Introduction to particle physics: experimental part

Few words about Standard Model Accelerators CERN and LHC

Credits:

a lot of material in this lecture are from lectures by R.Schmidth at HASCO2017 school.

Prof. dr hab. Elżbieta Richter-Wąs

http://pdg.lbl.gov/

ERKINS Introduction to High Energy Physics 4th edition

WILSON PARTICLE ACCELERATORS

The Experimental Foundations of

Particle Physics

coughlan, Dodd and Gripaios The Ideas of Particle Physics Bridge

Experimental Techniques in High Energy Physics

Cahn and Goldhaber Lecture Note Server L

E(Ca)

CAMBRIDGE

JIW 485.128

239.12 CAH

2

FEP

Particles of the Standard Model

125-6G	
н	
higgs	

Higgs particle Is not a matter particle and not a interaction particle

Nobel Prizes in Elementary Particle Physics

Sin-Itiro Tomonaga

Julian Schwinger

Richard P. Feynman

GREEN - theoretical - experimental BLUE

Sheldon Lee Glashow

1964: "Higgs mechanism" was born

Leon M. Lederman

Jack Steinberger

Carlo Rubbia

Gerardus 't Hooft

Georges Charpak

M. Gell-Mann

1988 – L. M. Lederman, M. Schwartz, J. Steinberger 1990 – J. Friedman, J. Kendall, R. Taylor

1992 - G. Charpak

1969 – M. Gell-Mann

1976 – B. Richter and S. Ting

1980 – J. Cronin, V. Fitch

- 1995 M. Perl, F. Reines
- 1999 G. tHooft, M. J. Veltman

1984 – C. Rubbia, S. van der Meer

- 2004 D. J. Gross, H. D. Politzer, F. Wilczek
- 2008 Y. Nambu, M. Kobayashi, T. Masakawa
- 2013 F. Englert and P. Higgs
- 2015 T. Kajita and A. B. McDonald

2012: "Higgs particle" was discovered

1979 – S.L. Glashow, A. Salam, S. Weinberg

1965 – S. I. Tomonaga, J. Schwinger, R.P Feynman

Melvin Schwartz

Simon van der Meer

Martinus I.G. Veltman

Uncharted discoveries?

Source: The Economist

The interaction of gauge bosons with fermions is described by the Standard Model

Standard Model confirmed by the data

STANDARD MODEL OF ELEMENTARY PARTICLES

	Measurement	Fit	IO ^{meas} -O ^{ttt} I/o ^{meas} 0 1 2 3
$\Delta \alpha_{had}^{(5)}(M_Z)$	0.02758 ± 0.00035	0.02768	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
Γ _Z [GeV]	2.4952 ± 0.0023	2.4959	
o ⁰ _{had} [nb]	41.540 ± 0.037	41.479	
R _I	20.767 ± 0.025	20.742	
A ^{0,1}	0.01714 ± 0.00095	0.01645	
A _I (P _x)	0.1465 ± 0.0032	0.1481	
R _b	0.21629 ± 0.00066	0.21579	
R _c	0.1721 ± 0.0030	0.1723	
A ^{0,b}	0.0992 ± 0.0016	0.1038	
A ^{0,c}	0.0707 ± 0.0035	0.0742	
Ab	0.923 ± 0.020	0.935	
Ac	0.670 ± 0.027	0.668	
A ₍ SLD)	0.1513 ± 0.0021	0.1481	
$sin^2 \theta_{eff}^{lept}(Q_{tb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.399 ± 0.023	80.379	
Γ_W [GeV]	2.085 ± 0.042	2.092	
m _t [GeV]	173.3 ± 1.1	173.4	
July 2010			0 1 2 3

Confirmed at sub 1% level!

