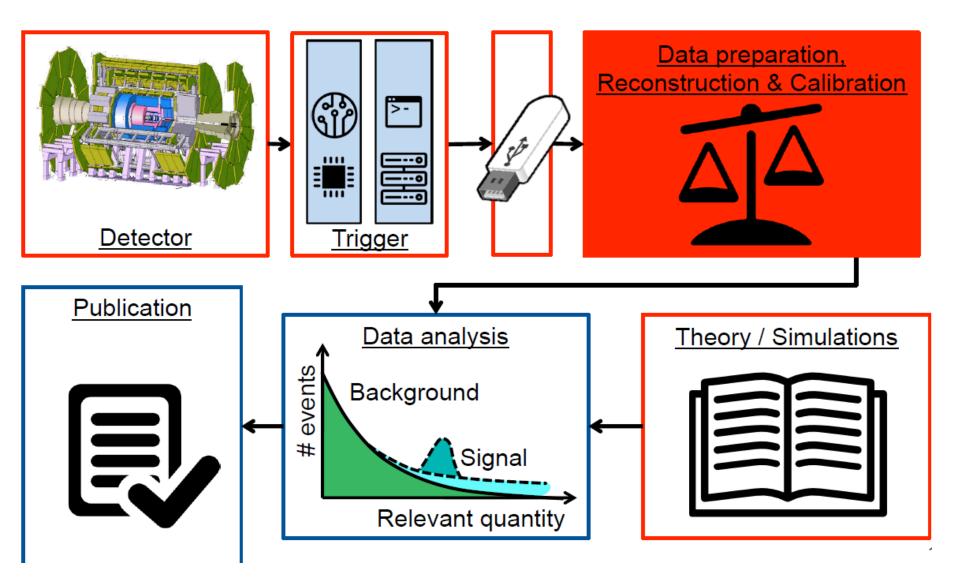

Monte Carlo simulation – why?

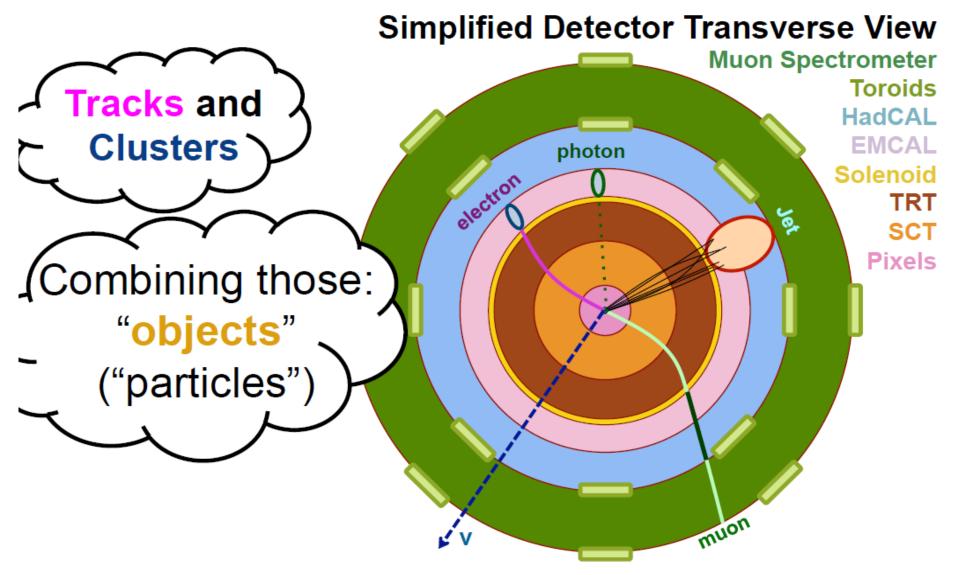
We only build one detector.

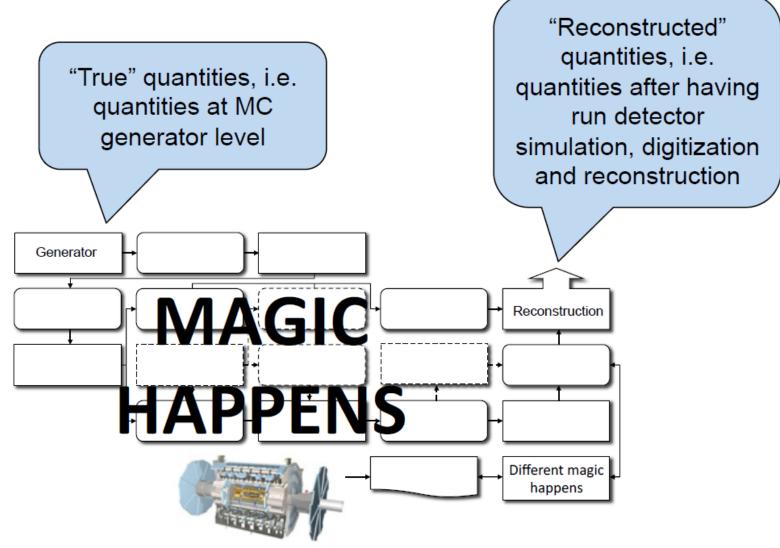

- It was a second to be a second to
- Item would a different detector design affect measurements?
- How does the detector behave to radiation?

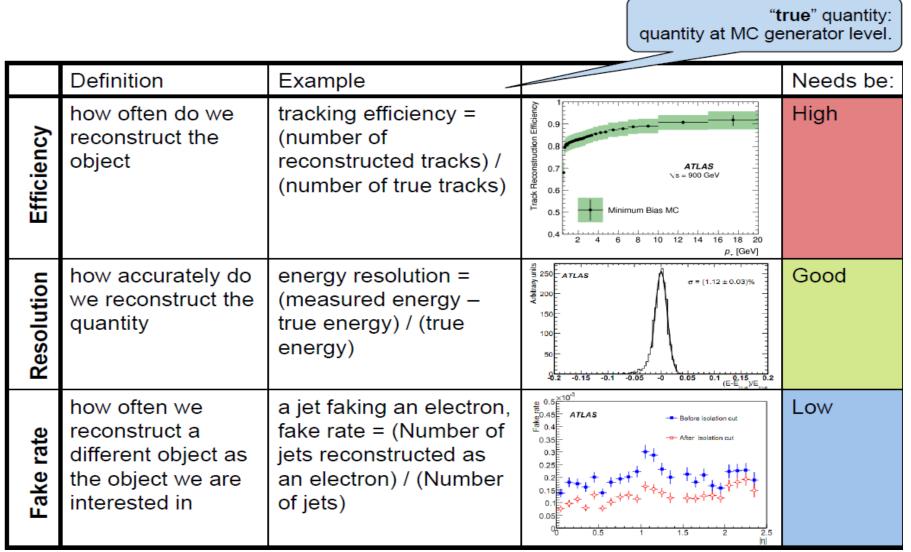
In the detectors we only measure voltages, currents, times.


- It's an interpretation to say that such-and-such particle caused suchand-such signature in the detector.
- Simulating the detector behavior we correct for inefficiencies, inaccuracies, unknowns.
- We need a theory to tell us what we expect and to compare our data against.
- A good simulation is the way to demonstrate to the world that we understand the detectors and the physics we are studying.

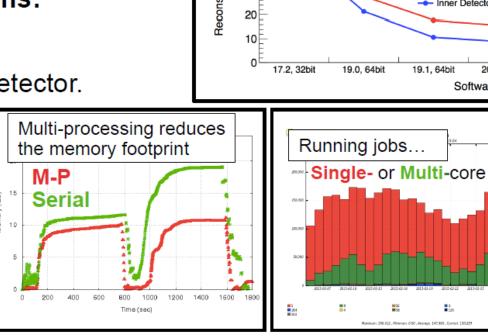

LHC simulation chain

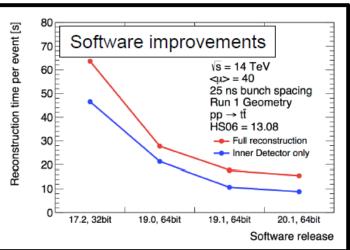

Monte Carlo production chain


An event's lifetime


What do we reconstruct?

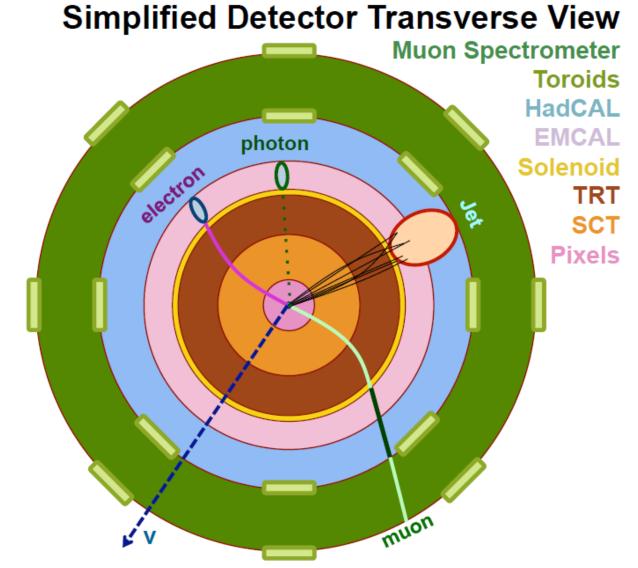
Reconstruction - figures of merit




Reconstruction - figures of merit

Reconstruction - goals

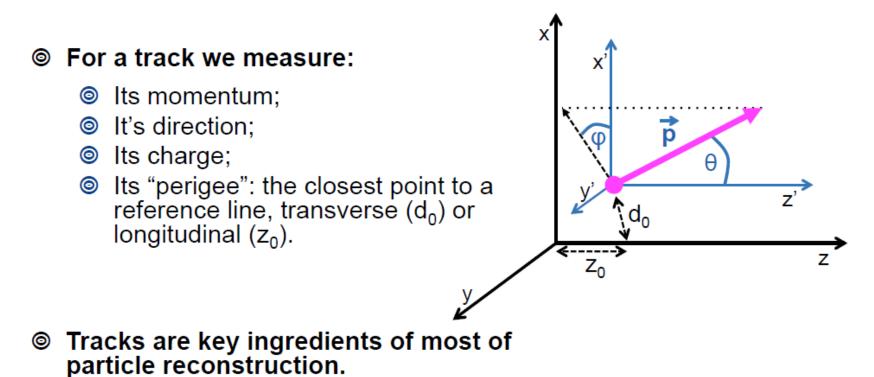
- High efficiency. 0
- Good resolution. 0
- Low fake rate. 0
- Robust against detector problems 0 and data-taking conditions:
 - Noise. 0
 - Dead regions of the detector. 0
 - Increased pile-up.
- Computing-friendly. 0
 - CPU time per event. 0
 - Memory use. 0



■56 ■56

■ 6 ■ 120

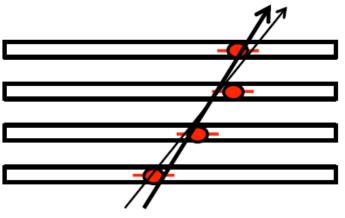
12


What do we reconstruct?

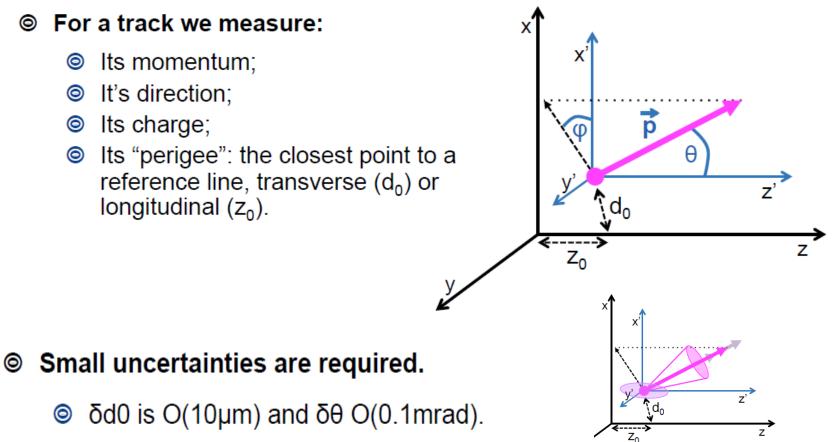

Tracking in a nutshell

 A track represents a measurement of a charged particle that leaves a trajectory as it passes through the detector.

Tracking in a nutshell: track fitting


Perfect measurement – ideal

Imperfect measurement – reality

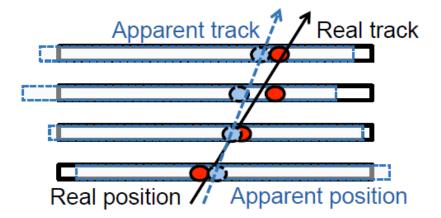

Small errors and more points help to constrain the possibilities

Quantitatively:

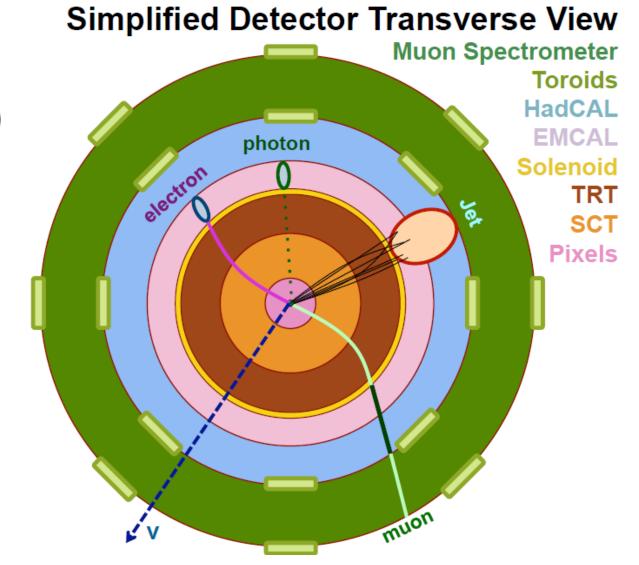
- Parameterize the track;
- Find parameters by Least-Squares-Minimization;
- Obtain also uncertainties on the track parameters.

Tracking in a nutshell: track fitting

Allows separation of tracks that come from different particle decays (which can be separated at the order of mm).

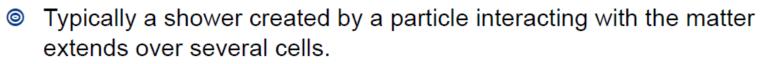

Tracking in a nutshell: the uncertainties

Presence of Material


- Coulomb scattering off the core of atoms
- Energy loss due to ionization
- Bremsstrahlung
- Hadronic interaction

Misalignment

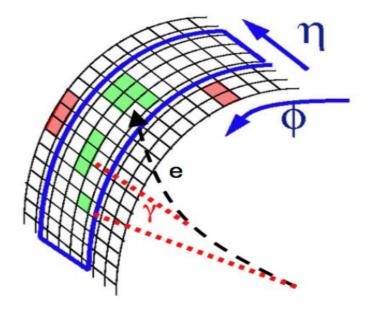
- Detector elements not positions in space with perfect accuracy.
- Alignment corrections derived from data and applied in track reconstruction.


What do we reconstruct?

Clustering in a nutshell

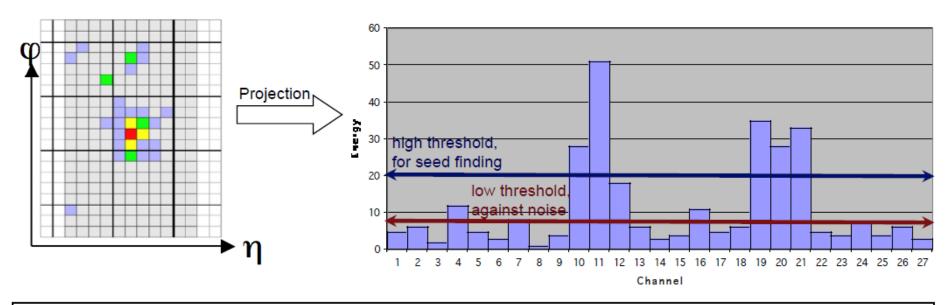
- Reconstruct energy deposited in the calorimeter by charged or neutral particles; electrons, photons and jets. E/σ_{cel} Φ
- For a cluster we measure:
 - The energy;
 - The position of the deposit;
 - The direction of the incident particles;
- Calorimeters are segmented in cells.

- Various clustering algorithms, e.g.:
 - **Sliding window**. Sum cells within a fixed-size rectangular window.
 - **Topo-clustering**. Start with a seed cell and iteratively add to the cluster the neighbor of a cell already in the cluster.


ŋ

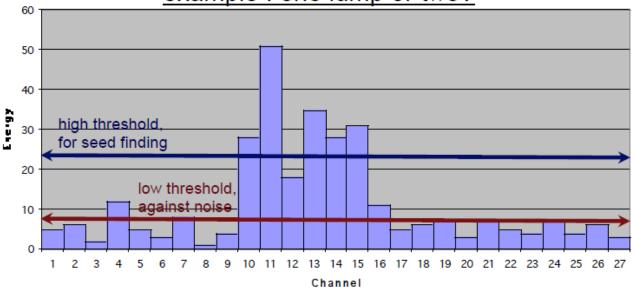


Cluster finding – an example


CMS crystal calorimeter – ECAL clusters

electron energy in central crystal ~80%, in 5x5 matrix around it ~96%.

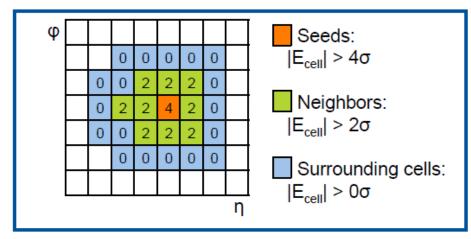
Cluster finding – an example

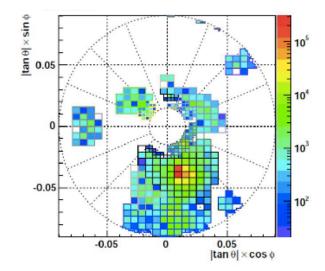

Simple example of an algorithm

- Scan for seed crystals = local energy maximum above a defined seed threshold
- Starting from the seed position, adjacent crystals are examined, scanning first in φ and then in η
- Along each scan line, crystals are added to the cluster if
 - 1. The crystal's energy is above the noise level (lower threshold)
 - 2. The crystal has not been assigned to another cluster already

Cluster finding – difficulties

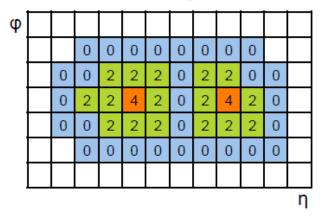
Careful tuning of thresholds needed.

