Machine Learning and Multivariate

Techniques in HEP data Analyses

= What is: Machine Learning (ML) & Multivariate Analysis/Technique (MVA)
= Basics (classification, regression)
= ROC-curve
= generative vs predictive models
= MVA/ML algorithms
= Naive Basian, KNN,
= Linear discriminators, SVM
= model fitting — gradient decent and loss function

= General comments about MVAs
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HEP Experiments: Simulated Higgs event in CMS

® That's how a “typical” Higgs event looks
like: (underlying ~23 ‘minimum bias’ events)
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HEP Experiments: Simulated Higgs event in CMS

" That’s how a "typical” Higgs event looks
like: (underlying ~2
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HEP Experiments: Event Signatures in the Detector

® the needle in the hay-stack is already “one piece” ... but:

(Higgs-) particles need to be reconstructed from decay products

decay products need to be reconstructed from detector signatures

etc..
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Machine Learning ,elsewhere’

Expesience Twitter ike never before, full speed shead Fast sleek, styksh
advanced, bold, and beautiful

ENGLISCH

Experience Twitter like never before, full speed
ahead. Fast, sleek, stylish, advanced, bold, and
beautiful

Erleben Sie Twitter, wie nie zuvor, volle Kraft
voraus. Schnell, schlicht, elegant, moderne, fett
und schon.

plarf]
grows and advances, | have no doubt that Talon will contirwe leading the way

$300,000 § ' ¢ | $200,000 |

.... IS ‘everywhere’



HEP: Everything started Multivariate

= intelligent “Multivariate Pattern Recognition” used to identify particles
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= What is: Machine Learning (ML) & Multivariate Analysis/Technique (MVA)

= Basics (classification, regression)
= ROC-curve
= generative vs predictive models

= MVA/ML algorithms

Naive Basian, KNN,

Linear discriminators, SVM

model fitting — gradient decent and loss function

General comments about MVAs



What is Machine Learning

= “[Machine Learning is the] field of study that gives computers the

ability to learn without being explicitly programmed.” Arthur Samuel
(1959)

= “A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T,

as measured by P. improves with experience E.” Tom Mitchell, Carnegie
Mellon University (1997)

‘understanding/modeling your data’ ...
and if you cannot do it in multi-dimensions on “analytic first
principles” let the computer help ©



What are Multivariate Techniques

- Many things ... starting from “linear regression” ...

f(x) " to multivariate event classification
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- typically “multivariate” B R R
= Parameters depend on the ‘joint distribution’ f(x,, X,)

= ‘learning from experience’ - known data points
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Machine Learning - Multivariate Techniques

= fitted (non-)analytic function may approximate:

= target value - ‘regression’

( e.g. calorimeter calibration/correction function)
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Regression

®‘known measurements” = model “functional behaviour”

" e.g. : photon energy as function “D”-variables: ECAL shower parameters + ...
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= known analytic model (i.e. nth -order polynomial) - Maximum Likelihood Fit)

= no model ?
< “draw any kind of curve” and parameterize it?

®seems trivial ? = human brain has very good pattern recognition capabilities!

" what if you have many input variables?
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Regression -> model functional behaviour
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" “standard” regression = fit a known analytic function
"eg. f(x)= ax2+bx,2+c

¥ BUT most times: don’t have a reasonable “model” ? - need something more general:
" e.g. piecewise defined splines, kernel estimators, decision trees to approximate f(x)

Note: we are not interested in the ‘fitted parameter(s)’, itis not: “Newton deriving F=m-a”
— just provide prediction of function values f(x) for new measurements x
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Multi-Variate Classification

Consider events which can be either signal or background events.

Each event is characterized by n observables:

X = (X1, ..., Xn) "feature vector"

Goal: classify events as signal or background in an optimal way.

This is usually done by mapping the feature vector to a single variable, i.e.,
to scalar test statistic:

R" > R: y(X)

A cut vy > ¢ to classify events as signal corresponds to selecting a
potentially complicated hyper-surface in feature space. In general superior
to classical "rectangular” cuts on the x.