Experiment = probing theories with data

 $-\tfrac{1}{2}\partial_\nu g^a_\mu\partial_\nu g^a_\mu - g_s f^{aac}\partial_\mu g^a_\nu g^a_\mu g^c_\nu - \tfrac{1}{4}g^d_s f^{aac} f^{aac} f^{a}g^a_\mu g^c_\nu g^a_\mu g^c_\nu +$ $\frac{1}{2} i g_s^2 (\bar{q}_i^a \gamma^\mu q_z^a) g_\mu^a + \bar{G}^a \partial^2 G^a + g_s f^{abc} \partial_\mu \bar{G}^a G^b g_\mu^c - \partial_\nu W_\mu^+ \partial_\nu W_\mu^-$ $\frac{1}{2}m_{h}^{2}H^{2}-\partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-}-M^{2}\phi^{+}\phi^{-}-\frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0}-\frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0}-\beta_{h}[\frac{2M^{2}}{y^{2}}+$ $\frac{2M}{2m}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu - Q^+_\mu W^+_\nu W^-_\nu - Q^+_\mu W^+_\nu W^-_\nu - Q^+_\mu W^+_\nu W^+_\nu W^-_\nu W^+_\nu W^+_\nu W^-_\nu W^+_\nu W^$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\mu}W^{+}_{\nu}W^{-}_{\nu}W^{-}_{\mu} + \frac{1}{2}g^{2}W^{+}_{\mu}W$ ${}^{1}_{\frac{1}{2}g^{2}}W^{\mu}_{\mu}W^{-}_{\nu}W^{+}_{\mu}W^{-}_{\nu} + g^{3}c^{2}_{w}(Z^{0}_{\mu}W^{+}_{\mu}Z^{0}_{\nu}W^{-}_{\nu} - Z^{0}_{\mu}Z^{0}_{\mu}W^{\mu}_{\nu}W^{-}_{\nu}) +$ $g^{2} \bar{s}_{w}^{2} (A_{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-} - A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}) + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\mu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\mu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\mu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\mu}^{-} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\mu}^{-} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\mu}^{-} A_{\mu} W_{\nu}^{-} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\mu}^{-} A_{\mu} W_{\nu}^{-} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{-} W_{\nu}^{-} - G_{\mu}^{-} A_{\mu} W_{\nu}^{-} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{-} W_{\nu}^{-} - G_{\mu}^{-} A_{\mu} W_{\nu}^{-} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{-} W_{\nu}^{-} - G_{\mu}^{-} A_{\mu} W_{\nu}^{-} W_{\nu}^{-}] + g^{2} \bar{s}_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{-} W_{\nu}^{-} - G_{\mu}^{-} A_{\mu} W_{\nu}^{-} W_{\nu}^{-} - G_{\mu}^{-} A_{\mu} W_{\mu}^{-} W_{\mu}^{-} W_{\mu}^{-}] + g^{2} \bar{s}_{w} [A_{\mu} Z_{\mu}^{-} W_{\mu}^{-} W_{\mu}^{-} - G_{\mu}^{-} W_{\mu}^{-} W_{\mu}^{-} W_{\mu}^{-} - G_{\mu}^{-} W_{\mu}^{-} W_{\mu}^{-} W_{\mu}^{-}] + g^{2} \bar{s}_{w} [A_{\mu} Z_{\mu}^{-} W_{\mu}^{-} W_{\mu}^{-} - G_{\mu}^{-} W_{\mu}^{-} W_{\mu}^{-} W_{\mu}^{-} - G_{\mu}^{-} W_{\mu}^{-} W_{\mu}^{-}$ $W_{\nu}^{\mu\nu}W_{\mu}^{\mu} - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-} - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - W_{\nu}^{\mu}W_{\nu}^{+}W_{\nu}^{-} - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - W_{\nu}^{\mu}W_{\nu}^{-} - W_{\nu}$ ${\textstyle\frac{1}{8}}g^2 \alpha_{\rm A} [H^4 + (\phi^5)^4 + 4(\phi^+ \phi^-)^2 + 4(\phi^0)^2 \phi^+ \phi^- + 4H^2 \phi^+ \phi^- + 2(\phi^0)^2 H^2]$ $g_{M}W^{+}_{\mu}W^{-}_{\mu}H - \frac{1}{2}g\frac{M}{\delta_{z}}Z^{0}_{\mu}Z^{0}_{\mu}H - \frac{1}{2}ig[W^{+}_{\mu}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - g^{0}_{\mu}W^{+}_{\mu}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})]$ $W^-_\mu(\phi^0\partial_\mu\phi^+-\phi^+\partial_\mu\phi^0)]+\frac{1}{2}g[W^+_\mu(H\partial_\mu\phi^--\phi^-\partial_\mu H)-W^-_\mu(H\partial_\mu\phi^+-\phi^-\partial_\mu H)]$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{a_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + g\frac{a_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + g\frac{a_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}) + g\frac{a_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}) + g\frac{a_{w}^{2}}{c_{w}}MZ$ $igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1-2c_w}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$ $\frac{1}{igs_{\psi}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})} - \frac{1}{4}g^{2}W_{\mu}^{+}W_{\mu}^{-}[H^{2}+(\phi^{0})^{2}+2\phi^{+}\phi^{-}] - \frac{1}{4}g^{2}W_{\mu}^{+}W_{\mu}^{+}[H^{2}+(\phi^{0})^{2}+2\phi^{+}W_{\mu}^{+}] - \frac{$ ${ {1\over 4} g^2 {1\over c_w^2} Z^0_\mu Z^0_{\mu l} H^2 + (\phi^0)^2 + 2 (2 s^2_w - 1)^2 \phi^+ \phi^-] - {1\over 2} g^2 {s^2_\omega \over c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- +$ $W^{+}_{\mu}\phi^{+}) = \frac{1}{2} i g^2 \frac{s_{\mu}^2}{c_w} Z^0_{\mu} H(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) + \frac{1}{2} g^2 s_w A_{\mu}\phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+))$ $\begin{array}{c} & \overset{\mu}{} \overset{\nu}{} \overset{\nu}{} \overset{\tau}{} \overset{\nu}{} \overset{\nu}{} \overset{\nu}{} \overset{\mu}{} \overset{\mu}{} \overset{\nu}{} \overset{\mu}{} \overset{\mu}{}$ $\frac{d_1^\lambda(\gamma\partial + m_4^\lambda)d_j^\lambda + igs_wA_\mu[-(e^{\lambda}\gamma^\mu e^{\lambda}) + \frac{2}{3}(\bar{u}_j^\lambda\gamma^\mu u_j^\lambda) - \frac{1}{3}(d_j^\lambda\gamma^\mu d_j^\lambda)] }{(d_j^\lambda\gamma^\mu d_j^\lambda)}$ $\frac{1}{4c_w}Z^0_\mu((\nu^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda)+(e^\lambda\gamma^\mu(4s^2_w-1-\gamma^5)e^\lambda)+(u^\lambda_1\gamma^\mu(\frac{4}{3}s^2_w-1)e^\lambda)+(u^\lambda_1\gamma^\mu(\frac{4}{3}s^2_w-1)e^\lambda_1)e^\lambda_1)$ $\frac{4c_{w}-\mu^{\lambda}}{1-\gamma^{5}}(u_{j}^{\lambda}) + (d_{j}^{\lambda}\gamma^{\mu}(1-\frac{4}{5}s_{w}^{2}-\gamma^{5})d_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\overline{d}_{j}^{\lambda}) +$ $(\overline{a}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{\delta})C_{\lambda\kappa}d_{j}^{\mu})] + \frac{4g}{2\sqrt{2}}W_{\mu}^{-}[(\overline{c}^{\lambda}\gamma^{\mu}(1+\gamma^{\delta})\nu^{\lambda}) + (\overline{d}_{j}^{s}C_{\lambda\kappa}^{i}\gamma^{\mu}(1+\overline{c}^{\lambda})\nu^{\lambda})] + (\overline{d}_{j}^{s}C_{\lambda\kappa}^{i}\gamma^{\mu}(1+\overline{c}^{\lambda})\nu^{\lambda}) + (\overline{d}_{j}^{s}C_{\lambda\kappa}^{i}\gamma^{\mu}(1+$ $\gamma^5)u_j^{\lambda}]]+\tfrac{ig}{2\sqrt{2}}\tfrac{m_\lambda^*}{M}[-\phi^+(\bar{\nu}^\lambda(1-\gamma^5)e^\lambda)+\phi^-(\bar{e}^\lambda(1+\gamma^5)\nu^\lambda)] \tfrac{\mathfrak{g}\,\mathfrak{m}^{\lambda}}{\frac{1}{2}\,M} [H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \tfrac{4\mathfrak{g}}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\epsilon}(\tilde{u}_{j}^{\lambda}C_{\lambda\epsilon}(1-\gamma^{5})d_{j}^{2}) +$ $m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{iy}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\star$ $\gamma^5)u_j^n] - \tfrac{g}{2} \tfrac{m\lambda}{M} H(\bar{u}_j^\lambda u_j^\lambda) - \tfrac{g}{2} \tfrac{m\lambda}{M} H(\bar{d}_j^\lambda d_j^\lambda) + \tfrac{ig}{2} \tfrac{m\lambda}{M} \phi^5(\bar{u}_j^\lambda \gamma^5 u_j^\lambda) \tfrac{\mathrm{i}_{3}}{2} \tfrac{m_{2}}{M} \phi^{0}(\tilde{d}_{j}^{\lambda_{1}\lambda_{3}} d_{j}^{\lambda_{1}}) + \tilde{X}^{+} (\partial^{2} - M^{2}) X^{+} + \tilde{X}^{-} (\partial^{2} - M^{2}) X^{-} + \tilde{X}^{0} (\partial^{2} - M^{2})$ $\partial_{\mu}\tilde{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\tilde{X}^{-}X^{0} - \partial_{\mu}\tilde{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\tilde{X}^{-}Y - \partial_{\mu}\tilde{X}^{0}X^{+}))$ $\partial_\mu \bar Y X^+) + i g c_w Z^0_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w A_\mu (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^- X^-) + i g s_w (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^-) + i g s_w (\partial_\mu \bar X^+ X^+ - \partial_\mu \bar X^-) + i g s_w (\partial_\mu \bar X^+ X^-) + i g s_w (\partial_\mu \bar X^-) + i g s_w (\partial_\mu \bar X^- X^-) + i g s_w (\partial_\mu \bar X^-) + i g s_w (\partial_$ $\partial_{\mu} \bar{X}^{-} X^{-}) - \tfrac{1}{2} g M [\bar{X}^{+} X^{+} H + \bar{X}^{-} X^{-} H + \tfrac{1}{c_{\nu}^{2}} \bar{X}^{0} X^{0} H] +$ $\tfrac{1-2c_{\nu}^{2}}{2c_{\nu}}igM[\bar{X}^{+}X^{0}\phi^{+}-\bar{X}^{-}X^{0}\phi^{-}]+\tfrac{1}{2c_{\nu}}igM[\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-}]+$ $\hat{Y}_{igMs_w}[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{\hat{Y}_w}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