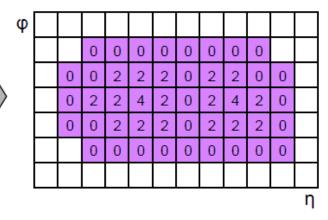

- needs usually learning phase;
- adapt to noise conditions;
- too low : pick up too much unwanted energy;
- too high : loose too much of "real" energy. Corrections/Calibrations will be larger.

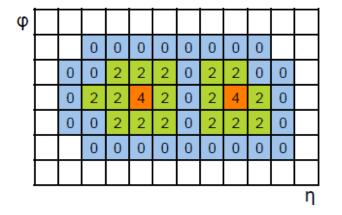


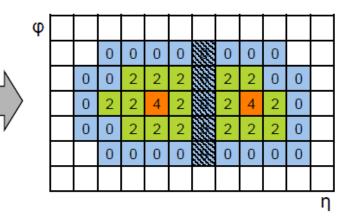
example : one lump or two?

Cluster finding – topological clustering

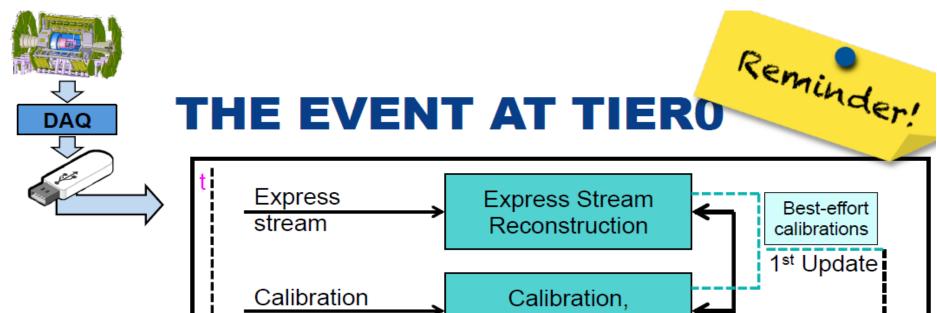

"Topological" clusters, i.e. "blobs" of energy inside the detector.

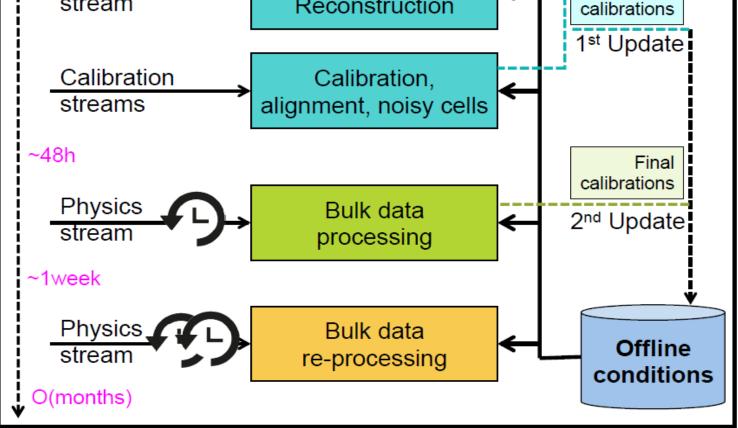



Cluster finding – merging and splitting

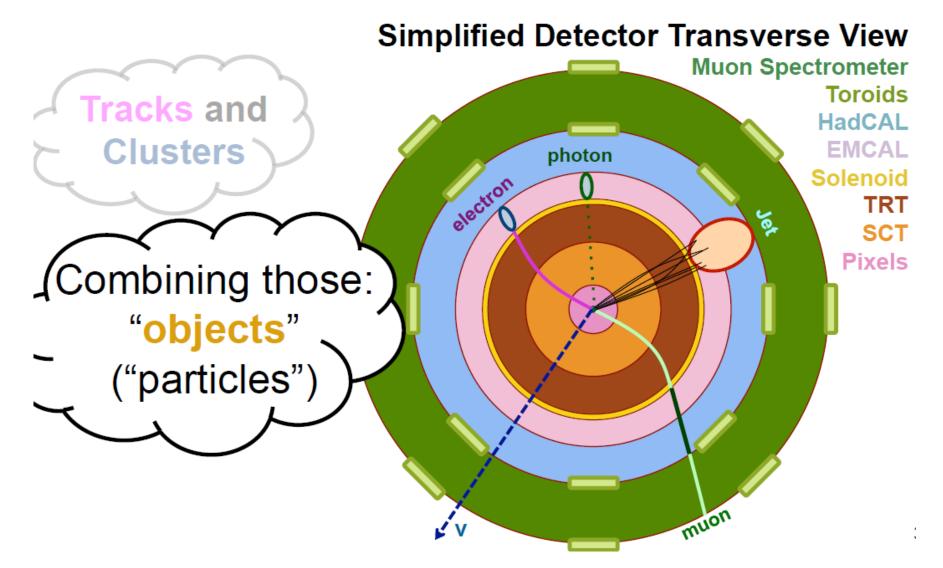

If clusters have common neighboring cells, they are merged according to the basic algorithm.

Clusters are split if more than one local maxima.

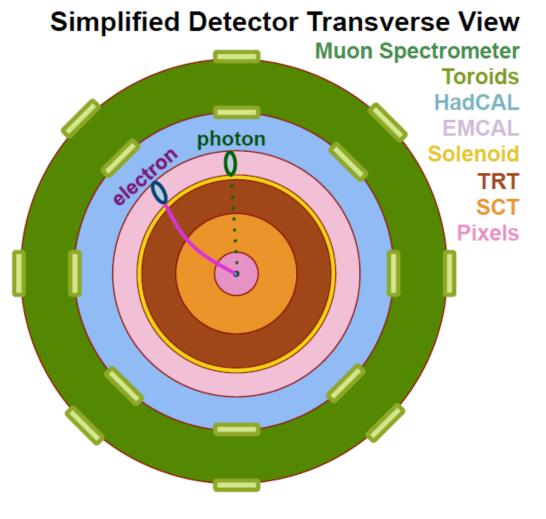



For common cells, a weight is applied to share them (shaded cells).

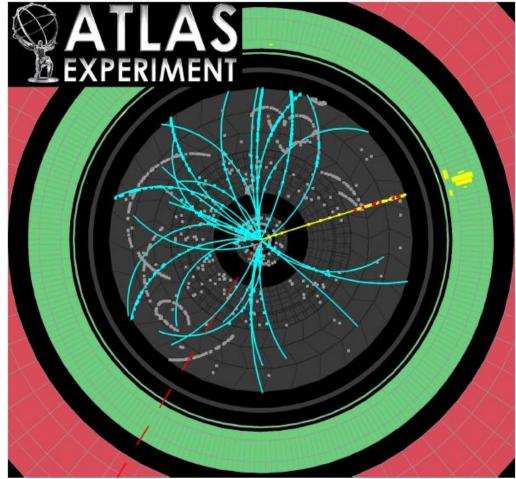
Cluster calibration


Possible energy measurements:

- Son-calibrated clusters: sum energy using baseline cell-level detector calibration.
 - That's NOT the true energy of the particle that originated the cluster.
- Social Content of C
 - the different calorimeter response on an EM (e.g. π⁰) or a hadronic (e.g. π[±]) deposition.
 - Ithe low energetic deposits, lost in the tails of the shower ("out-ofcluster" corrections, derived from simulation).
 - It the presence of dead material, i.e. material without a read-out device, where energy is lost.
- Corrections are complex functions of the energy and the position of the cluster and other parameters defining the cluster shapes.

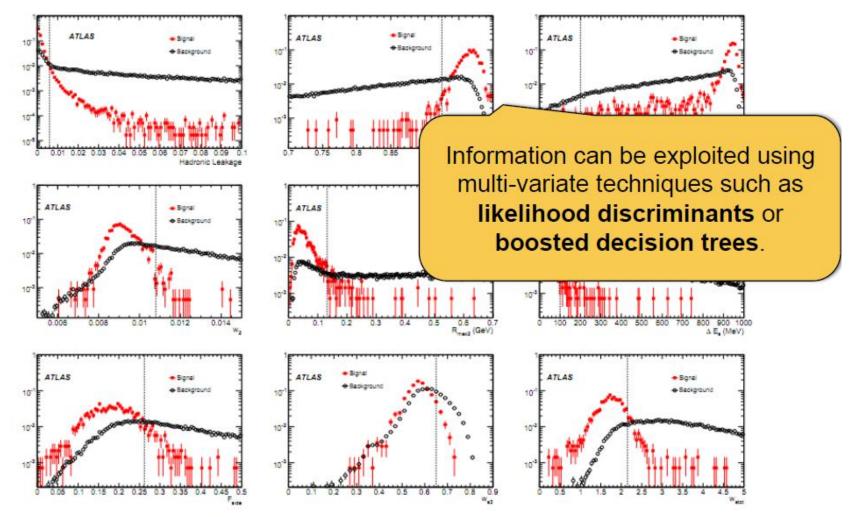


What do we reconstruct?


Electrons and photons

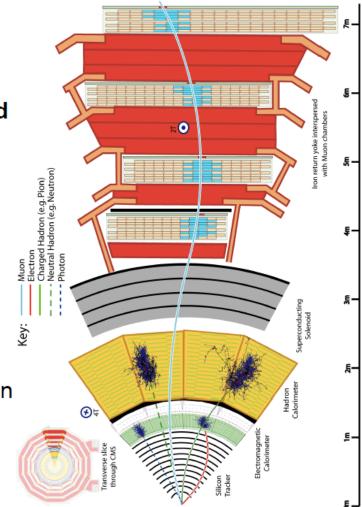
- Final Electron momentum measurement can come from tracking or calorimeter information (or a combination of both).
 - Often have a final calibration to give the best electron energy.
- Often want "isolated electrons".
 - Require little calorimeter energy or tracks in the region around the electron.

Electrons and photons

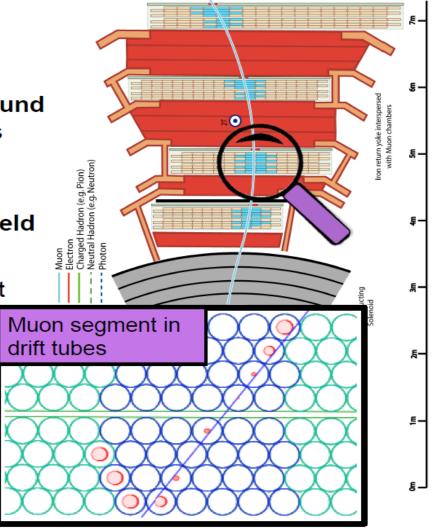

- Final Electron momentum measurement can come from tracking or calorimeter information (or a combination of both).
 - Often have a final calibration to give the best electron energy.
- Often want "isolated electrons".
 - Require little calorimeter energy or tracks in the region around the electron.

Electrons and photons (backgrounds)

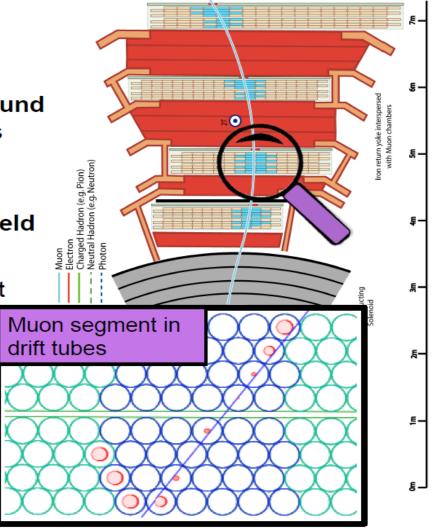
- Hadronic jets leave energy in the calorimeter which can fake electrons or photons.
- Substitution State of the st
- Substant Straight Straight
- So it should be "easy" to separate electrons from jets.
- Solution However have many thousands more jets than electrons, so need the rate of jets faking an electron to be very small ~10^{-4.}
- Need complex identification algorithms to give the rejection whilst keeping a high efficiency.


Electrons and photons (backgrounds)

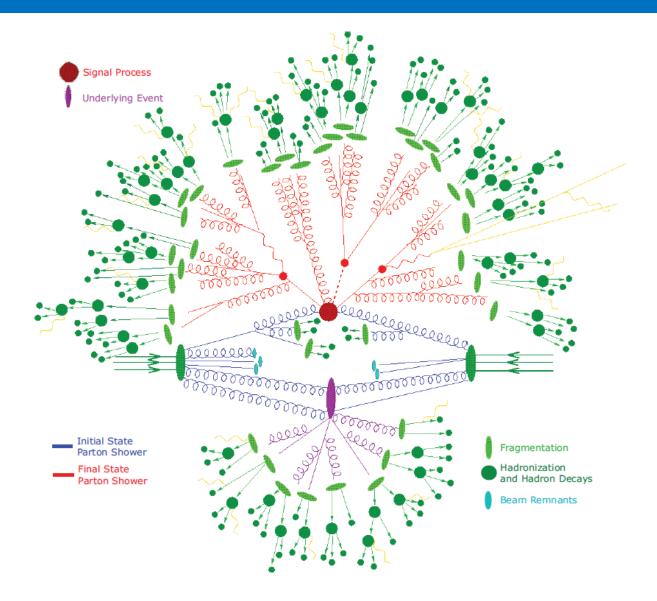
Example of different calorimeter shower shape variables used to distinguish electron showers from jets in ATLAS


Muons

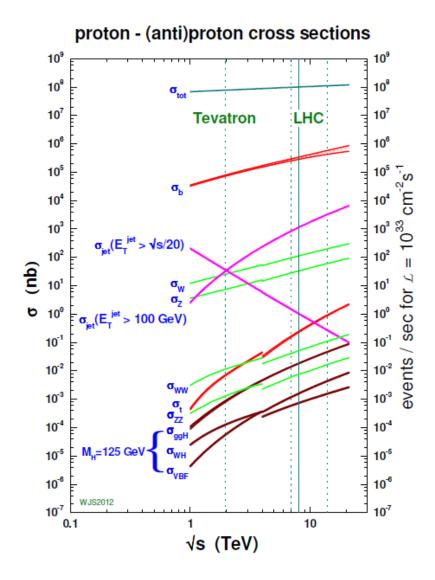
- Combine the muon segments found in the muon detector with tracks from the tracking detector
- Momentum of muon determined from bending due to magnetic field in tracker and in muon system
 - Combine measurements to get
 best resolution
 - Need an accurate map of the magnetic field in the reconstruction software
 - Alignment of the muon detectors also very important to get best momentum resolution


Muons

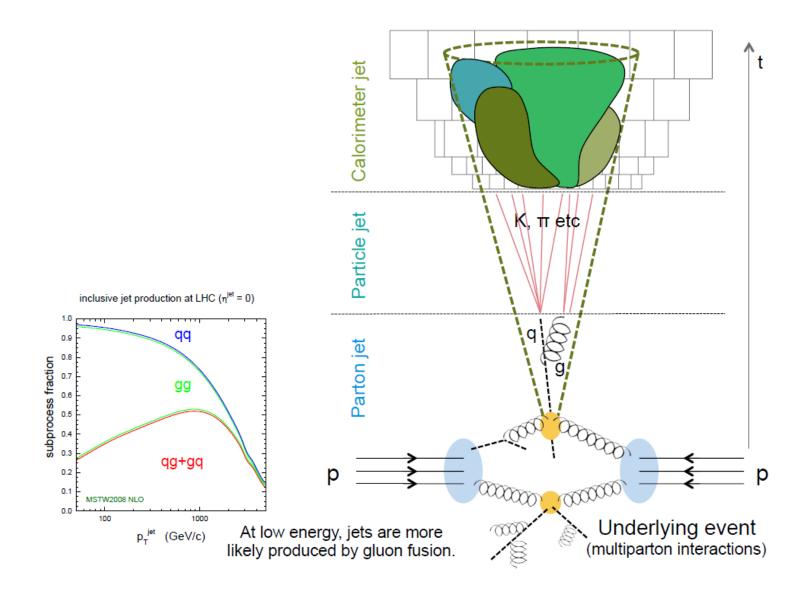
- Combine the muon segments found in the muon detector with tracks from the tracking detector
- Momentum of muon determined from bending due to magnetic field in tracker and in muon system
 - Combine measurements to get best resolution
 - Need an accurate map of the magnetic field in the reconstru software
 - Alignment of the muon detector also very important to get best momentum resolution



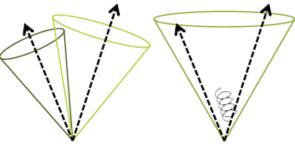
Muons


- Combine the muon segments found in the muon detector with tracks from the tracking detector
- Momentum of muon determined from bending due to magnetic field in tracker and in muon system
 - Combine measurements to get best resolution
 - Need an accurate map of the magnetic field in the reconstru software
 - Alignment of the muon detector also very important to get best momentum resolution

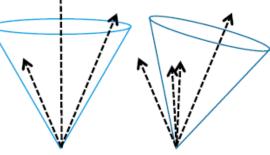
Jets

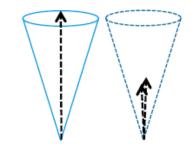

Standard Model processes

Jets are produced:


- by fragmentation of gluons and (light) quarks in QCD scattering.
- Solution Standard Standard Model particles, e.g. W & Z.
- In association with particle production in Vector Boson Fusion, e.g. Higgs.
- In decays of beyond the Standard Model particles, e.g. in SUSY.

Jets




Jet algorithms

Theoretical requirements: infrared and collinear safe.

Soft gluon radiation should not merge jets

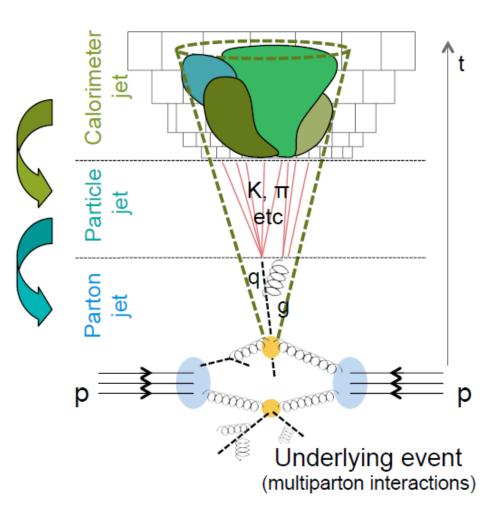
Final jet should not depend on the ordering of the seeds...