Problem closely related to machine learning (pattern recognition, data
mining, ... )

14
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Signal Probability Instead of Hard Decisions

Example: test statistic y for signal and background from a Multi-Layer
Perceptron (MLP):

| TMVA output for classifier: MLP | TMVA manual

E Slinglall T T | T T T | T T T | T T T |
7 Background

Normalized

11 il irrrndl
umD-flow (S,B): (0.0, 001 / (0.0, 0.0

0.2 0.4 0.6 0.8 1
MLP

Instead of a hard yes/no decision one can also define the probability of an
event to be a signal event:

pLy[S) - fs (o ns
(vI$) - fe+p(v[B)-(1—F)" 7 ne+np

Pi(y) = P(Sly) =
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Event Classification

" Each event, if Signal or Background, has “D” measured variables.

" Find a mapping from D-dimensional input-observable ("feature” space)
to one dimensional output —> class label

Test statistic:
y(X): RP=>R; most general form

. P y =Y(x); x ePP
“faature X={Xy,....,Xp}: input variables
space’

ImEE T
3.5 7] Background 3

" plotting (histogramming)
the resulting y(x) values:
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Event Classification

® Each event, if Signal or Background, has “D” measured variables.

® Find a mapping from D-dimensional input/observable/"feature” space

- - T T e e
to one dimensional output i 3,,Bgckgmund -
> class labels g sorl y(B) =0, ¥(S) > 1 E

:
e
Test statistic: N

: PD > y()(): RP>R: 05 h

1 0 _'I.l : 0.2 0.4 0.6 0.8 -
o feature y(X)
. n
° SPAC® 1 = jistributions of y(x): PDFs(y) and PDFx(y)
@
® " used to set the selection cut! (> cut: signal
® Y(X): < = cut: decision boundary

.. : < cut: background
—> efficiency and purity \ J

" overlap of PDF¢(y) and PDFg(y) - separation power , purity

¥ y(x)=const: surface defining the decision boundary.

18



Classification <-> Regression

Classification: F Hﬁif:gm'm;' | | | I—
" y(x): ROSR: “test statistic” in D- y(x): ROSR: : -, VB 20V =T g
dimensional space of input variables —_— 1% :
" y(x)=const: surface defining the decision " _ _
boundary. W 3
0.5 - ;
. _«\-I 02 04 0.6 0.8 .
y(x)
Regression:
" “D" measured variables + one function value
(e.g. cluster shape variables in the ECAL + particles F(X;.Xo)
1.X2

energy)
" y(x): RP>R “regression function”

" y(x)=const —> hyperplanes where the
target function is constant

Now, y(x) needs to be build such that it

best approximates the target, not such

that it best separates signal from bkgr.
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Event Classification

PDFg(y). PDFg(y): y(x): RP>R:

3 _TIse T T
E 35 =1 Background
z

A

3 - Probability densities for y
' given background or signal

e.g.: for an event with y(x) =0.2
- PDFg(y(x)) = 1.5 and PDFg(y(x)) = 0.45

fq ,fz : fraction of S and B in the sample:

fS|::'|:)|=5 (y) s the probability of an event with

- — P(C =S | Y) measured X={x,,...., Xp} that gives y(x)
fSPDFS(y) + fBPDFB(y) to be of type sig1nal ’
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Receiver Operation Characteristic (ROC) curve

Signal(H,) /Background(H,)
discrimination:

Normalized

Signal = |
33 1) Background
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which one of those

1 two blue ones is the better??

large purity
small efficiency

large efficiency
small purity

0 E:signal
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Receiver Operation Characteristic (ROC) curve
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Receiver Operation Characteristic (ROC) curve

Signal(H,) /Background(H,)

[ MVA distributions |
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* Type 1 error: reject H (ie. the ‘is bkg’ hypothesis) although it would haven been true

* - background contamination
= Type 2 error: accept H; although false
= - |oss of efficiency
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Event Classification -> finding the mapping function y(x)

__ PDF(x|S)
"y() = PDF(x|B)

-2 but P(X|S), p(x|B) are typically unknown
- Neyman-Pearsons lemma doesn’t really help us directly