(avanimental) IHC shuries

- Dolmartno

Accelerators for high energy physics experiments

History of the Universe

Fixed target vs Colliders

E_{CM} in Fixed Target Experiment

$$p_1 = (E_1/c, \vec{p_1})$$
 $p_2 = (m_2 c, \vec{0})$

$$p_{tot} = (E_1/c + m_2 c, \vec{p_1})$$
$$E_{CM}^2 = (m_1^2 + m_2^2)c^4 + 2E_1m_2c^2$$

$$E_{CM} \propto \sqrt{E_1}$$

E_{CM} in Collider Experiment

Laboratory Frame = CM Frame

$$p_1 = (E_1/c, \vec{p_1}) \qquad p_2 = (E_2/c, -\vec{p_1})$$

$E_{CM} = E_1 + E_2$

→ Collider more energy efficient;
 But also more complex: two beams to be accelerated and to be brought into collision

Acceleration

Lorentz force law $\mathbf{F} = q \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right)$ $\Delta E = \int_{\mathbf{r}_1}^{\mathbf{r}_2} \mathbf{F} \cdot d\mathbf{r}$ Electric field Velocity Magnetic field

- Electric field (either static or more commonly, time varying) to accelerate, or more appropriately, increase energy of beam
- Magnetic part of Lorentz force used to guide and focus
 - Dipole magnets: to bend
 - Quadrupole: to focus or defocus

Synchrotron

- Workhorse of modern particle physics
 - Huge legacy of discovery
 - Increase energy whilst synchronously increasing bending magnet strength
 - Stable storage of high beam current/power
- Magnetic field proportional to momentum

Storage ring Colliders

Make use of all the particles' energy. 2-beam synchrotrons.

The first one: AdA (Frascatti), 1961-64, e+,e-, 250 MeV, 3m circumference

Many examples to come at DESY, SLAC, KEK, Fermilab with the Tevatron (980 GeV), BNL with RHIC

1971-1984: ISR (CERN), p+,p+, 31.5 GeV, 948 m circumference

1981-1991: SPS running as SppS, p+, p-, 270 – 315 GeV, 6.9 km circumference; discovery of W and Z Bosons

1989-2000: LEP highest energy electron synchrotron, e+,e-, 104 GeV, 27 km circumference; three generations of quarks, gluons and leptons

2008 - : LHC highest energy proton synchrotron, p+,p+, heavy ions, 6.5 TeV (2.76 TeV per nucleon for $^{208}Pb^{82+}$); Discovery of Higgs

Energy frontier

 The interplay between electron and hadron machines has a long and fruitful tradition

- J/ψ at SPEAR (e⁺e⁻) and AGS (proton fixed target)
- ↑ discovery at E288 (p fixed target), precision B studies at the e⁺e⁻ B factories
- top quark at LEP and Tevatron

• . . .

Higgs boson at the LHC

Complementarity between pp and ee machines

• Proton-(Anti-)Proton Colliders

- Higher energy reach (limited by magnets)
- Composite particles: unknown and different colliding constituents, energies in each collision
- Confusing final states
- Discovery machines (W, Z, t)
- In some cases: precision measurements possible (W mass at the Tevatron)

- Electron-Positron-Colliders
 - Energy reach limited by RF

e

- Point like particles, exactly definded initial system, quantum numbers, energy, spin polarisation possible
- Hadronic final states with clear signatures
- Precision machines
- Discovery potential, but not at the energy frontier

Luminosity

- What luminosity is required for measurement?
 - Need some knowledge of x-section
- Simple relationship between number of particles, frequency of collision and beam sizes

Luminosity frontier

Need corresponding rise in luminosity (beam intensity)
 Number of events Instantaneous luminosity

$$\overset{\downarrow}{N} = \sigma L = \sigma \int \overset{\downarrow}{\mathcal{L}} dt$$
Cross section Integrated luminosity

High luminosity brings all the challenges for the detectors:

- High event rates
- Pile up
- Beam –beam interactions
- Beamstrahlung

Designing a machine

- Particle species
 - Electron/positrons
 - Protons/anti-protons
 - Muons/anti-muons
- Beam energy
- Spin
- Luminosity

- How do you produce antiparticles?
- Ones produced how ones keep them (muon collider)?
- Ones collided what ones does with spent beams?
- Accelerator and detector protection

Accelerator is much more

- Particle production
- Damping, cooling or preparation
- Injection and extraction
- Acceleration
- Collimation (betatron, energy etc.)
- Diagnostics and controls
- Machine (and detector protection)
- Beam delivery and luminosity production
- Technology spin off
 - Lower energy machines, medical applications, applied physics, materials,

CERN laboratory (founded in 1954)