...and on signal split in two possibly below threshold

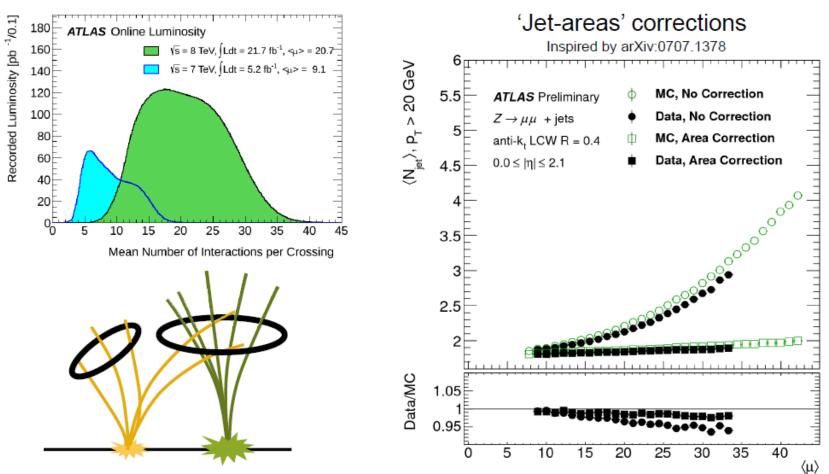
Experimental requirements: detector technology & environment independent, easily implementable.

Insignificant effects of detector	Stability with	Fully specified
Noise	Luminosity	Fast
Dead material	Pile-up	
Cracks	Physics process	

<u>Jet algorithm commonly used at the LHC</u>: 'anti- k_t '. A 'recursive recombination' algorithm. Starts from (topo-)clusters. Hard stuff clusters with nearest neighbor. Various cone sizes (standard R=0.4/0.5, "fat" R=1.0).

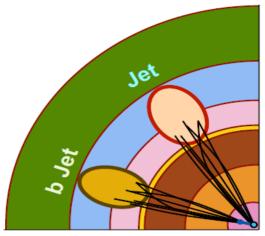

Jet calibration

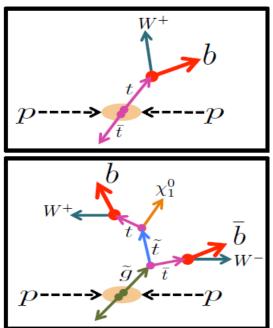
Correct the energy and position measurement and the resolution.


Account for:

Instrumental effects Detector inefficiencies 'Pile-up' Electronic noise Clustering, noise suppression Dead material losses Detector response Algorithm efficiency

<u>Physics effects</u> Algorithm efficiency 'Pile-up' 'Underlying event'

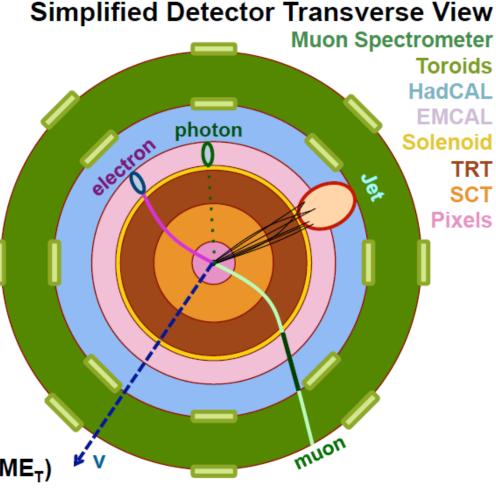

Jets & pile-up



Multiple interactions from pile-up

b-jets

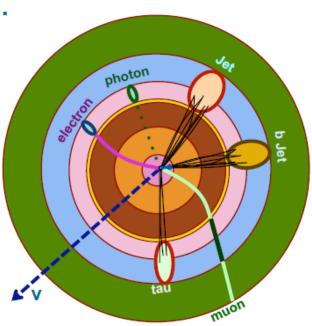
- In b-quarks have a lifetime of ~ 10⁻¹² s.
- They travel a small distance (fraction of mm) before decaying.
- A "displaced vertex" creates a distinct jet, so b-jets can be tagged (b-tagged).
- b-tagging uses sophisticated algorithms, mostly multi-variate.
- b-jets create distinct final states, important for both Standard Model measurements and searches for New Physics.


Missing transverse momentum

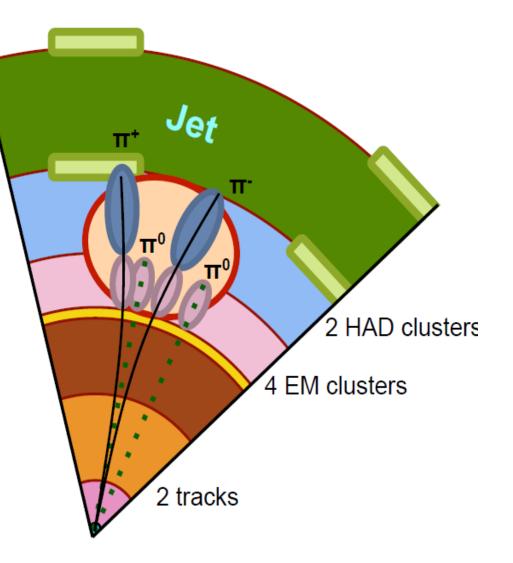
Dark Matter

In the transverse plane:

 $\sum \vec{\mathbf{p}}_{\mathrm{T}} = 0$

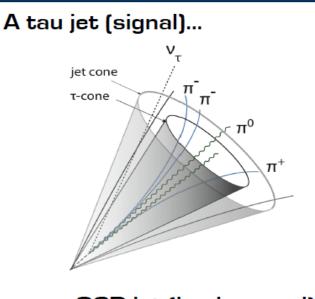

Missing Transverse Momentum (ME_T)

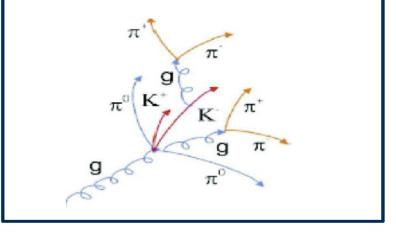
Missing transverse momentum


Impossible to measure particles that don't interact in the detector.

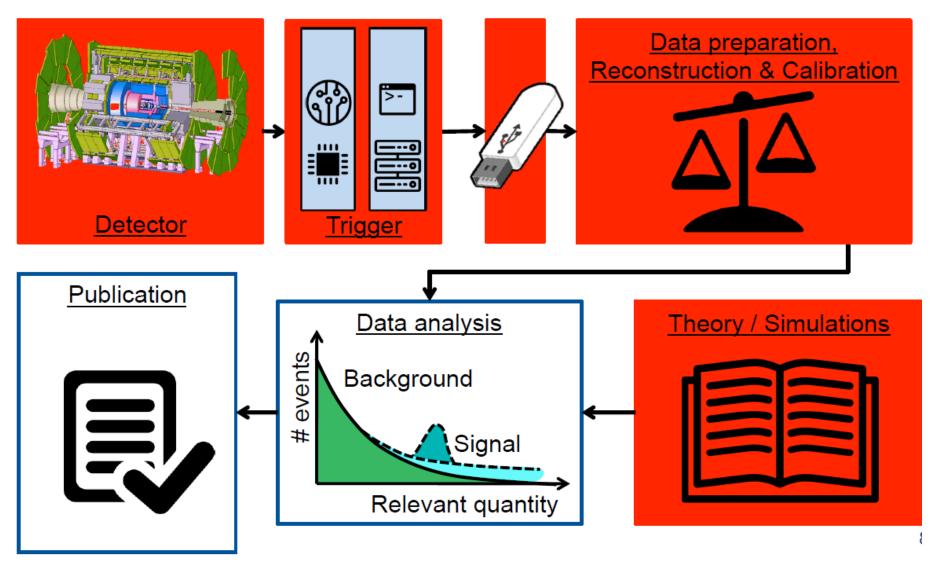
- Instead, measure everything else & require momentum conservation in the transverse plane.
- Sensitive to pile-up and detector problems.
- Only as good as its inputs.
- Subsection Stress St
- Add remaining soft energy.

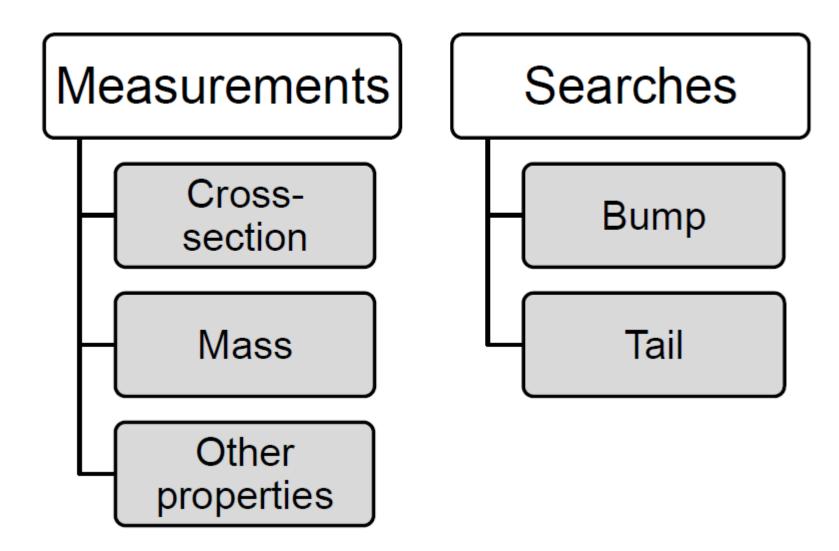
Particle flow

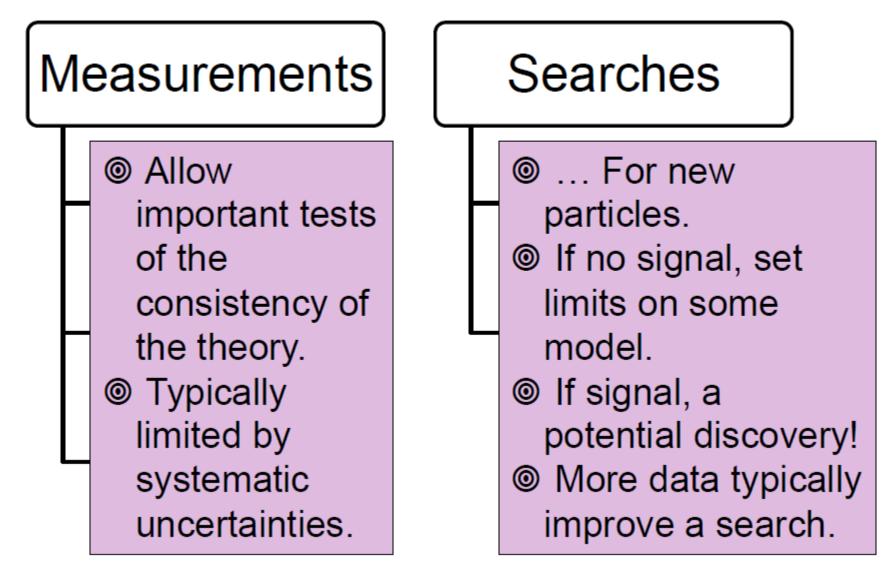

- "Flow of particles" through the detector.
- Reconstruct and identify all particles, photons, electrons, pions, …
- Use best combination of all subdetectors for measuring the properties of the particles.
- First used at LEP (ALEPH) and then at the LHC (CMS).

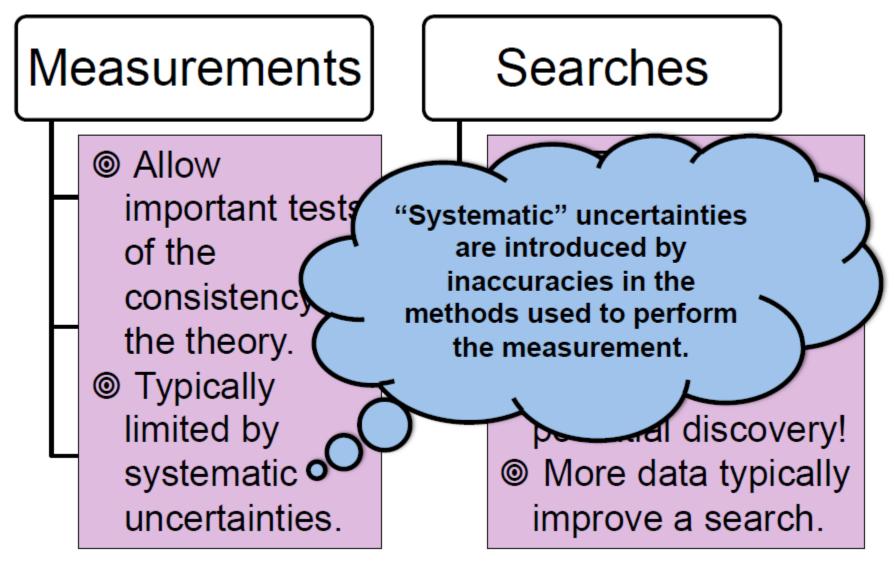

Reconstructing particles

Tau Decay Mode			B.R.
Leptonic		$\tau^{\pm} \rightarrow e^{\pm} + \nu + \nu$	17.8%
		$\tau^{\pm} \rightarrow \mu^{\pm} + \nu + \nu$	17.4%
Hadronic	1- prong	$\tau^{\pm} \rightarrow \pi^{\pm} + \nu$	11%
		$\tau^{\pm} \rightarrow \pi^{\pm} + \nu + n\pi^{0}$	35%
	3- prong	$\tau^{\pm} \rightarrow 3\pi^{\pm} + \nu$	9%
		$\tau^{\pm} \rightarrow 3\pi^{\pm} + \nu + n\pi^0$	5%
Other			~5%


- Hadronic tau reconstruction extremely challenging.
- Solution Strack Multiplicity and shower shapes.


...vs. a QCD jet (background)

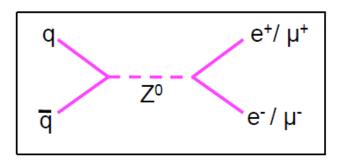

An event's lifetime


Physics analyses

Physcis analyses

Physics analyses

Physics analyses

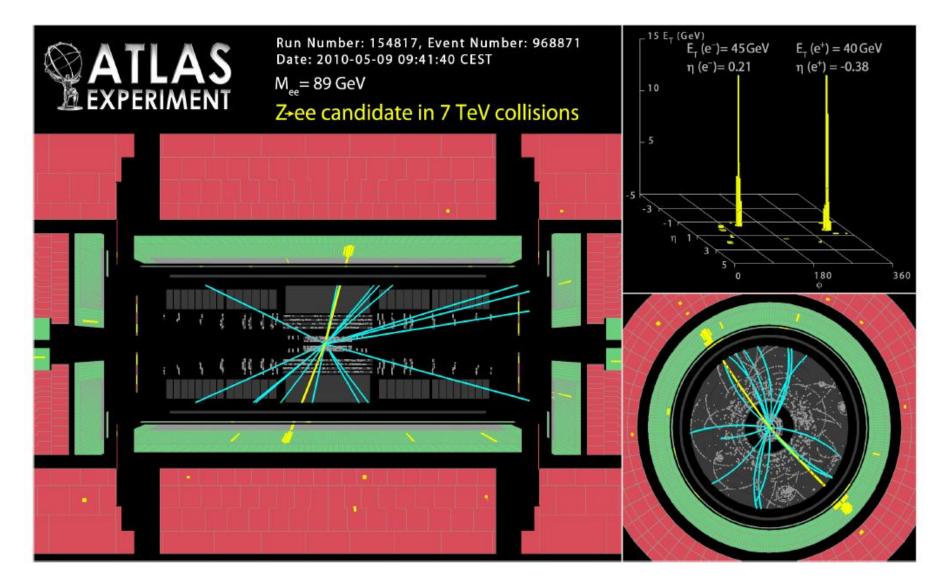

SIMPLE EXAMPLE:

MEASURING Z⁰ CROSS-SECTION AT LHC

Measuring Z⁰ cross-section at LHC

Solution State State

• We can reconstruct it in the e^+e^- or $\mu^+\mu^-$ decay modes


 Discovery and study of the Z^o boson was a critical part understanding the electroweak force.

◎ And now, at the LHC?

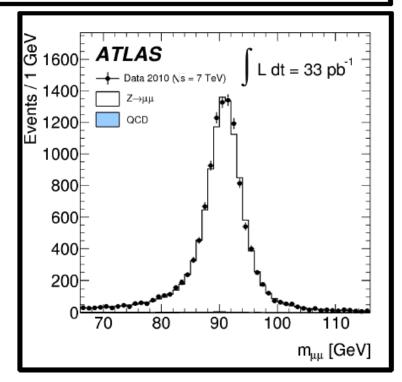
- Important test of theory: does the measurement agree with the theoretical prediction at LHC collision energy?
- A standard candle for studying reconstruction and deriving calibrations.
- Can be used for luminosity determination!

Physics analyses

Reconstructing Z⁰'s

How do we know it's a Z^o?

Identify Z decays using the invariant mass of the 2 leptons $M^2 = (L_1 + L_2)^2$ where $L_i = (E_i, \underline{p}_i) = 4$ -vector for lepton i


Under assumption that lepton is massless compared to mass of Z^0 => $M^2 = 2 E_1 E_2 (1 - \cos \theta_{12})$ where θ_{12} = angle between the leptons

So need to reconstruct the electron and muon energy and direction. Then can calculate the mass.

Select Z^O events with 'analysis cuts':

- Events with 2 high momentum electrons or muons
- Require the electrons or muons are of opposite charge
- With di-lepton mass close to the Z⁰ mass (e.g. 70<m_{I+I}<110 GeV)</p>

Very little background in Z^o mass region!

e*/ µ*

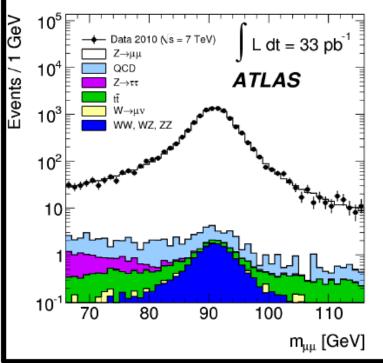
e⁻/μ⁻

70

Reconstructing Z⁰'s

How do we know it's a Z^O?