—> best possible classifier

® use already classified “events” (e.g. MonteCarlo) to:

estimate p(x|S) and p(x|B): (e.g. the differential cross section folded with the detector
influences) and use the likelihood ratio

— e.g. D-dimensional histogram, Kernel density estimators, ...
—> (generative algorithms)

OR
approximate the “likelihood ratio” (or a monotonic transformation thereof).
find a y(x) whose hyperplanes® in the “feature space”:

(y(x) = const) optimally separate signal from background
e.g. Linear Discriminator, Neural Networks, ...
- (discriminative algorithms)

* hyperplane in the strict sense goes through the origin. Here | mean “affine set” to be precise
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Machine Learning Categories

supervised: - training “events” with known type (i.e. Signal or Backgr, target value)

un-supervised: - no prior notion of “Signal” or “Background”

- cluster analysis: if different “groups” are found = class labels
- principal component analysis:

find basis in observable space with biggest
hierarchical differences in the variance

- infer something about underlying substructure

reinforcement-learning:

- learn from “success” or “failure” of some “action policy”

(i.,e. a robot achieves his goal or does not / falls or does not fall/ wins
or looses the game)

This lecture: supervised learning

25



Kernel Density Estimator

“‘events” distributed according to P(x
" estimate probability density P(x) in D-dimensional space: d %)

A
. : . . X2 ° . » h
® The only thing at our disposal is our “training data” ‘.‘ : e o 0 * o .
e ¢ Yoo * o
L
" Say we want to know P(x) at “this” point “x” ‘.'.' : O 000" ¢
L L L ™
® One expects to find in a volume V around point “x” o o0 e
L L
N*[P(x)dx events from a dataset with N events * ' ee oo *; -
- K-events: >

N 1. -
K(x) = E I (x_x”), with k(u) = {1: lu;| < L= 1..D k(u): is called
=1

h . a Kernel function:
n= 0, otherwise

—=>K(x)/N: estimate of average P(x) in the volume V

. . . N l X T X?.?
" Classification: Determine P(X) = — E —k
N h” h
PDF¢(x) and PDF(x) n=l1

—> likelihood ratio as classifier! ) _ - _
- Kernel Density estimator of the probability density
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Kernel Density Estimator

“‘events” distributed according to P(x
" estimate probability density P(x) in D-dimensional space: d %)

A
. : . . X2 ° . » h
® The only thing at our disposal is our “training data” ‘.‘ : e o 0 * o .
e ¢ Yoo * o
L
" Say we want to know P(x) at “this” point “x” ‘.'.' : O 000" ¢
L L L ™
® One expects to find in a volume V around point “x” o o0 e
L L
N*[P(x)dx events from a dataset with N events * ' ee oo *; -
- K-events: >

N 1. -
K(x) = E I (x_x”), with k(u) = {1: lu;| < L= 1..D k(u): is called
=1

h . a Kernel function:
n= 0, otherwise

—=>K(x)/N: estimate of average P(x) in the volume V

" Reagression: If each events with (x4,X;) carries a “function value” f(x,X,) (e.g. energy of incident
particle) =

N n
%Z“I((S::'i —X)f(X") = jf(iP(i’)di i.e.: the average function value
i vV
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K- Nearest Neighbour

“events” distributed according to P(x)

— kNN . K-Nearest Neighbours

relative number events of the various X) _
classes amongst the k-nearest neighbours

keep K fixed —> variable window size

- automatically ‘adapt’ resolution to the >
available data

- may replace “window” by “smooth” kernel function (i.e. weight events by
distance via Gaussian)
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Kernel Density Estimator

1 N
P(X) — L ZK} (X =X ) . a general probability density estimator using kernel K
1 n
=1 S E—e
" K or h: “size” of the Kernel -2 “smoothing”
" too small: overtraining/overfitting

" too large: not sensitive to features in P(x)

" Kernel types: window/Gaussian ...
" which metric for the Kernel ?
= normalise all variables to same range
= include correlations ?
= Mahalanobis Metric: x*x = xV-'x

(Elements of statistical learning)

" a drawback of Kernel density estimators:
Evaluation for any test events involves ALL TRAINING

DATA - typically very time consuming

Bayes® optimal decision boundary
29



j J A Bellman, R. (1961), Adaptive

»Curse of Dimensionality” Etiegges

Tour, Princeton University Press.

