Introduction to Data Science (for physics)

Outline of the course:

- **1. Statistics and Data Analysis**
- 2. Multivariate Techniques and Machine Learning
- 3. Physics Modeling, Simulation and Monte Carlo Methods
- 4. Regression, Classification, Clustering and Retrieval

First three parts will focus on applications in physics (mostly in High Energy Physics) The last part will discuss more typical "Data Science" problems and solutions.

Acknowledgement: slides below "borrowed" fron different courses in HEP and Data Science.

From N. Berger, CERN Summer School, 2019

Sometimes difficult to distinguish a bona fide discovery from a **background fluctuation**...

Sometimes difficult to distinguish a bona fide discovery from a **background fluctuation**...

Many important questions answered by **precision measurements**, especially if no new peaks found at high mass...

Key point = determination of uncertainties

Consistency of the SM...

... or the fate of the universe

Some other courses available online:

Glen Cowan's Cours d'Hiver and 2010 CERN Academic Training lectures Kyle Cranmer's CERN Academic Training lectures Louis Lyons' and Lorenzo Moneta's CERN Academic Training Lectures

In HEP everything started multivariate. Below: inteligent "Multivariate Pattern Recognition" used to identify particles

Nowdays: let computer help you.

Classifiers and their properties

H. Voss, Multivariate Data Analysis and Machine Learning in High Energy Physics http://tmva.sourceforge.net/talks.shtml

Criteria		Classifiers								
		Cuts	Likeli- hood	PDERS / k-NN	H-Matrix	Fisher	MLP	BDT	RuleFit	SVM
Perfor- mance	no / linear correlations	:	\odot	\odot		\odot	\odot		\odot	\odot
	nonlinear correlations	:	$\overline{\odot}$	\odot	$\overline{\mbox{\scriptsize (s)}}$	$\overline{\odot}$	\odot	\odot	÷	\odot
Speed	Training	$\overline{\odot}$	\odot	\odot	\odot	\odot		$\overline{\mathbf{S}}$	÷	$\overline{\odot}$
	Response	\odot	\odot	⊗/≅	\odot	\odot	\odot		÷	٢
Robust -ness	Overtraining	\odot		÷	\odot	\odot	$\overline{\otimes}$	$\overline{\mathbf{i}}$	÷	
	Weak input variables	0	\odot	$\overline{\mathbf{i}}$	\odot	\odot				
Curse of dimensionality		$\overline{\mathbf{i}}$	\odot	$\overline{\mathbf{i}}$	\odot	\odot		\odot		
Transparency		\odot	\odot		\odot	\odot	$\overline{\mathbf{i}}$	$\overline{\mathbf{i}}$	$\overline{\mathbf{i}}$	$\overline{\bigcirc}$

Classical Learning

Machine Learning

Image credit: https://vas3k.com/blog/machine_learning/

What is the model?

► This is not an apple just its graphical representation

Many skills are needed to build a new model, to run it and analyze its results.

- ► Computational Science is an emerging, multidisciplinary domain, based on the idea of "computational thinking".
- A computer-based description offers a new language, a new methodology to address scientific challenges, far beyond the scope of traditional numerical methods, and in fields where these classical approaches hardly apply.

Part 3: Physics modeling, simulation and and Monte Carlo methods

GEANT4 Visualised model of the detector used for simulation

GEANT4 is also used to determine the performance of X-ray and gamma-ray detectors for astrophysics

Detector

B. Chopard et al., coursera lectures, University of Geneva

Part 4: Regression, Classification, Clustering

 Current view on Machine Learning : disruptive inteligent applications are used by leading comercial companies

Part 4: Regresion, Classification, Clustering

• Data \rightarrow intelligence pipeline

Case study: prediction for the house price

course by E. Fox and C. Guestrin, Univ of Washington

16

Classification

Case study: Score of the restaurant

Clustering

Case study: assigning books to groups by topics

course by E. Fox and C. Guestrin, Univ of Washington 18

Recommendation

Case study: personalisation of recommending items

Deploying inteligence module

Case studied are about building, evaluating, deploying inteligence in data analysis.

course by E. Fox and C. Guestrin, Univ of Washington 20

Regression: Predicting house prices

Models	 Linear regression Regularization: Ridge (L2), Lasso (L1) 			
Algorithms	 Gradient descent Coordinate descent 			
Concepts	 Loss functions, bias-variance tradeoff, cross-validation, sparsity, overfitting, model selection 			

course by E. Fox and C. Guestrin, Univ of Washington 21

Classification: Sentiment analysis

Models	 Linear classifiers (logistic regression, SVMs, perceptron) Kernels Decision trees 				
Algorithms	 Stochastic gradient descent Boosting 				
Concepts	 Decision boundaries, MLE, ensemble methods, random forests, CART, online learning 				

Clustering: Finding documents

Models	 Nearest neighbors Clustering, mixtures of Gaussians Latent Dirichlet allocation (LDA)
Algorithms	 KD-trees, locality-sensitive hashing (LSH) K-means Expectation-maximization (EM)
Concepts	 Distance metrics, approximation algorithms, hashing, sampling algorithms, scaling up with map-reduce

Getting your ETCs for lectures

- I foresee written exam on the theory part.
- List of topical questions will be available before Xmass break.
- You will be asked to answer 5 questions out of 25-30 on the list.