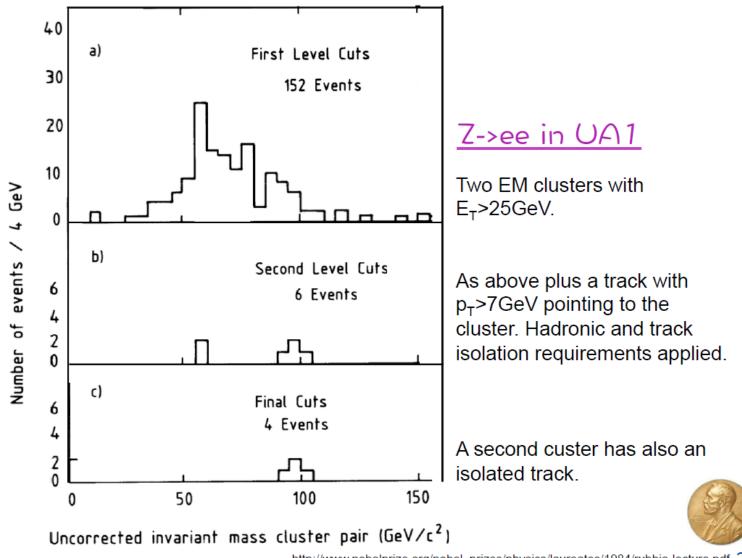
Identify Z decays using the invariant mass of the 2 leptons $M^2 = (L_1+L_2)^2$ where $L_i = (E_i, \underline{p}_i) = 4$ -vector for lepton i


Under assumption that lepton is massless compared to mass of Z^0 => $M^2 = 2 E_1 E_2 (1 - \cos \theta_{12})$ where θ_{12} = angle between the leptons

So need to reconstruct the electron and muon energy and direction. Then can calculate the mass.

Select Z^O events with 'analysis cuts':

- Events with 2 high momentum electrons or muons
- Require the electrons or muons are of opposite charge
- With di-lepton mass close to the Z⁰ mass (e.g. 70<m_{|+|-}<110 GeV)</p>



70

e*/ µ*

e-/μ-

A step back in time ...

http://www.nobelprize.org/nobel_prizes/physics/laureates/1984/rubbia-lecture.pdf 20

Measuring the Z⁰ cross-section

Theoretically

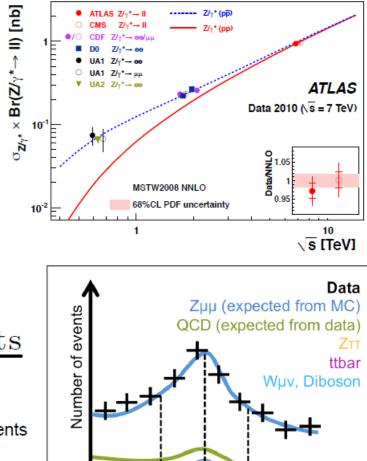
Cross-section calculated for:

- Specific production mechanism (pp, pp, e⁺e⁻)
- Centre-of-Mass of the collisions (7, 8, 13 TeV at LHC)

Experimentally

$$\sigma \cdot \mathrm{BR} = \frac{\mathrm{Number of events}}{\alpha \cdot \epsilon \cdot \mathrm{L}}$$

N of events:


N of events on data – N of expected background events α – acceptance:

fraction of events passing selection requirements

ε – efficiency:

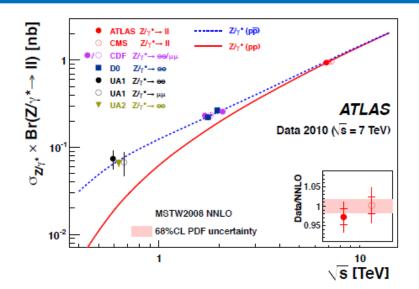
reconstruction efficiency of relevant objects

L – luminosity

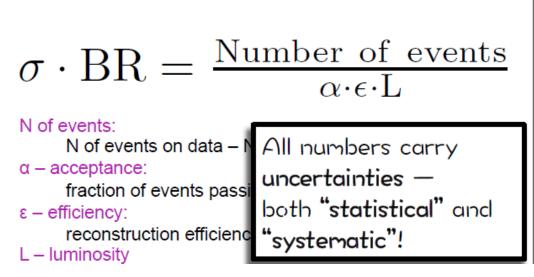
m₁

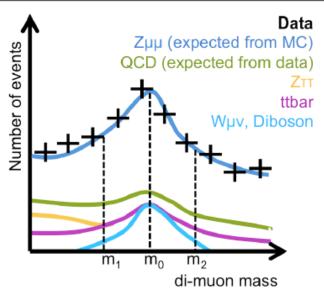
 m_0

 m_2

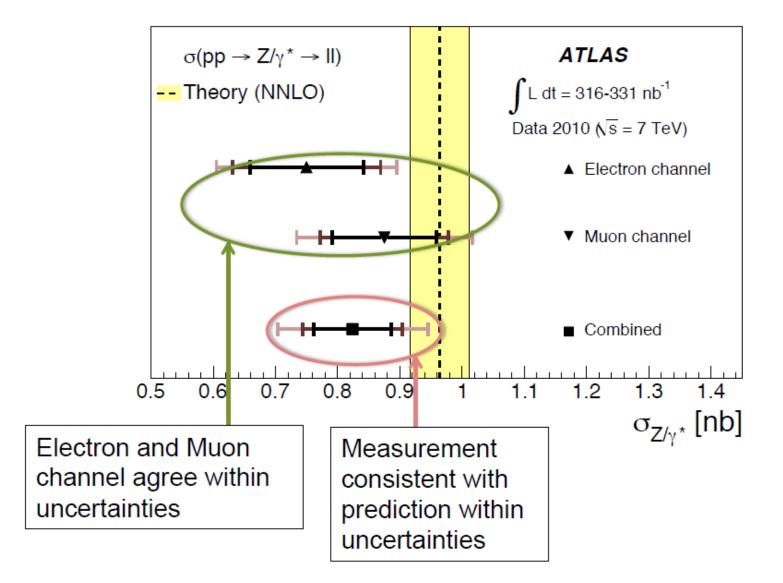

di-muon mass

Measuring the Z⁰ cross-section

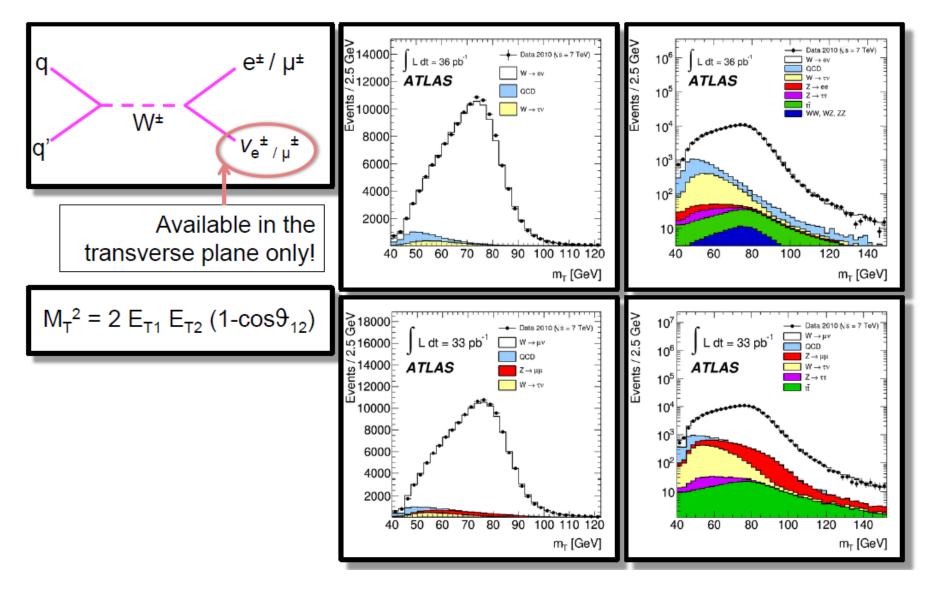

Theoretically

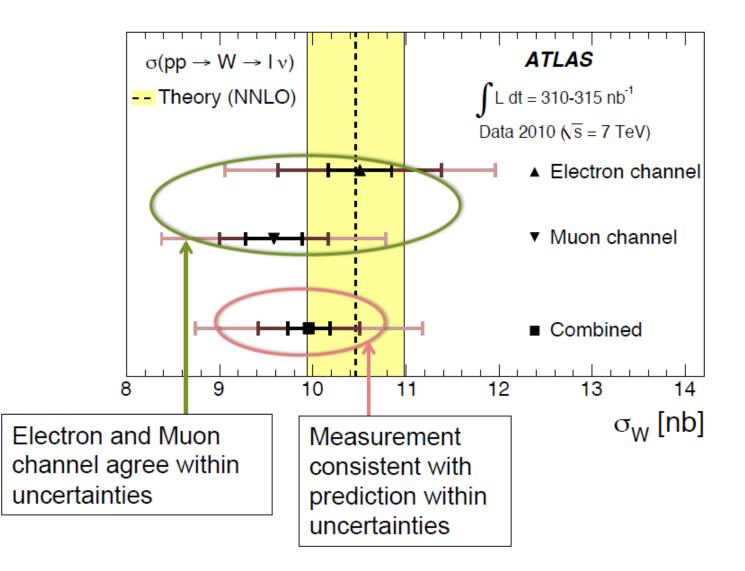

Cross-section calculated for:

- Specific production mechanism (pp, pp̄, e⁺e⁻)
- Centre-of-Mass of the collisions (7, 8, 13 TeV at LHC)