We all know:

Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due
to lack of Monte Carlo events.

Shortcoming of nearest-neighbour strategies: g
21
5 T
_:,'-“IJ,B:—
® higher dimensional cases K-events often are not in o6l /'/r E—
a small “vicinity” of the space point anymore: Mr_ f_,,.—""_[’:z -
uz:— /H _sj: B
oL %/—0-10 B
consider: total phase space volume \VV=1P "o ooz 004 005 008 o

Volume fraction
for a cube of a particular fraction of the volume:

edge length=(fraction of volume)"”

" 10 dimensions: capture 1% of the phase space
- 63% of range in each variable necessary - that's not “local” anymore..®

édevelop all the alternative classification/regression techniques
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Naive Bayesian Classifier

Projective Likelihood Classifier

Multivariate Likelihood (k-Nearest Neighbour)
- estimate the full D-dimensional joint probability density

Naive Bayesian
- ignore correlations

D .
N product of marginal PDFs
P(x) =] [R(x)
i=0

(1-dim “histograms”)

pdf: histogram + smoothing

T ot data (dgnan T " No hard cuts on individual variables = “fuzzy”,

Estimated PDF (norm. signal) | -

600 .
= X3

(a very signal like variable may
counterweigh another, less signal
like variable)

“fuzzy cuts” X

" optimal method if correlations ==

" try to “eliminate” correlations
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De-Correlation

= Find variable transformation that diagonalises the covariance matrix
® Determine square-root C ' of correlation matrix C, i.e., C=C'C"’

=compute C ' by diagonalising C: D=S'CS = C'= SDST

" transformation from original (x) in de-correlated variable space (x') by: x' = C "—1x

e |

LiE.] i%ﬂﬂl‘lﬁl T T T T
Backgraund

Hormalized 5

- (5,51 (0.0, 007 0. 0%

Lo (3, B 000, 0075, 000
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Attention: eliminates only linear correlations!!
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De-Correlation via PCA

= PCA (unsupervised learning algorithm)
= reduce dimensionality of a problem
= find most dominant features in a distribution

= Eigenvectors of covariance matrix = “axes” in transformed variable space
= large eigenvalue = large variance along the axis (principal component)

- PCA eliminates correlations!
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Decorrelation at Work

" Example: linear correlated Gaussians = de-correlation works to 100%
— 1-D Likelihood on de-correlated sample give best possible performance

4 compare also the effect on the MVVA-output variablel

correlated variables: after decorrelation
TMVA response for classifier: Likelihcod

-E gi'5|'gnh| T T T | T T T | T T T T T T -E gilsllgnhl T T T | T T T | T T T E
z 8 Background z B8 Background -
k-] — - ~ .
g 75 g 7C E
bt 6 2 - s E

2 s - 13

= -

4 ? = =

2 £ &

3 s <

: :

3 ]

& £

g ¢
0 0.2 0.4 0.6 0.5 1 0 0.2 0.4 0.6 0.5 1

Likelihood response LikelihoodD response

Watch out! Things might look very different for non-linear correlations!

34



Correlation Coefficients

‘correlations’ | ‘linear-correlations’, ‘interaction/dependence’

—> phsicist’s slang often different from statistitans’ |
1 . 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 1 B .
/_- i T
s ~ - — — T~ \\.
g 0
L %‘s‘e &

http: Hen W|k|ped|a erga’mkn’(}errelatlen and dependence

= to capture “non-linear correlations” - mutual information

Pxy(x,y)
“I(x,y) = [ [ pry(x,¥)log (m) dxdy

= I(x,y) =0 only if x, y are really statistically independent !
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Discriminative Classifiers

= KNN and Naive Bayesian (Multi-dimensional and Projective Likelihood)

= generative methods - estimate the pdf
= discriminative methods
= impose model-specific restrictions (i.e. linear decision boundaries)