Energy and luminosity

- Particle physics requires an accelerator colliding beams with a centre-of-mass energy substantially exceeding 1 TeV
- In order to observe rare events, the luminosity should be in the order of 10³⁴ [cm⁻²s⁻¹] (challenge for the LHC accelerator)
- Event rate:

$$\frac{N}{\Delta t} = L[cm^{-2} \cdot s^{-1}] \cdot \sigma[cm^{2}]$$

- Assuming a total cross section of about 100 mbarn for pp collisions, the event rate for this luminosity is in the order of 10⁹ events/second (challenge for the LHC experiments)
- Nuclear and particle physics require heavy ion collisions in the LHC (quark-gluon plasma)

Integrated luminosity

 The total number of particles created at an accelerator (the total number of Higgs bosons) is proportional to the Integrated Luminosity:

$\int L(t) \times dt$

 It has the unit of [cm⁻²] and is expressed in Inverse Picobarn or Inverse Femtobarn

Synchrotron + many passages in RF cavities

LHC **circular machine** with energy gain per turn ~0.5 MeV acceleration from 450 GeV to 7 TeV will take about 20 minutes

Particle acceleration in RF cavity

16 MV/beam, built and assembled in four modules

Particle deflection: superconducting magnets

The force on a charged particle is proportional to the charge, the electric field, and the vector product of velocity and magnetic field given by Lorentz Force:

$$\vec{\mathbf{F}} = q \cdot (\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}}) \qquad \qquad B = \frac{p}{e_0 \cdot R}$$

Maximum momentum 7000 GeV/c Radius 2805 m fixed by LEP tunnel **Magnetic field B = 8.33 Tesla** Iron magnets limited to 2 Tesla, therefore superconducting magnets are required Deflecting magnetic fields for two beams in opposite directions

Superconducting magnets in LHC tunnel

Deflection by 1232 superconducing dipole magnets

Dipole magnets for the LHC

1232 Dipole magnets Length about 15 m

Magnetic Field 8.3 T for 7 TeV

Two beam tubes with an opening of 56 mm

plus many other magnets, to ensure beam stability (1700 main magnets and about 8000 corrector magnets)

CERN accelerator complex

SPS, transfer line and the LHC

Synchrotron principle: LHC fill (2011)

Excelent fill (2011)

--- LHC.BCTDC.A6R4.B1:BEAM_INTENSITY

--- LHC.BCTDC.A6R4.B2:BEAM_INTENSITY

Colliding trains of bunches

Number of "New Particles" per unit of time:

$$\frac{\mathsf{N}}{\Delta \mathsf{T}} = \mathsf{L} \big[\mathsf{cm}^{-2} \cdot \mathsf{s}^{-1} \big] \cdot \sigma \big[\mathsf{cm}^{2} \big]$$

The objective for the LHC as proton – proton collider is a luminosity of about 10³⁴ [cm⁻²s⁻¹]

LEP (e+e-) :	3-4 10 ³¹ [cm ⁻² s ⁻¹]
Tevatron (p-pbar) :	some 10 ³² [cm ⁻² s ⁻¹]
B-Factories :	> 10 ³⁴ [cm ⁻² s ⁻¹]

Luminosity parameters

N ... f ... n_b ... $\sigma_x \times \sigma_y$...

number of protons per bunch revolution frequency number of bunches per beam beam dimensions at interaction point

Luminosity parameters

Beam size

- Large beam size in adjacent quadrupole magnets
- Separation between beams needed, about 10 σ
- Limitation is the aperture in quadrupoles
- Limitation of β function at IP to 0.4 m (2017)

CMS Experiment at LHC CERM Data recorded: Mon May 28-01:16:20:2012 CE9T Run/Event: 195099-35438125 Lumi.section: 65-1 Oxbit/Crossing: 16992111 12295

 ⇒ With the parameters of 2012 for each bunch crossing there are up to ~35 interactions (lower luminosity, less number of bunches)
 ⇒ 'Hats off' to ALTAS & CMS for handling this pile-up !!