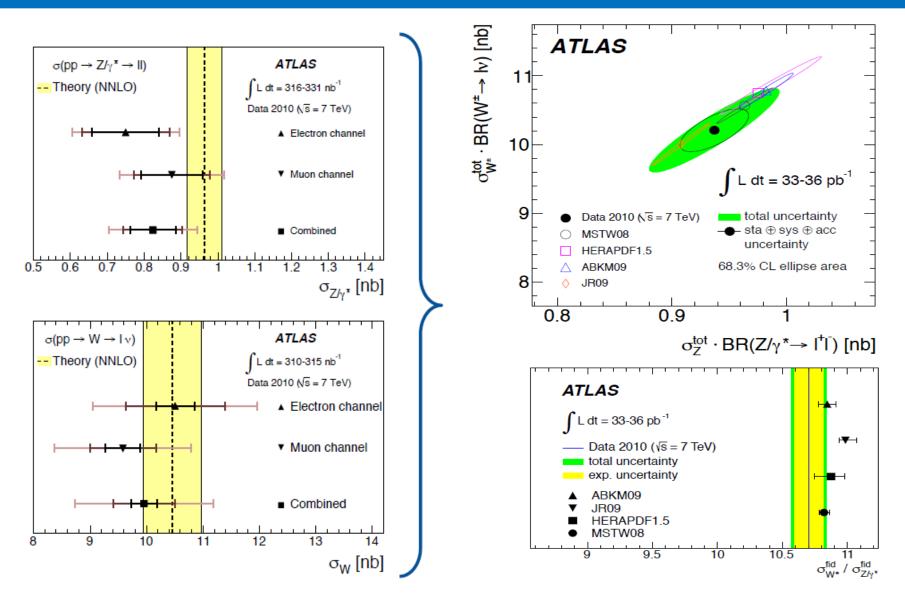


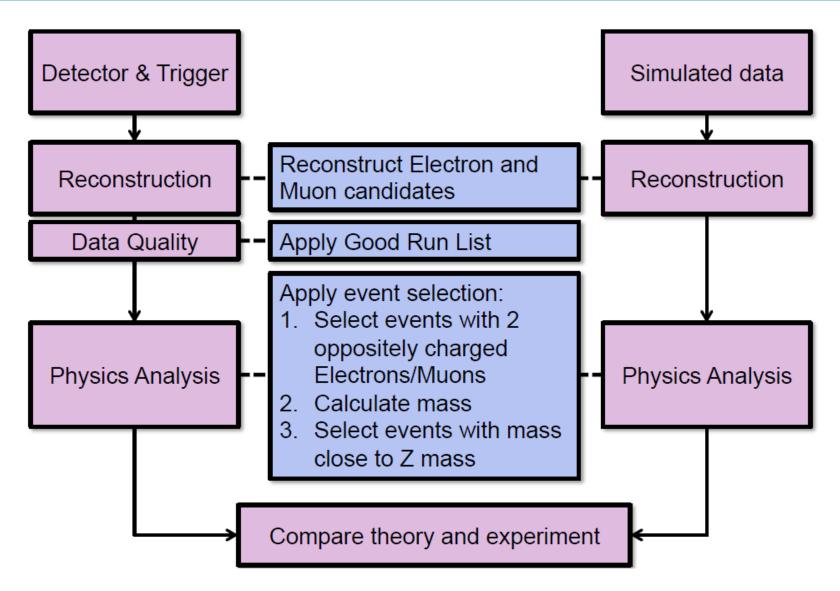
Experimentally



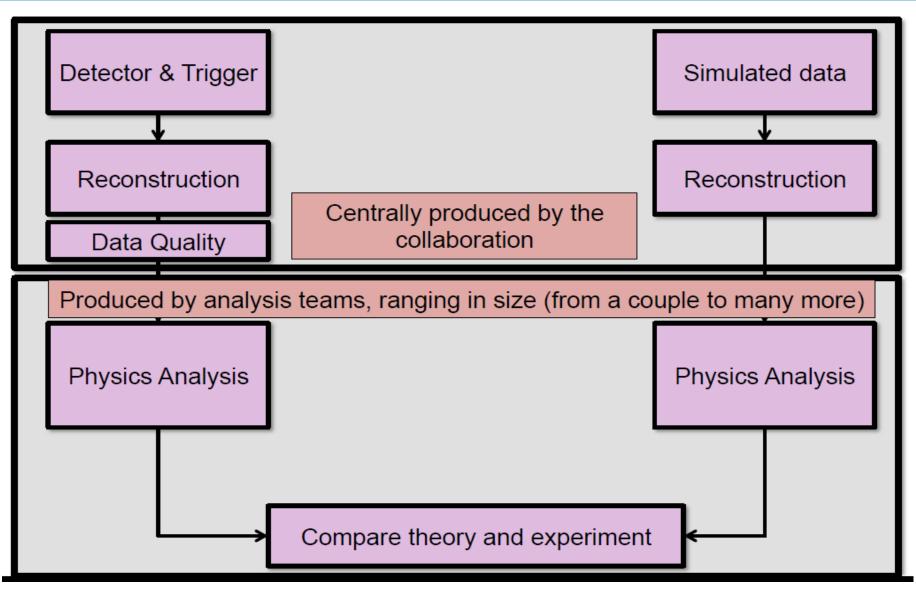

Measuring the Z⁰ cross-section

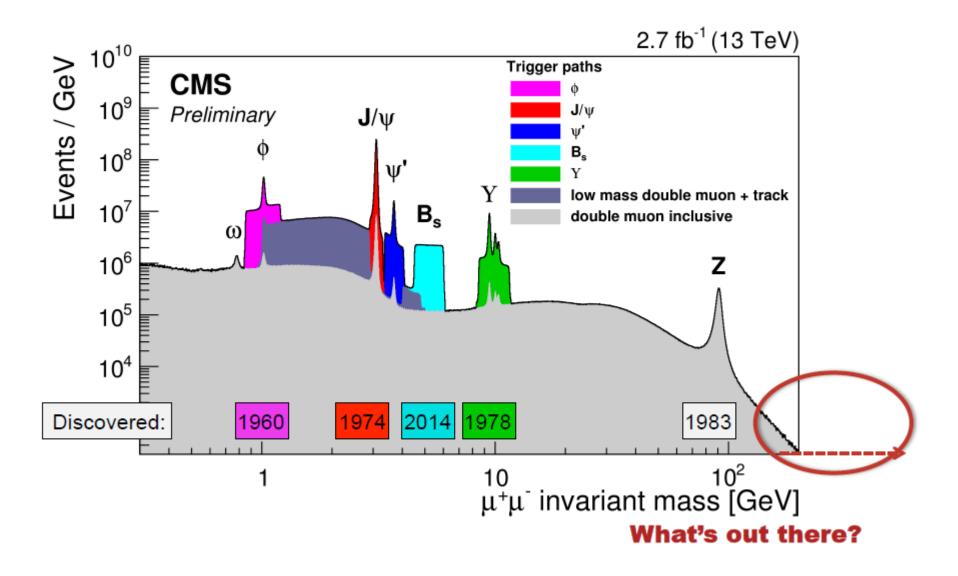
Measuring the W cross-section


Measuring the W cross-section


"Final" calibration

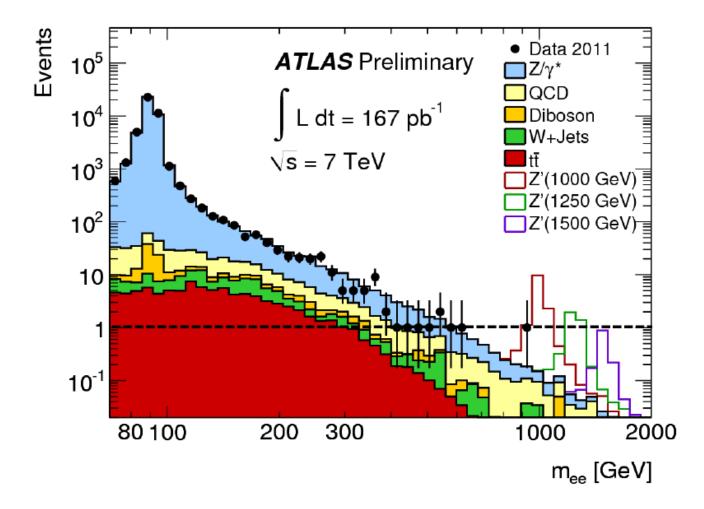
pp total	$\sigma = 95.35 \pm 0.38 \pm 1.3 \text{ mb (data)} \\ \text{COMPETE RRpi2u 2002 (theory)}$			4 8×10 ⁻	8 Nucl. Phys. B, 486-548 (2014)
Jets R=0.4	$\sigma = 563.9 \pm 1.5 + 55.4 - 51.4 \mathrm{nb} \mathrm{(data)} \\ \mathrm{NLCJet}_{**}, \mathrm{CT10} \mathrm{(theory)}$		0.1 < p _T < 2 TeV	4.5	arXiv:1410.8857 [hep-ex]
Dijets R=0.4 y <3.0, y*<3.0	$\sigma = 86.87 \pm 0.26 + 7.56 - 7.2 \text{ nb} (\text{data}) \\ \text{NLCUet++, CT10} (\text{theory})$	0.3 <	m ₂₀ < 5 TeV	4.5	JHEP 05, 059 (2014)
W total	$\sigma = 94.51 \pm 0.194 \pm 3.726 \text{ nb (deta)} \\ \text{FEWZ+HERAPDF1.5 NNLO (theory)}$		9	0.035	PRD 85, 072004 (2012)
Z	$\sigma=27.94\pm0.178\pm1.096~{\rm rb}~{\rm [data]} \\ {\rm FEWZ+HERAPDF1.5~NNLO~(theory)}$		¢	0.035	PRD 85, 072004 (2012)
tt	$\begin{array}{l} \sigma = 182.9 \pm 3.1 \pm 6.4 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{top++} \ \mathrm{NNLO+NNLL} \ \mathrm{(theory)} \\ \sigma = 242.4 \pm 1.7 \pm 10.2 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{top++} \ \mathrm{NNLO+NNLL} \ \mathrm{(theory)} \end{array}$	¢ 4		4.6 20.3	Eur. Phys. J. C 74: 3109 (2014) Eur. Phys. J. C 74: 3109 (2014)
t _{t-chan}	$ \begin{aligned} \sigma &= 68.0 \pm 2.0 \pm 8.0 \mathrm{pb} (\mathrm{data}) \\ \mathrm{NLO-NLL} (\mathrm{theory}) \\ \sigma &= 82.6 \pm 1.2 \pm 12.0 \mathrm{pb} (\mathrm{data}) \\ \mathrm{NLO-NLL} (\mathrm{theory}) \end{aligned} $	¢ 4		4.6 20.3	PRD 90, 112006 (2014) ATLAS-CONF-2014-007
WW+WZ	$\sigma = 68.0 \pm 7.0 \pm 19.0 \text{ pb (data)} \\ \text{MC@NLO (theory)}$	•	LHC pp $\sqrt{s} = 7 \text{ TeV}$ Theory	4.6	JHEP 01, 049 (2015)
WW total	$\sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb} (\text{data})$ MCFM (meory) $\sigma = 71.4 \pm 1.2 \pm 5.5 - 4.9 \text{ pb} (\text{data})$ MCFM (theory)	¢ ≰	Observed stat stat+syst	4.6 20.3	PRD 87, 112001 (2013) ATLAS-CONF-2014-003
Wt total	$\sigma = \frac{16.8 \pm 2.9 \pm 3.9 \text{ pb} \text{ (data)}}{\text{NLO+NLL (heory)}}$ $\sigma = 27.2 \pm 2.8 \pm 5.4 \text{ pb} \text{ (data)}$ NLO+NLL (heory)	р 		2.0 20.3	PLB 716, 142-159 (2012) ATLAS-CONF-2013-100
H _{ggF} total	$\sigma = 23.9 \pm 3.9 \pm 3.5 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{LHC}\mathrm{HOSWG} \ \mathrm{(theory)}$	4	LHC pp $\sqrt{s} = 8 \text{ TeV}$ Theory	△ 20.3	ATLAS-CONF-2015-007
wz ^{tota/}	$\sigma = 19.0 + 1.4 + 1.3 + 1.0 \text{ pb} (\text{data})$ MCFM (theory) $\sigma = 20.3 + 0.8 = 0.7 + 1.4 - 1.3 \text{ pb} (\text{data})$ MCFM (theory) $\sigma = 6.7 + 0.5 - 0.4 \text{ pb} (\text{data})$ MCFM (theory) $\sigma = 7.3 + 0.5 - 0.4 + 0.4 \text{ pb} (\text{tata})$	°. ?	Observed stat stat+syst	4.6 3 4.6 4.6 4.6	EPJC 72, 2173 (2012) ATLAS-CONF-2013-021 JHEP 03, 128 (2013)
total H vBF total	$\sigma = 7.1 + 0.5 - 0.4 \pm 0.4 \text{ pb (data)}$ $\sigma = 2.43 + 0.6 - 0.55 \text{ pb (data)}$ LHC-HOCSWG (theory)		Preliminary	20.3 ▲ 20.3	ATLAS-CONF-2013-020 ATLAS-CONF-2015-007
ttW	σ = 300.0 + 120.0 − 100.0 + 70.0 − 40.0 fb (data) MCFM (theory)	Run 1	$\sqrt{s} = 7, 8 \text{ TeV}$	20.3	ATLAS-CONF-2014-038
ttZ total	σ = 150.0 + 55.0 - 50.0 ± 21.0 fb (data) HELAC-NLO (theory)			20.3	ATLAS-CONF-2014-038


Measuring cross-sections ratio

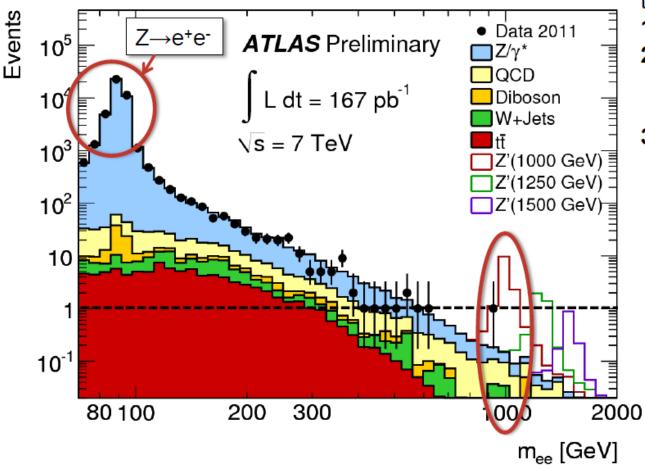


Analysis flow in Z⁰ cross-section measurement

Analysis flow in Z⁰ cross-section measurement



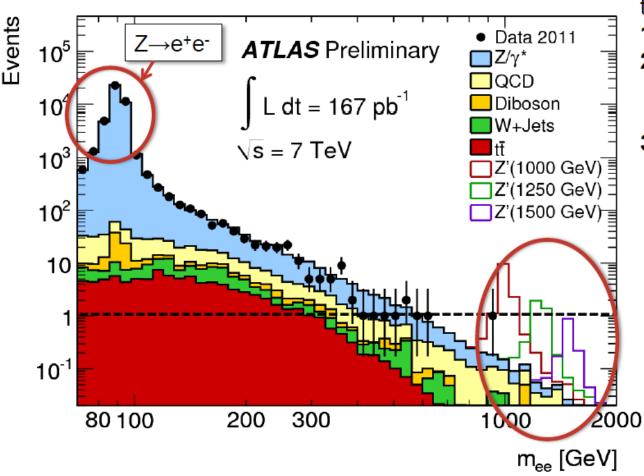
Simple search example


SIMPLE SEARCH EXAMPLE:

SEARCH FOR A HEAVY Z'

Iike Z->ee but at higher mass.

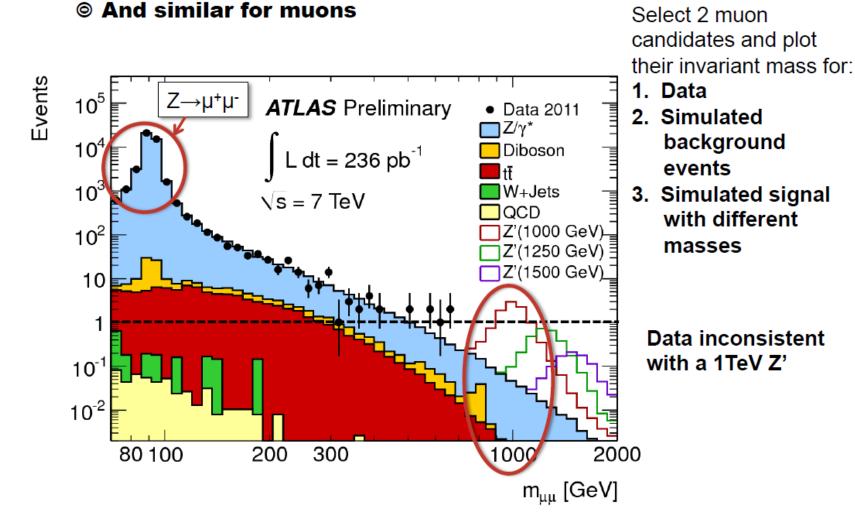
Iike Z->ee but at higher mass.



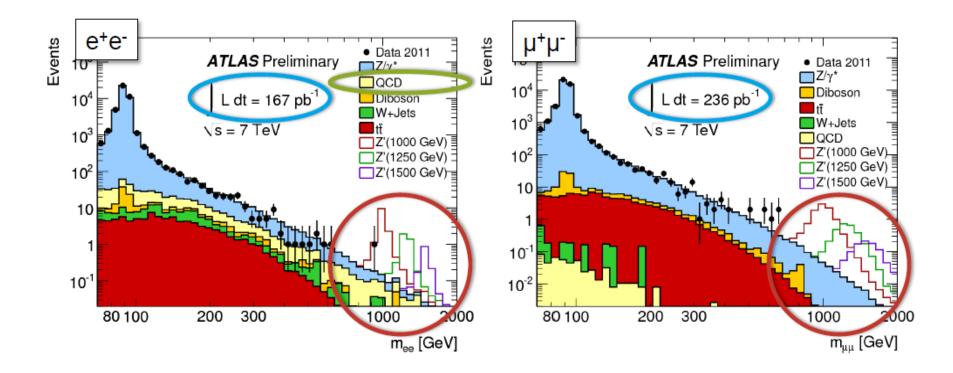
Select 2 electron candidates and plot their invariant mass for:

- 1. Data
- 2. Simulated background events
- 3. Simulated signal with different masses

Data inconsistent with a 1TeV Z'

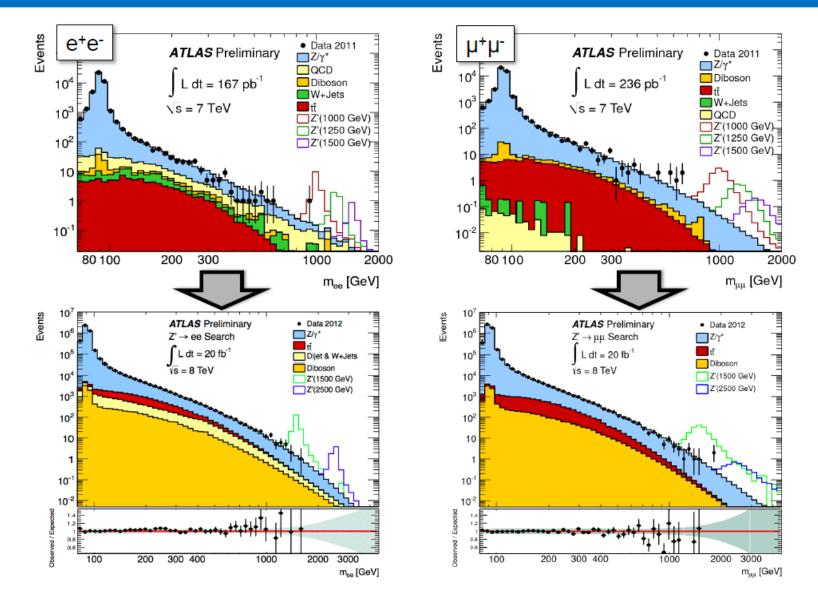

© Like Z->ee but at higher mass.

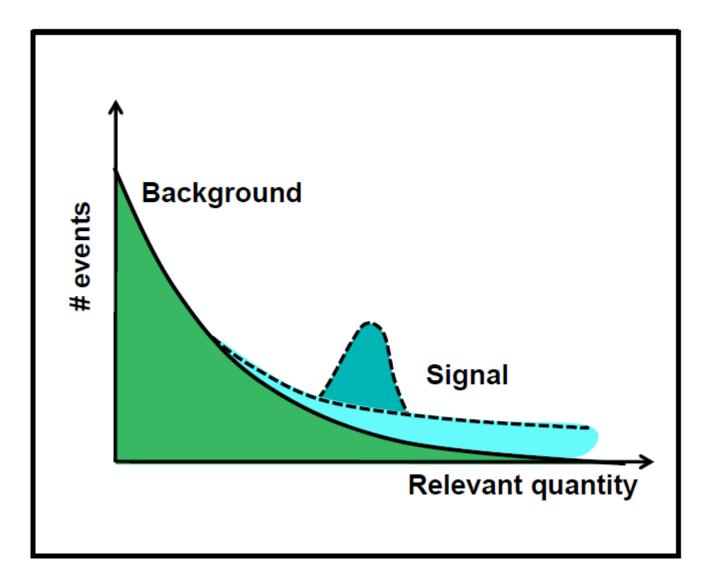
Select 2 electron candidates and plot their invariant mass for:


- 1. Data
- 2. Simulated background events
- 3. Simulated signal with different masses

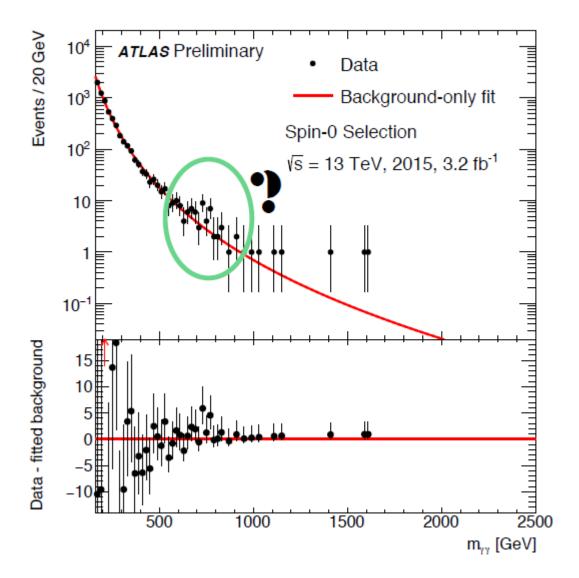
Cross-section decreases with mass (higher the mass of the Z', the more data needed to discover it)

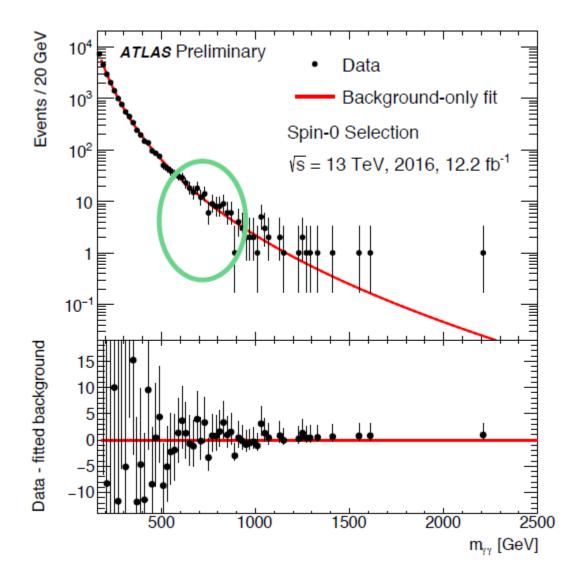
106


A small comparison

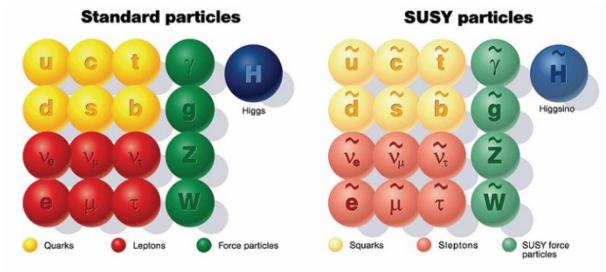

Differences in:

- Resolution
- Background composition
- Dataset


Evolution...


Searches

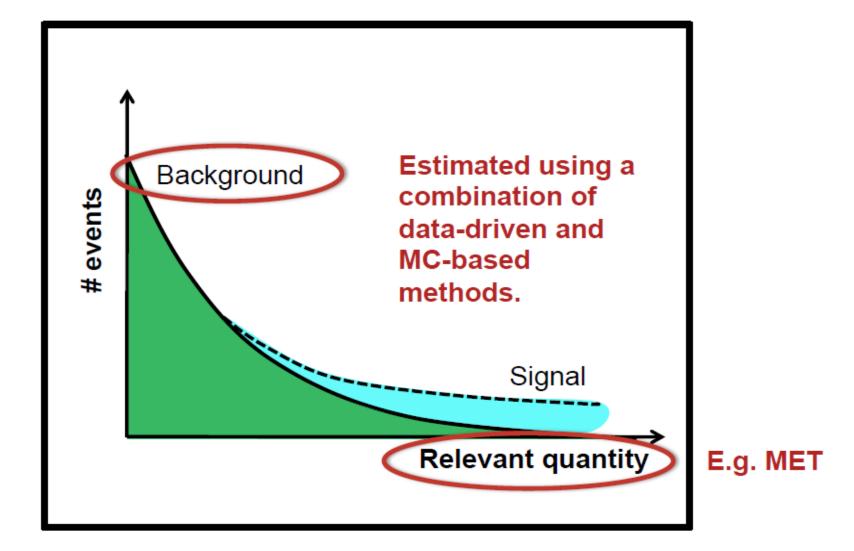
A well known bump search



A well known bump search

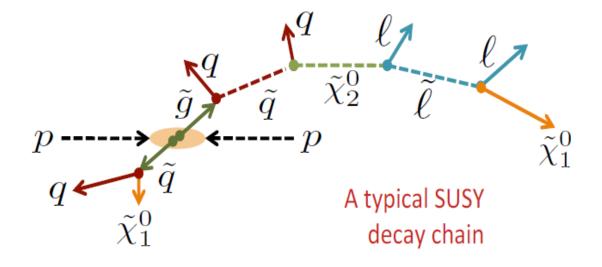
Typical SUSY searches

Super-symmetry?

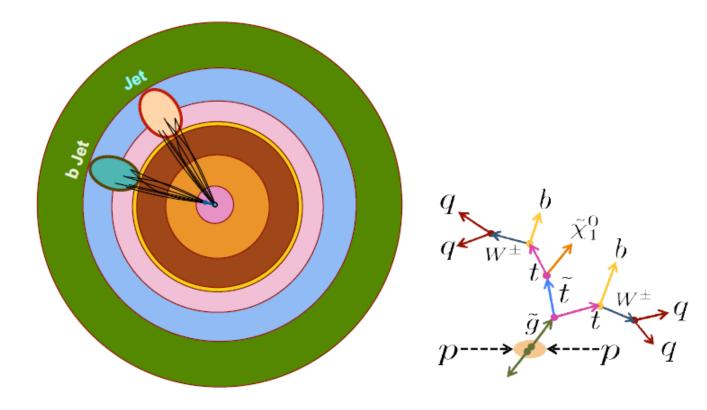

- Composite quark and/or leptons?
- New Heavy bosons?
- Gravitons?