= fit directly the decision boundaries

Neyman-Pearson Lemma: in the limit, a ‘perfect’ discriminative
“limit” in ROC curve is given by » _
PDF(x|S) classifier y(x) parametrizes the
y(x) = PDF(x|B)’ L :
Bayes, optlmal the likelihood ratio likelihood ratio (or a monotonic function thereof)
(or any monotonous function - use as ‘event weights’

thEl’EOf} arXiv:1506.02169 for a ‘more theoretical’ analysis
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Linear Discriminant

M
General Y = (g, 2p)) = ) wiki()
i=0
D
Linear Discriminant: y(x ={xq, ...,xp}) = wy + Z W; X
i=1

i.e. any linear function of the input variables: - linear decision boundaries

X’s}f .| PDF of the test statistic y(x)
S - determine the “weights” w that separate “best”
PDFg from PDFg
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Fisher’s Linear Discriminant

V(X,W) = wq + Zw,x,

E"‘niSigﬁa‘ B L-l-l | | IIIII'_: 7 i F n i n
s usackgmund — 4 determine the “weights” w that do “best

" Maximise “separation” between the S and B

- minimise overlap of the distributions of y and vy,
" maximise the distance between the two mean
values of the classes
" minimise the variance within each class

1-E[ys)? _ wliBw _ "in between" variance

- =T — T " - =" =
C}'},B +{}'};S w Ww within" variance

- maximise J(w) = (E

U, (W) =0= wWo W (%) — (¥)p) the Fisher coefficients

L=

note: these quantities can be calculated from the training data
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Linear Discriminant and non linear correlations

assume the following non-linear correlated data:
" the Linear discriminant obviously doesn’t do a very good job here:

| 2 2
" Of course, these can easily be de- var0' =yvar0’ +var1
correlated: | var(O
var1 =atan
— here: linear discriminator works var

perfectly on de-correlated data

—
o L : L - Signal
S 14
T T T T T T T Signal = R Background
™ s R SRR
1.2 : - Eackground ."i’.' L
1 _: ?12_
E
0.8 > 1—_
0.6 =
o L
0.4 w
0.2 08—
0 L
0.2 0.6
0.4 L
0.6 : ] 04— , .
|~ I T DR B TS P P BN DI R P P I I B P
08060402 0 0204 0608 1 1.2 14 -3 -2 -1 0 1 2 3
var0 atan(varO/var1)
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Classifier Training and Loss Function

What about a more ‘general approach’ than ‘constructing J(w)’ ?

> minimize the expectation value of a “Loss function” L(y*"%", y(x))

L(y train’ y(x)) . penalizing prediction errors for training events

* Regression:

_ 2
2 E[L=E E (ytram — y(x )) ]  squared error loss
* Classification:

—E[L] = E[yframn log(y(x;)) + (1 — yi”'“i") log(1 — y(x;))] binomial loss

regression: yfrem = the functional value of training event i which
happens to have the measured observables x;

classification: v =1 for signal, =0 (-1) background
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Classifier Training and Loss Function

* Regression: y_{?-?‘aia-l . Gaussian distributed around a mean v | ' .,?f/::j
1o II .‘."f":;';f‘d .
* Remember: Maximum Likelihood estimatior . %’
I
* Maximise: log probability of the observed training data ,f::-:"’?f: ' //
20 10 10 20 30 a0 50 ]

events events events

L==log [ | POIye0) == Y logPOI lyGi) = D (57 = yx))

i
_ 2
- E[L]=E E (ytran—y(x )) ]  squared error loss (regression)

* Classification: now: y"" (i.e. is it ‘signal’ or ‘background’) is Bernoulli distributed

events
train

L== ) log(POI"ly(x)) = = ) log(P(Slx)*" " P(Blx """
3 3
If we now say y(x) should simply parametrize P(S|x); P(B|x)=1- - P(S[x) =2

—E[L] = E[yframn log(y(xl-)) +(1- yi”'“'i") log(1 — y(x;))] binomial loss
a1



Logistic Regression 2

*

Fisher Discriminant:
- equivalent to Linear Discriminant with ‘squared loss function’

- build a linear classifier that maximizes ‘binomial loss’:
= y(x) to parameterize P(S|x), we clearly cannot ‘use a linear function for ‘y(x)’
- ‘squeeze’ any linear function wy + ijxf = Wx into the proper interval
0 < y(x) < 1 using the ‘logistic function’ (i.e. sigmoid function)