Experimental long straight section

Example for an LHC insertion with ATLAS or CMS

- The 2 LHC beams are brought together to collide in a 'common' region
- Over ~260 m the beams circulate in one vacuum chamber with 'parasitic' encounters (when the spacing between bunches is small enough)
- Total crossing angle of about 250 μrad

Energy stored in the beam

What does it mean?

The energy of an 200 m long fast train at 155 km/hour corresponds to the energy of 360 MJoule stored in one LHC beam

360 MJoule: the energy stored in one LHC beam corresponds approximately to...

90 kg of TNT

- 8 litres of gasoline
- 15 kg of chocolate

It's how ease the energy is released that matters most !!

Layout of beam system dump

Dump line

Beam Loss Monitors

- Ionization chambers to detect beam losses:
 - Reaction time ~ ½ turn (40 μs)
 - Very large dynamic range (> 10⁶)
- There are ~3600 chambers distributed over the ring to detect abnormal beam losses and if necessary trigger a beam abort !
- Very important beam instrumentation!

The LHC: just another collider?

	Start	Туре	Max proton energy [GeV]	Length [m]	B Field [Tesla]	Lumi [cm ⁻² s ⁻¹]	Stored beam energy [MJoule]
TEVATRON Fermilab Illinois USA	1983	p-pbar	980	6300	4.5	4.3 10 ³²	1.6 for protons
HERA DESY Hamburg	1992	p – e+ p – e-	920	6300	5.5	5.1 10 ³¹	2.7 for protons
RHIC Brookhaven Long Island	2000	lon-lon p-p	250	3834	4.3	1.5 10 ³²	0.9 per proton beam
LHC CERN	2008	lon-lon p-p	7000	26800	8.3	10 ³⁴ Now 7.7× 10 ³³	362 per beam
Factor			7	4	2	50	100

Collisions at LHC

LHC: Run 1 and Run 2

Run 2 at 13 TeV: 2015, 2016, 2017, 2018

LHC Beam parameters achieved

Parameter	2018	Design
Energy [TeV]	6.5	7.0
No. of bunches	2556	2808
Max. stored energy per beam (MJ)	312	362
<mark>β*</mark> [cm]	<mark>30→25</mark>	55
p/bunch (typical value) [10 ¹¹]	1.1	1.15
Typical normalized emittance [μm]	~1.8	3.75
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.1	1.0

LHC 2018: Beam Availability and Performance

66 fb⁻¹

Leveling luminosities

Plans for next (two) decades

LHC high luminosity upgrade

Year

High luminosity LHC perfomance estimates

Parameter	Nominal	25ns – HL-LHC
Bunch population N _b [10 ¹¹]	1.15	2.2
Number of bunches	2808	2748
Beam current [A]	0.58	1.12
Crossing angle [µrad]	300	590
Beam separation [σ]	9.9	12.5
β [*] [m]	0.55	0.15
Normalized emittance ϵ_n [μ m]	3.75	2.5
ε _L [eVs]	2.51	2.51
Relative energy spread [10 ⁻⁴]	1.20	1.20
r.m.s. bunch length [m]	0.075	0.075
Virtual Luminosity (w/o CC) [10 ³⁴ cm ⁻² s ⁻¹]	1.2 (1.2)	21.3 (7.2)
Max. Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	5.1
Levelled Pile-up/Pile-up density [evt. / evt./mm]	26/0.2	140/1.25

Aim for $\sim 250 \text{ fb}^{-1}/\text{y}$

 $\Delta Q_{bb} \sim -0.01$

Hardware for the Upgrade

Main modifications

- New high field/larger aperture interaction region magnets
- Cryo-collimators and high field 11 T dipoles in dispersion suppressors
- Crab Cavities to take advantage of the small β^{\ast}
- New collimators (lower impedance)
- Additional cryo plants (P1, P4, P5)
- SC links to allow power converters to be moved to surface

Future plans

international FCC collaboration (CERN as host lab) to design:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km tunnel infrastructure in Geneva area, site specific
- *e*⁺*e*⁻ collider (*FCC-ee*), as a possible first step
- *p-e* (*FCC-he*) option, one IP, FCC-hh & ERL