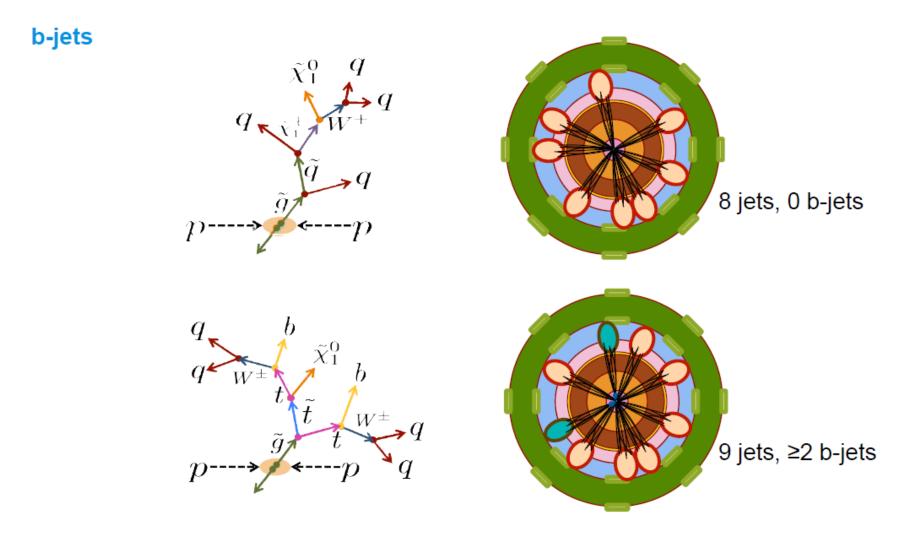
...

Dark Matter particles?

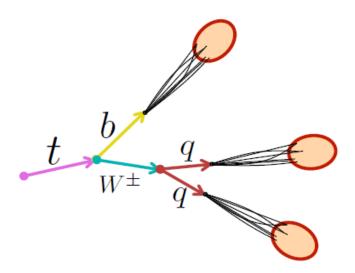


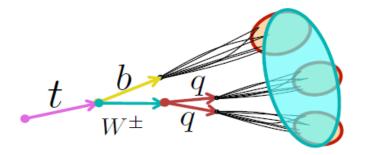
Typical SUSY searches




Another search example

SEARCH FOR SUSY IN EVENTS WITH LARGE JET MULTIPLICITIES

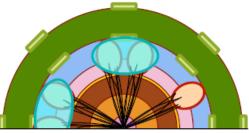

b-jets




Signal regions can range in jet p_T and jet & b-jet multiplicity.

Fat-jets are a key signature in searches for boosted objects, e.g. boosted tops.

Signal regions can range in jet multiplicity and M_J^{Σ} cuts.


60

Example of search

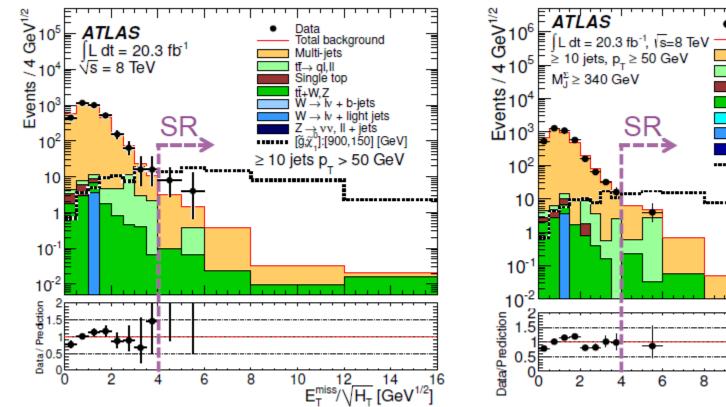
"b-jet strea	ım"													
ID		8j5	0		9j5	0	≥10	j50		7j8	0		≥8j8	B O
Jet ŋ							< 2	2.0						
Jet p _T				50	Ge	٧					80 0	eV	,	
Jet count		=8	3		=9)	≥1	0		=7			≥8	3
b-jets	0	1	≥2	0	1	≥2	-		0	1	≥2	0	1	≥2
ME _T /√H _T			•	•	•	•	>40	GeV	1⁄2	•		•		•

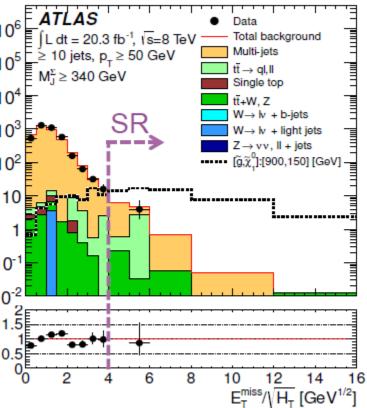
"fat-jet stream" ------

ID	≥8	j50	≥9	j50	≥10	j50				
Jet ŋ	< 2.8									
Jet p _T	50 GeV									
Jet count	2	28	2	:9	≥10					
M_J^Σ (GeV)	>340	>420	>340	>420	>340	>420				
ME _T /√H _T	> 4 GeV ¹ / ₂									

Proposed in arXiv:1202.0558

$$M_J^{\Sigma} = \sum_{i=1}^{nJ} m_{j_i}$$

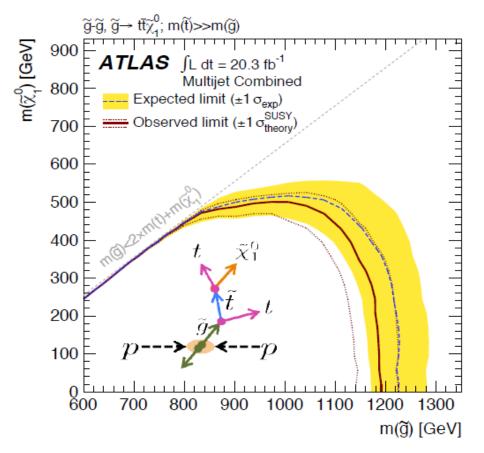

Results


ID		8j50			210j50		
b-jets	0	1	≥2	0	1	≥2	0
Expected evts	35±4	40±10	50±10	3.3±0.7	6.1±1.7	8.0±2.7	7 1.37±0.3
Observed evts	40	44	44	5	8	7	3
Significance (σ)	0.7	-0.02	-0.6	0.8	0.6	-0.28	1.11
ID		7	j80			≥8j80	
b-jets	0		1	≥2	0	1	≥2
Expected evts	11.0±2	2.2 1	17±6	25±10	0.9±0.6	1.5±0.9	3.3±2.2
	12		17	13	2	1	3
Observed evts							

ID	≥8	3j50	≥9	50	≥10j50		
M_{J}^{Σ} (GeV)	340	420	340	420	340	420	
Expected evts	75±19	45±14	17±7	11±5	3.2±3.7	2.2±2.0	
Observed evts	<mark>6</mark> 9	37	13	9	1	1	
Significance (o)	-0.27	-0.6	-0.6	-0.34	-0.8	-0.6	

120

Results



Interpretations

Real or Simplified models

Simplified topologies include typically one production and one decay process. Provide useful information for theorists.