Logistic Regression i
. . 1
y(x) = P(S|x) = sigmoid(Wx) = ——= -
PG _ 17 i ]
- Log (P(le)) = Wx s linear! [

Note: Now y(x) has a ‘probability’ interpretation. y(x) of the Fisher discriminant was ‘just’ a
discriminator.
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Logistic Regression

1
1+e-Wx

y(x) = P(S|x) = sigmoid(Wx) =

1 D example: Logistic Regression: 1 Feature

1.5

y(x) =sigm(wx)

1

y(x) =wx

-0.5

Feature x

Note: decision boundaries are still ‘linear’, just the ‘contour lines’ (y(x)=const)

are non-linear, parametrizing the probability of the event being y=0 or y=1 as

‘distance’ from the boundary. ...
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Logistic Regression

Difference between ‘linear classifier’ and ‘logistic regression’

- distribution of decision boundaries

4 i - 0_
. . ‘-;j::—*.";::-;.-f
Na LT
2k g = LS
| ( 7 SR
== £
.5 . ~
O =5 1 a ‘monotonous’ transformation of y(x)
% — does not change ‘relative overlap’
=2t
for pdfs of y5 and yg

- Does not change performance
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(Stochastic) Gradient Decent SDG

minimize the “loss function” - “W” ?

e.g. E[L(W)] = E[y{"" log(y(x)) + (1 — y{"*") log(1 — y(x))]

1
1+e~Wx 7 learning rate

o

W - W-— HW) - gradient decent

and if you don’t want to evaluate the
expectation value every time for the whole
sample:

with y(x) =

aL
W - W-— 15— stochastic gradient decent

mostly: something in between - mini-batches
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Overtraining

A
& A
o - . .
5 Classifier is too flexible
S - overtraining
% True performance
g (independent test sample)
© 5, training sample
> 94
X \aoptim
Or ?
A Bias if ‘performance’ is estimated
2

from the training sample

- possible overtraining is concern for
every “tunable parameter” o of classifiers:
Smoothing parameter, n-nodes...

- verify on independent “test” sample
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Regulatisation

Minimize loss function: e.g. via W — W—ng—iz SDG

Include prior distribution on ‘weights’/ parameters’ w:
events

L =log( n P(y{ " y(x;)) *pw))

= 3" log(P O y(x) +log(p(w))

often (e.g iIf y = polynomial or y = neural network)
w “small” =2 model is less ‘flexible’
—> reasonable prior p(w) would be: Gaussian with mean zero

2> L=L+ %asz a: factor of ‘how much you want to penalize”
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Cross Validation

" parameters “a” = control performance

" #training cycles, #nodes, #layers, regularisation parameter (neural net)
" smoothing parameter h (kernel density estimator)

" more training data = better training results
" division of data set into “training” and “test” and “validation” sample? ®

Cross Validation: divide the data sample into say 5 sub-sets

Train Train Train Train Test

" train 5 classifiers: y;(x,a) : i=1,..5,
" j-th classifier is trained without the i-th sub sample = used as ‘test/validation’

1 events _
= calculate the test error: CV(a)=—— > L(y,(X,«)) L:loss function
events K

" use a for which CV(a) is minimum - train the final classifier using all data
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General Advice for (MVA) Analyses

no magic in MVA- or ML-Methods:

» no “artificial intelligence” @ ... just “fitting decision boundaries” in a given
model

- most important. finding good observables

» good separation power between S and B
» little correlations amongst each other = have ‘new information’
» no correlation with the parameters you try to measure in your signal samplel

- combination of variables - feature engineering !
» eliminate correlations: you are MUCH more intelligent than the algorithm

= scale features to similar numeric range
- apply pure pre-selection cuts yourself.

- avoid “sharp features” 2 numerical problems, binning loss
» often simple variable transformations (i.e. log(variable) ) do the trick

- treat regions with different features “independent”
» [ntroduces unnecessary correlations, ‘kinks’ in decision boundaries
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MVA Categories

- one classifier per ‘region’
- ‘regions’ in the detector (data) with different features treated independent
» improves performance

» avoids additional correlations where otherwise the variables would be
uncorrelated!