49 8.3 Other SM Processes 78 D.2 Single Top System 50 8.4 Summary 79 D.3 Vector Boson + Jo		-					
2Differences compared to the previous multijet analysis33Data-set and Monte Carlo samples53.1Data Sample53.2Standard Model Monte-Carlo53.3Signal Models53.4Trigger105Object selection and event cleaning11.25.1Definition of Primary Objects11.25.2General Analysis Cuts11.2.17Effect of Plle-up on Jets11.27Effect of Plle-up on Jets128Standard Model background estimation88.1Multi-Jet Production88.1Multi-Jet Production8.18.1.2Total Jet Mass, M_1^2 8.28.2.1Ir and W-jets Background78.3Other SM Processes79Systematic use79Systematic use79.1Experimental Uncertainties89.2.2W+jbf by Systematics89.3Detersinities89.4Theoretical Uncertainties89.5Systematics89.6Theoretical Uncertainties89.7Experimental Uncertainties89.8Toheroteical Uncertainties89.1Experimental Uncertainties89.2.3W+jb/bb+jets Systematics89.4Systematics89.5Signal region distribution9.6Theoretical Uncertainties89.7Fit	26	С	ontents				
3Data-set and Monte Carlo samples53.1Data Sample53.2Standard Model Monte-Carlo53.3Signal Models53.4Trigger1035534Trigger35534Trigger36Effect of Pile-up on Jets37Event selection47.1Signal region optimization57.1Signal region optimization67.2Jet mass velection77.3Signal region definitions88.1Model background estimation88.1Multiper tub M_2^2 8.2Leptonic backgrounds8.3Other SM Processes9Systematic and W-jets Background99Systematics9.1Experimental Uncertainties9.2.2 $W + jb/bb+ jets Systematics9.3Nutiger Discons9.4Systematics9.5Systematics9.610 Statistical Methods9.710 Statistical Methods9.811 Results and Interpretation9.911 L2 Distrations9.112 Kystematics9.114 Kystematics9.2.3W + jb/bb+ jets Systematics9.414 Kystematics9.516 Tost Systematics9.617 Kystematics9.718 Kystematics9.818 Tost Systematics9.918 Tost Systematics<$	27	1	Introduction				3
a.1Data Sample53.2Standard Model Model-Carlo53.3Signal Models53.4Trigger105Object selection and event cleaning11.2 Interpretation5.1Definition of Primary Objects11.2.1 Model in76Effect of Pile-up on jets11.2.2 Limits7Fevent selection a 11.2.2 Limits7.1Signal region optimization a A7.2Jet mass selection a B7.3Signal region definitions a B8Standard Model background estimation a B8.1Multi-Jet Production a B8.1.1Central jets, split by <i>b</i> -tag a B8.2.2Tajets Background a C8.3Other SM Processes a D9.4Experimental Uncertainties a D9.5Systematic uncertainties a E9.2.1 <i>it</i> Systematics a C9.2.2W+job Jb-ipt Systematics a H9.2.3W+ b/b/b-ipt Systematics a 9.4.4Z - v_{ij} -tis Systematics a 9.5.5Single Top Systematics a 9.2.6 <i>it</i> Hw/Z Systematics a 9.2.7Heavy Flavour systematics9.2.8 <i>it</i> My Systematics9.2.9Systematics9.2.1 <i>it</i> Systematics9.2.2 <i>it</i> Hyz Systematics9.2.4 <i>it</i> HyZ Systematics <td>28</td> <td>2</td> <td>Differences compared to the previous multijet analysis</td> <td></td> <td></td> <td></td> <td>3</td>	28	2	Differences compared to the previous multijet analysis				3
3.2Standard Model Monte-Carlo53.3Signal Models53.4Trigger105553.4Trigger105.5511.2Interpretation5.1Definition of Primary Objects $=$ 11.25.2General Analysis Cuts $=$ 11.2.17Effect of Pile-up on jets $=$ 11.2.17Fvent selection $=$ 11.2.287.3Signal region optimization $=$ 7.3Signal region optimization $=$ A88Standard Model background estimation $=$ 88.1.1Central jets, split by b-tag $=$ 88.1.2Total Jet Mass, M_2^2 $=$ 88.2.1if and W+jets Background $=$ 88.2.2I-jets Background $=$ 88.2Juffer Polosson + J9Systematic uncertainties $=$ 99.1Processes99.2Theoretainties99.2.2W+jets Systematics99.2.3W+b/b/b+jets Systematics99.2.4Z \rightarrow v+jets Systematics99.2.5Single Top Systematics99.2.6if Hw/Z Systematics911Results for Systematics911Beyet Rota911Systematics912Systematics1114Systematics1214Systematics <td>29</td> <td>3</td> <td>Data-set and Monte Carlo samples</td> <td></td> <td></td> <td></td> <td>5</td>	29	3	Data-set and Monte Carlo samples				5
3.2Standard Model Monte-Carlo53.3Signal Models53.4Trigger103.55103.65103.75103.85103.95.1Definition of Primary Objects3.105.2General Analysis Cuts3.1111.2.13.1211.2.13.13Signal region optimization3.147.13.1511.23.152.13.152.13.162.13.17Signal region optimization3.188.1.13.11Central jets, split by 5-tag3.11Central jets, split by 5-tag3.11Central jets, split by 5-tag3.11Total Jet Mass, M_1^2 3.11Total Jet Mass, M_1^2 3.11Central jets, split by 5-tag3.11Central jets, split by 5-tag3.11Central jets, split by 5-tag3.11Total Jet Mass, M_1^2 3.11Total Jet Mass, M_1^2 3.11Total Jet Mass, M_1^2 3.2Vector Boson + J3.3Systematic uncertainties3.4Systematics3.593.5Single Top Systematics3.69.13.7Systematics3.89.13.9Systematics3.99.2.63.9Theoretical Uncertainties3.99.2.63.11Centrainties	30		3.1 Data Sample				5
24Trigger1025Object selection and event cleaning11.2 Interpretation .35.2 General Analysis Cuts11.2.1 Model interpretation .26Effect of Pile-up on jets11.2.1 Model interpretation .37Event selection11.2.2 Limits .37Event selection .11.2 Conclusions47.1 Signal region optimization α A B-tagging in Different77.2 Jet mass selection . α B Optimization studies78.1 Multi-jet Production π B Optimization studies88.1 Multi-jet Production π B.3 Multijet plus M_1^2 8.1.1 Central jets, split by b-tag π C Trigger8.2.2 Z+jets Background π C Trigger8.3 Other SM Processes π D Theory Systematic var99.1 Experimental Uncertainties π B Signal region distribut9.2.2 W+jets Systematics π B Signal region distribut9.2.3 W + $b/b/b^+jets$ Systematics π B Signal region distribut9.2.4 Z \rightarrow vr+jets Systematics π H Signal region distribut9.1 I Results and Interpretation π I Minor backgrounds9.1 I Results and Interpretation π I Minor backgrounds9.1 I T Systematics π I Minor background9.2.4 Z \rightarrow vr+jets Systematics π I Minor backgrounds9.1 I T Bestistic π I Minor back	31		3.2 Standard Model Monte-Carlo				5
SolutionImage: Solution of Primary ObjectsImage: Solution of Primary Objects 5.2 General Analysis CutsImage: Solution of Primary Objects 5.2 General Analysis CutsImage: Solution of Primary Objects 7.1 Signal region optimizationImage: Solution of Primary Objects 7.3 Signal region optimizationImage: Solution of Primary Objects 7.3 Signal region optimizationImage: Solution of Primary Objects 8.1 Multi-Jet ProductionImage: Solution of Primary Objects 8.2 Leptonic backgroundImage: Solution of Primary Objects 8.2 Leptonic backgroundImage: Solution of Primary Objects 8.3 Other SM ProcessesImage: Primary Objects 8.4 SummaryImage: Solution of Primary Objects 9 SystematicsImage: Primary Objects 9.2 Theoretical UncertaintiesImage: Primary Objects 9.2 Theoretical UncertaintiesImage: Primary Objects Solution $9.2.2$ W-jets SystematicsImage: Primary Objects Solution $9.2.2$ W-jets Systematics	32		3.3 Signal Models				5
s5.1Definition of Primary Objectsa11.2Interpretations5.2General Analysis Cuts11.2.1Model inr6Effect of Plle-up on jetsa11.2.2Limitss7Event selectiona12Conclusionsa7.1Signal region optimizationaAB-tagging in Differenta7.2Jet mass selectionaBOptimization studiesa8.1Multi-Jet ProductionbBMultijet plus M_2^2 a8.1Multi-Jet productionbBMultijet plus M_2^2 a8.1.1Central jets, split by b-tagbBMultijet plus M_2^2 a8.2.1 <i>i</i> Total Jet Mass, M_2^2 BBMultijet plus M_2^2 a8.2.2L-jets BackgroundaDDTo Systematic vara8.3Other SM ProcessesbDDTo Systematic vara8.3Other SM ProcessesbDDSingle Top Systema9Systematic uncertaintiesaESensitivity to SUSY mb9.2.1fix SystematicsaBHainitiona9.2.2.4Z \rightarrow vr-jets SystematicsaHSingla region distributa9.2.5Single Top SystematicsaHMinor backgroundsa9.2.4Z \rightarrow vr-jets SystematicsaIH.2a9.2.5Single Top Systematicsa	33	4	Trigger				10
s5.1Definition of Primary Objectsa11.2Interpretations5.2General Analysis Cuts11.2.1Model inr6Effect of Plle-up on jetsa11.2.2Limitss7Event selectiona12Conclusionsa7.1Signal region optimizationaAB-tagging in Differenta7.2Jet mass selectionaBOptimization studiesa8.1Multi-Jet ProductionbBMultijet plus M_2^2 a8.1Multi-Jet productionbBMultijet plus M_2^2 a8.1.1Central jets, split by b-tagbBMultijet plus M_2^2 a8.2.1 <i>i</i> Total Jet Mass, M_2^2 BBMultijet plus M_2^2 a8.2.2L-jets BackgroundaDDTo Systematic vara8.3Other SM ProcessesbDDTo Systematic vara8.3Other SM ProcessesbDDSingle Top Systema9Systematic uncertaintiesaESensitivity to SUSY mb9.2.1fix SystematicsaBHainitiona9.2.2.4Z \rightarrow vr-jets SystematicsaHSingla region distributa9.2.5Single Top SystematicsaHMinor backgroundsa9.2.4Z \rightarrow vr-jets SystematicsaIH.2a9.2.5Single Top Systematicsa	34	5	Object selection and event cleaning				
se5.2General Analysis CutsIII.2.1Model inclusionr6Effect of Plle-up on JetsiiI.2.1Model inclusionr7Event selectioniiI.2.1Model inclusionr7.1Signal region optimizationiiI.2Limitsr7.3Signal region optimizationiiI.2Multiple plus M_1^2 r8Standard Model background estimationiiI.2IiI.2r8.1Multiplet plus M_1^2 iiI.3iiI.2r8.1.1Central jets, split by b-tagiiI.2iiI.2r8.2.1Iri and W-jets BackgroundiiI.2Signal region optimize vars8.2.1tri and W-jets BackgroundiiI.2iiI.2s9Systematic uncertaintiesiiI.2iiI.2Signal contaminations9.1Experimental UncertaintiesiiI.2iiI.2iiI.2s9.2.1if SystematicsiiI.2iiI.2iiI.2s9.2.2W + jets SystematicsiiI.2iiI.2iiI.2s9.2.5Single Top SystematicsiiI.2iiI.2iiI.2s9.2.5iirder Systematicsiiii.1iiirder Sistematicss9.2.5iirder Systematicsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		-	•				11.2 Intermetation
zr6Effect of Plle-up on Jets zr 11.2.2 Limits zr 7Event selection zr 11.2.2 Limits zr 7Signal region optimization zr zr zr 1.2 Jet mass selection zr zr zr 7.3 Signal region definitions zr zr zr 8.1 Multi-Jet Production zr zr zr 8.1 Multi-Jet Production zr zr zr 8.1.1 Central jets, split by <i>b</i> -tag zr zr zr 8.2.1 <i>tri</i> and W -jets Background zr zr zr 8.2.1 <i>tri</i> and W -jets Background zr zr zr 8.2.1 <i>tri</i> and W -jets Background zr zr zr 8.3 Other SM Processes zr zr zr 8.4 Summary zr zr zr zr 9 Systematic uncertainties zr							
276Effect of Pile-up on jets287Event selectiona12Conclusions297.1Signal region optimizationaAB-tagging in Different417.2Jet mass selectionaBOptimization studies417.3Signal region definitionsaBOptimization studies428Standard Model background estimationaBOptimization studies438.1Multi-jet ProductionaB.3Multijet plus M_1^2 448.1.2Total jets, split by <i>b</i> -tagb.3Multijet plus M_1^2 458.2Leptonic backgroundsaCTrigger468.2.2Z+jets BackgroundaD.1ti Systematic vari478.2.1tri and W+jets BackgroundaD.2Single Top Systematic vari488.3Other SM ProcessesaD.2Single Top Systematic vari499.2Theoretical UncertaintiesaESensitivity to SUSY m499.2W + bj6 /bb+jets SystematicsaFSignal contamination499.2.2W + jets SystematicsaHSignal region distribut499.2.4Z - vv+jets SystematicsaHSignal region distribut409.2.2W + bj6 /bb+jets SystematicsaHSignal region distribut419.2.3W + bj6 /bb+jets SystematicsaHH420.2.4Z - vv+jets Syst			5.2 General mayor cars 111111111111111111111111111111111111		-		
7Event selectiona12 Conclusionsa7.1 Signal region optimizationaAB-tagging in Differenta7.2 Jet mass selectionaBOptimization studiesa7.3 Signal region definitionsaBOptimization studiesa8.1 Multi-Jet ProductionaB.1 Multijet plus M_1^2 a8.1 Central jets, split by <i>b</i> -tagb.2 Multijet plus M_1^2 a8.1.1 Central jets, split by <i>b</i> -tagb.3 Multijet plus M_1^2 a8.1.2 Total Jet Mass, M_1^2 b.3 Multijet plus M_1^2 a8.2.1 <i>it</i> and W_1 jets Backgroundb.3 Vector Boose + J.a8.2.2 Z+jets Backgroundb.1 <i>ti</i> Systematic Varb8.3 Other SM Processesb.2 Single Top Systemc8.4 Summaryb.3 Vector Boose + J.b9 Systematic uncertaintiesb.4 Tibar+V Systemc9.2.1 <i>ti</i> Systematicscc9.2.2 W+jets Systematicscc9.2.3 W + b/b/bb+jets Systematicscc9.2.4 Z -> vr-jets Systematicscc9.2.6 <i>ti</i> +W/Z Systematicscc11 Results and Interpretationcc11.1 <i>b</i> -jet analysis streamcc11.1.2 M_1^2 analysis streamc <td>37</td> <td>6</td> <td>Effect of Pile-up on jets</td> <td></td> <td>67</td> <td></td> <td>11.2.2 Linnis</td>	37	6	Effect of Pile-up on jets		67		11.2.2 Linnis
a7Event selectionaAB-tagging in Differenta7.1Signal region definitionsabBOptimization studiesa7.3Signal region definitionsabBOptimization studiesa8Standard Model background estimationaBOptimization studiesa8.1Multij-tel ProductionaB.1Multijet plus h_2^{ij} a8.1.1Central jets, split by <i>b</i> -tagb.3Multijet plus h_2^{ij} a8.1.2Catal jets, split by <i>b</i> -tagb.3Multijet plus h_2^{ij} a8.2.1 <i>it</i> and W+jets Backgroundab.3Reweighta8.2.2L-ptonic backgroundsab.1 <i>it</i> Systematic varb8.3Other SM Processesab.1 <i>it</i> Systematic varb9Systematic uncertaintiesab.2Single Top Systemb9.1 <i>it</i> Systematicsab.4tibrertaintiesc9.2.1 <i>it</i> SystematicsacFc9.2.2 <i>W</i> +jets SystematicsacFc9.2.3 <i>W</i> +b/b/b/b+jets SystematicsacHc9.2.6 <i>it</i> +W/Z SystematicsacHc10Statistical Methodsa1Minor backgroundsc11.1 <i>b</i> -jet analysis streamakStream overlapd11.1.1 <i>b</i> -jet analysis streamakK </td <td></td> <td></td> <td></td> <td></td> <td>68</td> <td>12</td> <td>Conclusions</td>					68	12	Conclusions
7.2Jet mass selection7.37.3Signal region definitions7.47.3Signal region definitions7.57.48.1Multi-jet production7.58.1Multi-jet Plus M_2^{T} 8.1Rentral jets, split by b-tag7.68.1.1Central jets, split by b-tag7.78.2.1tran dW +jets Background7.88.2.2Leptonic backgrounds7.78.3Other SM Processes7.79Systematic uncertainties7.89Systematic uncertainties7.89Systematics7.99.2.1tri Systematics99.2.19.2.2W+jets Systematics99.2.29.2.3W+ b/b/b+jets Systematics99.2.499.2.499.2.599.2.591091111.1Evistion Systematics11.1.1b-jet analysis stream11.1.2 M_1^T analysis stream11.1.2 M_1^T analysis stream11.1.2 M_1^T analysis stream11.1.2 M_1^T analysis stream11.1 <td>38</td> <td>7</td> <td>Event selection</td> <td></td> <td></td> <td></td> <td></td>	38	7	Event selection				
417.3Signal region definitions70BOptimization studies418Standard Model background estimation71BMultijet plus M_1^2 B.1Multijet plus M_1^2 428Standard Model background estimation71B.3Multijet plus M_1^2 B.3Multijet plus M_1^2 448.1.1Central jets, split by b-tag72B.3Multijet plus M_1^2 B.3Nultijet plus M_1^2 458.1.2Total Jet Mass, M_1^2 73B.3Multijet plus M_1^2 B.3Nultijet plus M_1^2 468.2.2Z-jets Background77B.3Multijet plus M_1^2 B.3Nultijet plus M_1^2 478.2.1tr and W+jets Background77DTheory Systematic Va488.2.2Z-jets Background77DSingle Top Systematic Va499.4Systematic uncertainties70D.4Tibar+V Systematic Va599.2Theoretical Uncertainties71D.2Single Top Systematics599.2.1tr fy systematics71BSingla contamination599.2.4Z \rightarrow vr+jets Systematics72FSignal contamination599.2.6tri+W/Z Systematics74HSignal region distribut5010Statistical Methods71M inor backgrounds5111.1b-jet analysis stream74SK5111.1.2 M_1^2 analysis stream75LHEP data <td>39</td> <td></td> <td>7.1 Signal region optimization</td> <td></td> <td>69</td> <td>Α</td> <td>B-tagging in Different</td>	39		7.1 Signal region optimization		69	Α	B-tagging in Different
a7.3< Signal region definitionsa7.3< Signal region definitions	40		7.2 Jet mass selection				
ϵ 8 Standard Model background estimation π B.2 Multijet plus M_2^{Σ} ϵ 8.1 Multi-Jet Production π B.3 Multijet plus M_1^{Σ} ϵ 8.1.1 Central jets, split by <i>b</i> -tag π B.3 Multijet plus M_1^{Σ} ϵ 8.1.2 Total Jet Mass, M_1^{Σ} π B.3.1 Reweight ϵ 8.2 Leptonic backgrounds π C Trigger ϵ 8.2.1 $t\bar{t}$ and W -jets Background π D.1 $t\bar{t}$ Systematic Var ϵ 8.2.2 Z+jets Background π D.1 $t\bar{t}$ Systematic Var ϵ 8.3 Other SM Processes π D.2 Single Top System ϵ 9 Systematic uncertainties π D.3 Vector Boson + Je ϵ 9.1 Experimental Uncertainties π D.4 Tibar+V Systematics ϵ 9.2.1 $t\bar{t}$ Systematics π E Sensitivity to SUSY m ϵ 9.2.2 W +jets Systematics π H Signal region distribut ϵ 9.2.3 $W + b/b/b\bar{b}$ -jets Systematics π H Signal region distribut ϵ 9.2.6 $t\bar{t}$ +W/Z Systematics π I Minor backgrounds ϵ 10 Statistical Methods π I Minor backgrounds ϵ 11.1 b -jet analysis stream π I HEP data	41		7.3 Signal region definitions		70	В	
ab)b)b)b)b)a8.1Multi-jet Production7B.3Multijet plus M_2^{5} a8.1.1Central jets, split by b-tag7B.3.1Reweighta8.2.1Total Jet Mass, M_1^{5} 7CTriggera8.2.1 <i>i i i a d W</i> +jets Background7DTheory Systematic Vala8.2.2Z+jets Background7DTheory Systematic Vala8.3Other SM Processes7D.2Single Top Systema9Systematic uncertainties7D.3Vector Boson + Jca9.1Experimental Uncertainties7D.4Tubar+V Systematica9.2.1 <i>i i i S y s i i i S y s s s s s s s s s s</i>							
a8.1.1 Central jets, split by b-tag74B.3.1 Reweighta8.1.2 Total Jet Mass, M_1^2 75C Triggera8.2Leptonic backgrounds76D Theory Systematic Vaa8.2.1 $t\bar{t}$ and W-jets Background77D.1 $t\bar{t}$ Systematic Vaa8.3.0 ther SM Processes78D Theory Systematic Vaa8.3 Other SM Processes79D.2 Single Top System509Systematic uncertainties79D.3 Vector Boson + Ja519Systematic uncertainties79D.3 Vector Boson + Ja529.1 Experimental Uncertainties78E Sensitivity to SUSY m539.2.2 W+jets Systematics79C Trigger549.2.3 W + b/b/bb-jets Systematics79Systematics559.2.4 Z $\rightarrow \nu\nu$ -jets Systematics78B Signal contamination569.2.5 Single Top Systematics78H Signal region distribut579.2.6 $t\bar{t}$ +W/Z Systematics78H Signal region distribut5810 Statistical Methods74I Minor backgrounds5911.1 Evits74Minor backgrounds5911.1.1 b-jet analysis stream74I HeP data5011.1.2 M_1^2 analysis stream7411.125111.1.2 M_1^2 analysis stream7411.125311.1.1 b-jet analysis stream7411.125411.1.2 M_1^2 analysis stream745511.1.1 b-jet analysis stream745611.1.2 M_1^2	42	8	Standard Model background estimation				
11 <td>43</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	43						
468.2Leptonic backgrounds778CTigger478.2.1 $t\bar{t}$ and W+jets Background701 $t\bar{t}$ Systematic Val488.2.2Z+jets Background70.1 $t\bar{t}$ Systematic Val498.3Other SM Processes70.2Single Top System508.4Summary70.3Vector Boson + Jo519Systematic uncertainties8ESensitivity to SUSY m529.1Experimental Uncertainties8ESensitivity to SUSY m539.2.1 $t\bar{t}$ Systematics8ESensitivity to SUSY m549.2.1 $t\bar{t}$ Systematics8GHeavy Flavour system559.2.2W+jets Systematics8GHeavy Flavour system569.2.3W + b/b/bb+jets Systematics8HSignal region distribut579.2.4Z \rightarrow vv+jets Systematics8HSignal region distribut589.2.6 $t\bar{t}$ +W/Z Systematics8HSignal region distribut599.2.6 $t\bar{t}$ +W/Z Systematics8JFit tests6010Statistical Methods8JFit tests6111.1 b -jet analysis stream8MStream overlap6211.1.2 M_J^2 analysis stream90L6411.1.2 M_J^2 analysis stream90L6411.1.2 M_J^2 anal	44				74		B.3.1 Reweight
468.2Leptonic backgrounds76DTheory Systematic Va478.2.1 $t\bar{t}$ and W +jets Background76DTheory Systematic Va488.2.2 Z +jets Background77D.1 $t\bar{t}$ Systematic Va498.3Other SM Processes78DTheory Systematic Va508.4Summary79D.3Vector Boson + Ju519Systematic uncertainties79D.3Vector Boson + Ju529.1Experimental Uncertainties88ESensitivity to SUSY m539.2.1 $t\bar{t}$ Systematics88ESensitivity to SUSY m549.2.2 W +jets Systematics88GHeavy Flavour system559.2.4 $Z \rightarrow vr$ +jets Systematics84HSignal region distribut569.2.5Single Top Systematics86HSignal region distribut579.2.6 $t\bar{t}$ + W/Z Systematics86HSignal region distribut589.2.6 $t\bar{t}$ + W/Z Systematics86HSignal region distribut599.2.6 $t\bar{t}$ + W/Z Systematics87HSignal region distribut599.2.6 $t\bar{t}$ + W/Z Systematics86JFit tests6010Statistical Methods87IMinor backgrounds6111.1 b -jet analysis stream88KStream overlap6211.1.2 M_J^2 analysis stream92LHEP data<	45		8.1.2 Total Jet Mass, M_J^{Σ}		75	С	Trigger
488.2.2Z+jets Background77D.1 $t\bar{t}$ Systematic variant498.3Other SM Processes78D.2Single Top System508.4Summary79D.3Vector Boson + Jo519Systematic uncertainties78D.4Tibar+V Systematic529.1Experimental Uncertainties78D.4Tibar+V Systematic539.2.1 $t\bar{t}$ Systematics78ESensitivity to SUSY m549.2.1 $t\bar{t}$ Systematics78FSignal contamination559.2.2 $W+jets$ Systematics78GHeavy Flavour system569.2.3 $W+b/\bar{b}/b\bar{b}+jets$ Systematics78HSignal region distribut579.2.4 $Z \rightarrow vr+jets$ Systematics76HSignal region distribut589.2.6 $t\bar{t}+W/Z$ Systematics76H.2 M_J^2 SRs77599.2.6 $t\bar{t}+W/Z$ Systematics76H.2 M_J^2 SRs765010Statistical Methods71Minor backgrounds71Minor backgrounds5111.1 $b-jet$ analysis stream71LHEP data5211.1.2 M_J^2 analysis stream72LHEP data	46		8.2 Leptonic backgrounds		12	č	inger.
408.3Other SM Processes70D.2Single Top System508.4Summary70D.3Vector Boson + Jo519Systematic uncertainties70D.4Tibar+V System529.1Experimental Uncertainties71D.4Tibar+V System539.2.1 $t\bar{t}$ Systematics72ESensitivity to SUSY m549.2.1 $t\bar{t}$ Systematics73GHeavy Flavour system559.2.2 W +jets Systematics73GHeavy Flavour system569.2.3 $W + b/\bar{b}/b\bar{b}$ +jets Systematics74GHeavy Flavour system579.2.4 $Z \rightarrow vr$ +jets Systematics76HSignal region distribut589.2.6 $t\bar{t}+W/Z$ Systematics76H.2 M_J^2 SRs77599.2.6 $t\bar{t}+W/Z$ Systematics76H.2 M_J^2 SRs786010Statistical Methods71Minor backgrounds72I6111.1.1 b -jet analysis stream7320LHEP data6411.1.2 M_J^2 analysis stream70LHEP data	47		8.2.1 tī and W+jets Background		76	D	Theory Systematic Va
508.4Summary72D.3Vector Boson + Je519Systematic uncertainties529.1Experimental Uncertainties53549.2.1 $t\bar{t}$ Systematics559.2.2 W +jets Systematics569.2.2 W +jets Systematics579.2.4 $Z \rightarrow vr$ +jets Systematics566Heavy Flavour system559.2.4 $Z \rightarrow vr$ +jets Systematics569.2.6 $t\bar{t}+W/Z$ Systematics5656HSignal region distribut569.2.6 $t\bar{t}+W/Z$ Systematics5610Statistical Methods571Minor backgrounds5610Statistical Methods5711.1 b -jet analysis stream573FSignal region distribut579.2.6 $t\bar{t}+W/Z$ Systematics5691Minor backgrounds5611Signal region distribut589.2.6 $t\bar{t}+W/Z$ Systematics5657	48		8.2.2 Z+jets Background		77		D.1 tī Systematic vari
519Systematic uncertainties20D.4Ttbar+V Systematics529.1Experimental Uncertainties21 \vec{K} Systematics22 \vec{K} Systematics22 \vec{K} Systematics22 \vec{K} Systematics22 \vec{K} Signal contamination22 \vec{K} Signal contamination23 \vec{K} Signal contamination24 \vec{K} Signal contamination26 \vec{K} Signal region distribut26 \vec{K} Signal region distribut26 \vec{K} Signal contamination26 \vec{K} Signal region distribut26 \vec{K} Signal region distribut26 \vec{K} Signal contamination26 \vec{K} Signal region distribut26 \vec{K} Signal region distribut26 \vec{K} Signal contamination26 \vec{K} Signal contamination26 \vec{K} Signal region distribut26 \vec{K} Signal contamination26 \vec{K} Signal contamination27 \vec{K} Signal contamination28 \vec{K} Signal contamination<	49		8.3 Other SM Processes		78		D.2 Single Top System
519Systematic uncertainties529.1Experimental Uncertainties539.2Theoretical Uncertainties549.2.1 $i\bar{t}$ Systematics559.2.2 W +jets Systematics569.2.3 $W + b/\bar{b}/b\bar{b}$ +jets Systematics579.2.4 $Z \rightarrow vv$ +jets Systematics589.2.5Single Top Systematics599.2.6 $i\bar{t}+W/Z$ Systematics5010Stattstical Methods5111Results and Interpretation5211.1.1 b -jet analysis stream5411.1.2 M_J^{Σ} analysis stream5411.1.2550.2.65611.1.2570.2.65811.1.2590.2.65011500.2.65111520.2.6530.2.65411.1.2550.2.6560.2.6570.2.6580.2.6590.2.6500.2.6500.2.65111520.2.6530.2.6540.2.7550.2.6560.2.6570.2.6580.2.6590.2.6590.2.6500.2.7500.2.6510.2.6520.2.6530.2.6540.2.7 <td>50</td> <td></td> <td>8.4 Summary</td> <td></td> <td>79</td> <td></td> <td>D.3 Vector Boson + Je</td>	50		8.4 Summary		79		D.3 Vector Boson + Je
529.1Experimental Uncertainties53ESensitivity to SUSY m539.2Theoretical Uncertainties549.2.1 $t\bar{t}$ Systematics52FSignal contamination549.2.1 $t\bar{t}$ Systematics559.2.2 $W+jets$ Systematics566Heavy Flavour system559.2.3 $W + b/\bar{b}/\bar{b}\bar{b}+jets$ Systematics566Heavy Flavour system569.2.4 $Z \rightarrow vr+jets$ Systematics566Heavy Flavour system579.2.4 $Z \rightarrow vr+jets$ Systematics56HSignal region distribut589.2.5Single Top Systematics56H.1 $b-jet$ SRs56599.2.6 $t\bar{t}+W/Z$ Systematics56H.2 M_J^{Σ} SRs565010Statistical Methods57JFit tests5111Results and Interpretation58JFit tests5211.1.1 $b-jet$ analysis stream58KStream overlap5311.1.2 M_J^{Σ} analysis stream5950K5411.1.2 M_J^{Σ} analysis stream5050K555151515151565151515151575252515151585151515151595151515151505151515151 <td< td=""><td></td><td></td><td></td><td></td><td>80</td><td></td><td>D.4 Ttbar+V Systema</td></td<>					80		D.4 Ttbar+V Systema
539.2Theoretical Uncertainties \simeq FSignal contamination549.2.1 $t\bar{t}$ Systematics \approx FSignal contamination559.2.2 W +jets Systematics \approx GHeavy Flavour system569.2.3 $W + b/\bar{b}/b\bar{b}$ +jets Systematics \approx HSignal region distribut579.2.4 $Z \rightarrow vr$ +jets Systematics \approx HSignal region distribut589.2.5Single Top Systematics \approx HSignal region distribut599.2.6 $t\bar{t}$ + W/Z Systematics \approx H.2 M_J^{Σ} SRs5010Statistical Methods \approx IMinor backgrounds5111Results and Interpretation \approx JFit tests5211.1.1 b -jet analysis stream \approx KStream overlap5311.1.2 M_J^{Σ} analysis stream ∞ LHEP data	51	9	•				e le le cuev
549.2.1 $i\bar{t}$ Systematics z FSignal contamination559.2.2 W +jets Systematics z F Signal contamination569.2.3 $W + b/\bar{b}/b\bar{b}$ +jets Systematics z G Heavy Flavour system579.2.4 $Z \rightarrow vv$ +jets Systematics z H Signal region distribut589.2.5Single Top Systematics z H Signal region distribut599.2.6 $t\bar{t}$ + W/Z Systematics z $H.2$ M_J^2 SRs6010Statistical Methods z IMinor backgrounds6111Results and Interpretation z JFit tests6211.1.1 b -jet analysis stream z KStream overlap6411.1.2 M_J^2 analysis stream z LHEP data	52		•		81	E	Sensitivity to SUSY m
549.2.1 <i>It</i> Systematics36559.2.2 <i>W</i> +jets Systematics37569.2.3 $W + b/\bar{b}/b\bar{b}$ +jets Systematics36579.2.4 $Z \rightarrow vr$ +jets Systematics36599.2.6 $i\bar{i}+W/Z$ Systematics365010Statistical Methods375111Results and Interpretation365211.1 <i>F</i> it results375411.1.2 M_J^{Σ} analysis stream375411.1.2 M_J^{Σ} analysis stream36551011.1.25611.1.2 M_J^{Σ} analysis stream375711.1.2 M_J^{Σ} analysis stream375811.1.2 M_J^{Σ} analysis stream375911.1.2 M_J^{Σ} analysis stream375011.1.2 M_J^{Σ} analysis stream375911.1.2 M_J^{Σ} analysis stream375011.1.2 M_J^{Σ} analysis stream375011.1.2 M_J^{Σ} analysis stream375111.1.2 M_J^{Σ} analysis stream375211.1.211.1.211.1.25311.1.211.1.25411.1.211.1.25511.1.211.1.25611.1.25711.1.25811.1.25911.1.25011.1.25011.1.25011.1.25111.1.252 <td>53</td> <td></td> <td></td> <td></td> <td>82</td> <td>F</td> <td>Signal contamination</td>	53				82	F	Signal contamination
56 $9.2.3$ $W + b/\bar{b}/b\bar{b}$ +jets Systematics57 57 $9.2.4$ $Z \rightarrow \nu\nu$ +jets Systematics54 59 $9.2.5$ Single Top Systematics55 $9.2.6$ $t\bar{t}$ + W/Z Systematics56 59 $9.2.6$ $t\bar{t}$ + W/Z 50 10Statistical Methods 51 11Results and Interpretation 52 11.1 Fit results 53 11.1 54 11.1.2 M_J^{Σ} analysis stream50 54 11.1.2 M_J^{Σ} analysis stream50 54 11.1.2 M_J^{Σ} analysis stream50 54 11.1.2 64 11.1.2 64 11.1.2 64 11.1.2 65 11.1.2 65 11.1.2 75 11.1.2	54					•	Signal Containing of
579.2.4 $Z \rightarrow vv$ -jets Systematics56HSignal region distribut589.2.5Single Top Systematics5758H599.2.6 $t\bar{t}$ +W/Z Systematics58H.2 M_J^2 SRs5010Statistical Methods57IMinor backgrounds5111Results and Interpretation58JFit tests5211.1Fit results5959Fit tests5311.1.1b-jet analysis stream5656K5411.1.2 M_J^2 analysis stream500L5411.1.2 M_J^2 analysis stream50LHEP data	55		, , , , , , , , , , , , , , , , , , , ,		83	G	Heavy Flavour system
569.2.5Single Top Systematics55599.2.6 $t\bar{t}$ +W/Z Systematics566010Statistical Methods566111Results and Interpretation586211.1Fit results586311.1.1 b -jet analysis stream566411.1.2 M_J^{Σ} analysis stream506411.1.2 M_J^{Σ} analysis stream506511.1.2 M_J^{Σ} analysis stream506611.1.2 M_J^{Σ} analysis stream506711.1.2 M_J^{Σ} analysis stream506811.1.2 M_J^{Σ} analysis stream506911.1.2 M_J^{Σ} analysis stream506011.1.2 M_J^{Σ} analysis stream506111.1.2 M_J^{Σ} analysis stream50	56						
509.2.6 $t\bar{t}+W/Z$ Systematics56H.2 M_J^{Σ} SRs5010Statistical Methods57IMinor backgrounds5111Results and Interpretation58JFit tests5211.1 b -jet analysis stream58KStream overlap5411.1.2 M_J^{Σ} analysis stream500L5511.1.2 M_J^{Σ} analysis stream500L5411.1.2 M_J^{Σ} analysis stream500L	57		·····			Н	0 0
50 10 Statistical Methods # I Minor backgrounds 61 11 Results and Interpretation # J Fit tests 62 11.1 Fit results # K Stream overlap 63 11.1.2 M_J^Σ analysis stream # L HEP data	58		5 1 7		85		
11 Results and Interpretation 11.1 Fit results 11.1 Fit results 11.1 Fit results $11.1.1$ b-jet analysis stream $11.1.2$ M_J^{Σ} analysis stream 11.12 M J End $11.1.2$ M J End 11.12 M End<	59		9.2.6 $t\bar{t}+W/Z$ Systematics		86		H.2 M_J^2 SRs
61 11.1 Fit results 62 11.1 Fit results 63 11.1.1 b -jet analysis stream 64 11.1.2 M_J^{Σ} analysis stream 64 11.1.2 M_J^{Σ} analysis stream	60	10	Statistical Methods		87	I	Minor backgrounds
6211.1Fit results ∞ KStream overlap6311.1.1b-jet analysis stream ∞ KStream overlap6411.1.2 M_J^{Σ} analysis stream ∞ LHEP data		11	Results and Interpretation	1	88	J	Fit tests
6311.1.1 b-jet analysis stream ∞ KStream overlap6411.1.2 M_J^{Σ} analysis stream ∞ LHEP data						v	Star and a star
64 11.1.2 M_J^{Σ} analysis stream	63				89	ĸ	Stream overlap
of M Event displays	64				90	L	HEP data
				1	91	М	Event displays