Recover optimal performance after
splitting into categories

| TMVA Input Variables: vard |
T

o & 045
. ; 0.4 5
% o3 ;:' Background rejection versus Signal efficie
0 AES e e s
g:m E"’n"uzz %E .g E|||!| — L l iIIIEIIII:IIIIEIIIE T
: 12 —
[4)] E -"q—j 015 15 2 0.9 -
O = — 0.1 :E e C
) Q 0.05 fg B2 0.8 =3
© e 0 i 3 -
= 07—
E g [ TMVA Input Variables: vard % E :
O o M ) 15 05— MVA. Method
— — 3 st 17 1g o — FnsherCat
E— g y g 0.31 ‘fé L e erehhondt:at
025 1= E : :
g L = oz EH 03 f E:igﬁ;ooéi'
X C E 0155 1& C : : : : : : : :
= _:E. _I|||IJIIIIlllllllllIIII.IIIIII.IIIIII||||||||||I.|||_
wo o o L 02,""01 02 03 04 05 06 07 08 09 1
1e
(i} =

Signal efficiency

vard

50



About Systematic Errors

" Typical worries are:
" What happens if the estimated “Probability Density” is wrong 7
® Can the Classifier, i.e. the discrimination function y(x), introduce systematic uncertainties?
" What happens if the training data do not match “reality”
P(x|S)

P(x|B)

- Imperfect (calling it “wrong” isn’t “right”) y(x) —> loss of discrimination power
that’s all!

—> Classical cuts face exactly the same problem, however:

—> Any wrong PDF leads to imperfect discrimination function y(X) =

in addition to cutting on features that are not correct, now you can also “exploit”
correlations that are in fact not correct

" Systematic error are only introduced once “Monte Carlo events” with imperfect modeling are

used for
" efficiency; purity " same problem with classical “cut” analysis
=#expected events " use control samples to test MVA-output distribution (y(x))

" Combined variable (MVA-output, y(x)) might “hide” problems in ONE individual variable more
than if looked at alone - train classifier with few variables only and compare with data
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MVA and Systematic Uncertainties

» Multivariate Classifiers THEMSELVES don’t have systematic uncertainties

— even if trained on a “phantasy Monte Carlo sample”
= there are only “bad” and “good” performing classifiers |
= OVERTRAINING is NOT a systematic uncertainty Il
= difference between two classifiers resulting from two different training runs
DO NOT CAUSE SYSTEMATIC ERRORS
= same as with “well” and “badly” tuned classical cuts
= MVA classifiers: =2 only select regions in observable space

= Efficiency estimate (Monte Carlo) = statistical/systematic uncertainty
= involves “estimating” (uncertainties in ) distribution of PDF.

Ys(B)
= statistical “fluctuations” = re-sampling (Bootstrap)
= “smear/shift/change” input distributions and determine PDE.

YS(B)
- estimate systematic error/uncertainty on efficiencies

= Only involves “test” sample..
= systematic uncertainties have nothing to do with the training !l
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Classifiers and Their Properties

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics
http://tmva.sourceforge.net/talks.shtml

Classifiers

criens Cuts I;Tlgi::li ﬁEFNRh? H-Matrix Fisher MLP BDT RuleFit SVM
el e 9 9 @ © © O © O
me | e | o @ 5 @ ® © O © O
Training ® © © © © 6 6 © @

T | © © GO © © © ©® © ©
e | OV [ © ® ® © © B 6 ©
= wakink | 0 9 @ @ © © @ © O
KN N W W < W W = W o W - W
Transparency © © © © © B 6 ® ®
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= MVA or ML algorithms
-> parametrize likelihood ratio (or a monotonic function thereof)
— decision boundaries or ‘event weights’
— Parametrize the ‘target function’
- ‘regression’
- Generative or discriminative algorithms
— Multidimensional/projective Likelihood (rec. pdf)
— (Linear) discriminators etc. 2 minimize a loss function
— Take care in training, validation and testing

- Don’t want over/’under’-training but the best classifier!
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