CONTENTS OF A RANDOM SEARCH INTERNAL DOCUMENTATION

65 66 67		11.2 Interpretation 11.2.1 Model independent limits 11.2.2 Limits	156
68	12	Conclusions	161
69	A	B-tagging in Different Monte-Carlo Samples	165
70 71 72 73 74	B	Optimization studies B.1 Multijet plus b-jets signal regions . B.2 Multijet plus M_1^{χ} signal regions . B.3 Multijet plus M_1^{χ} control regions - systematic uncertainties . B.3.1 Reweighting distributions using the leading fat jet p_T .	173 177
75	С	Trigger	197
76 77 78 79 80 81 82 83	E F	Theory Systematic Variations D.1 $t\bar{t}$ Systematic variations D.2 Single Top Systematic variations D.3 Vector Boson + Jets Systematic variations D.4 Ttbar+V Systematic variations Sensitivity to SUSY models Signal contamination Heavy Flavour systematics	204
84 85 86	н	Signal region distributions H.1 b -jet SRs H.2 M_J^{Σ} SRs	242 242 244
87	I	Minor backgrounds	247
88	J	Fit tests	250
89	K	Stream overlap	250
90	L	HEP data	256
91	М	Event displays	285

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations]

- Data-set and Monte Carlo samples
- Trigger
- Object definitions
- Background dete
 A
- Systematic unce
- Statistical methol
- Results
- Interpretations]

The data and simulation samples used in the analysis. Data for the measurement / search, simulation to compare data to predictions.

Monte carlo sample specifics:

- Generator, tunes.
- Statistics.

- Data-set and Monte Carlo samples
- Trigger .
- Object defin
- Background det
- Systematic uncer
- Statistical methol
- Results
- Interpretations]

The trigger used to collect the data with.

Trigger specifics:

- Prescales; typically unprescaled triggers are used, prescaled triggers for QCD / high stat measuments.
- Trigger (in)efficiencies.

- Data-set and Monte Carlo samples
- Trigger

0

0

Stat

- Object definitions and event selections
 - The exact definition of objects (electrons, muon, jets, ...) and how these are combined in selecting events to be analyzed.

Object definition specifics:

"Flavor" of the identification (loose, medium, tight).
 Calibrations.

Event selection specifics:

- Inter Sevent cleaning (e.g. from noise and cosmics).
 - Momentum, geom. acceptance and multiplicity of objects.
 - Igher level cuts, such as invariant mass.
 - Signal regions".

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event
- Background determination
 A
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations]

Events that are imitating the signal we are searching for or measuring.

Background determination specifics:

- Can/must be data-driven or simulation-based.
- Walidation regions" and "control regions" required. These can use different triggers wrt signal regions.

- Data-set and Monte Carlo
- Trigger
- Object definitions and even
- Background determination
 A sector of the secto
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations]

- Any 'intermediate' measurement we have performed carries uncertainties (statistical and systematic).
- Systematic" uncertainties are introduced by inaccuracies in the methods used to perform the measurement.
- Efficiencies, acceptance, number of events, luminosity, cross sections used in Monte Carlo scaling...
- Some of them are "centrally" assessed by the performance groups of an experiment. Some of them are analysis-specific.

- Data-set and Monte Carle
- Trigger
- Object definitions and even
- Background determinatio
 A
- Systematic uncertaintig
- Statistical methods
- Results
- Interpretations]

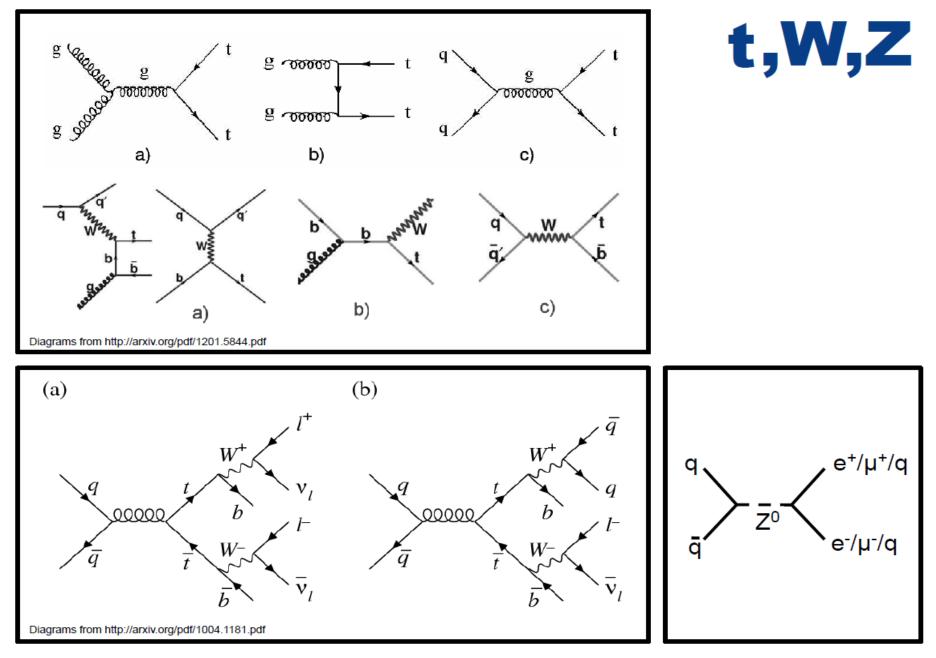
Dealing with large data-sets, we use statistical methods to make sense of the numbers we measure.

Typical method:

Do a fit to extract signal from background.

Methodologies can vary a lot, but nowdays they are pretty unified within and across experiments.

Neural nets and other machine learning methods are broadly used, primarily to improve signal over background discrimination!


- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results •
- Interpretations]

Produce the results in tables and plots. These include details of what is found in the signal region.

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- [Interpretations]

Put the results into context: interpret them in theoretical models.

SPARE SLIDES

Measuring particles

- Particles are characterized by
 - ✓ Mass [Unit: eV/c² or eV]
 - ✓ Charge [Unit: e]
 - ✓ Energy [Unit: eV]
 - ✓ Momentum [Unit: eV/c or eV]
 - ✓ (+ spin, lifetime, …)

Particle identification via measurement of:

e.g. (E, p, Q) or (p, β, Q) (p, m, Q) ...

• ... and move at relativistic speed

$$\begin{split} \beta &= \frac{v}{c} \quad \gamma = \frac{1}{\sqrt{1-\beta^2}} \\ \ell &= \frac{\ell_0}{\gamma} \quad \text{length contraption} \\ t &= t_0 \gamma \quad \text{time dilatation} \end{split}$$

$$E^{2} = \vec{p}^{2}c^{2} + m^{2}c^{4}$$
$$E = m\gamma c^{2} = mc^{2} + E_{\rm kin}$$
$$\vec{\beta} = \frac{\vec{p}c}{E} \qquad \vec{p} = m\gamma \vec{\beta}c$$

Relativistic kinematics in a nutschell

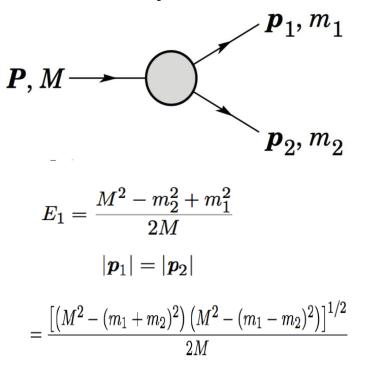
 $E^2 = \vec{p}^2 + m^2$ $\ell = \frac{\ell_0}{\ell}$ $E = m\gamma$ $\vec{p} = m\gamma\vec{\beta}$ $t = t_0 \gamma$ $\vec{\beta} = \frac{\vec{p}}{E}$

Relativistic kinematics in a nutschell

Center of mass energy

- In the center of mass frame the total momentum is 0
- In laboratory frame center of mass energy can be computed as:

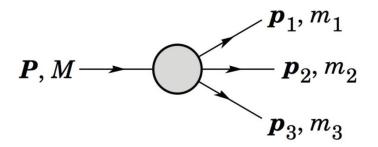
$$E_{\rm cm} = \sqrt{s} = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$


Hint: it can be computed as the "length" of the total four-momentum, that is invariant:

$$p = (E, \vec{p}) \qquad \sqrt{p \cdot p}$$

What is the "length" of a the four-momentum of a particle?

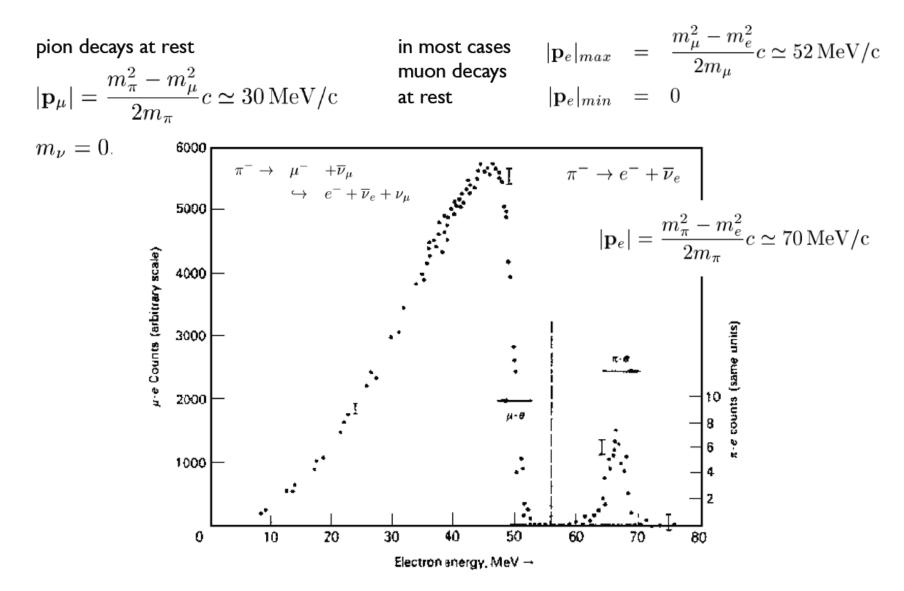
Kinematics


2-bodies decays

Invariant mass

$$M = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p_i}\right)^2}$$

3-bodies decays



$$|\mathbf{p}_3| = \frac{\left[\left(M^2 - (m_{12} + m_3)^2 \right) \left(M^2 - (m_{12} - m_3)^2 \right) \right]^{1/2}}{2M}$$

 $\overrightarrow{p_3}$ $\overrightarrow{p_3}$ $\vec{p_3}$ $\overrightarrow{p_1}$ $\overrightarrow{p_2}$ $\overrightarrow{p_1}$ $\overrightarrow{p_2}$ $\overrightarrow{p_1}$ $\overrightarrow{p_2}$ (a)*(b)* (c) $\max(|\vec{p_3}|)$ $(m_{12})_{min} = m_1 + m_2$ $(m_{12})_{max} = M - m_3$ $\min(|\vec{p_3}|)$

138

A real example: pion decays

HEP, SI and "natural" units

Quantity	HEP units	SI units
length	l fm	10 ⁻¹⁵ m
charge	e	1.602 · 10 ⁻¹⁹ C
energy	I GeV	I.602 x I0⁻¹º J
mass	I GeV/c ²	1.78 x 10 ⁻²⁷ kg
$\hbar = h/2$	6.588 x 10 ⁻²⁵ GeV s	1.055 x 10 ⁻³⁴ Js
с	2.988 x 10 ²³ fm/s	2.988 x 10 ⁸ m/s
ћс	197 MeV fm	•••
	"natural" units (ħ = c =	I)
mass	I GeV	
length	I GeV ⁻¹ = 0.1973 fm	
time	I GeV ⁻¹ = 6.59 x 10 ⁻²⁵ s	