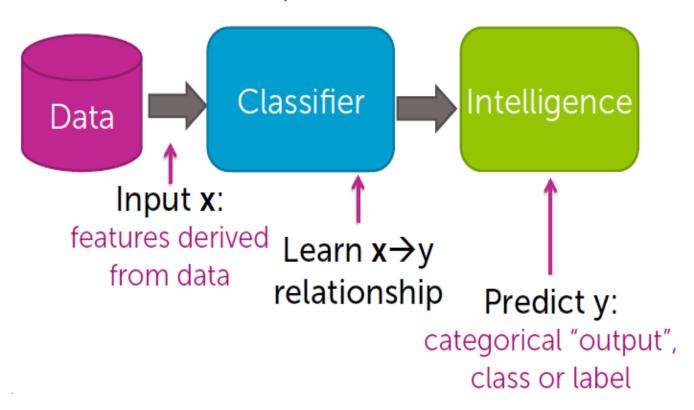
DATA SCIENCE WITH MACHINE LEARNING: CLASSIFICATION

This lecture is based on course by E. Fox and C. Guestrin, Univ of Washington

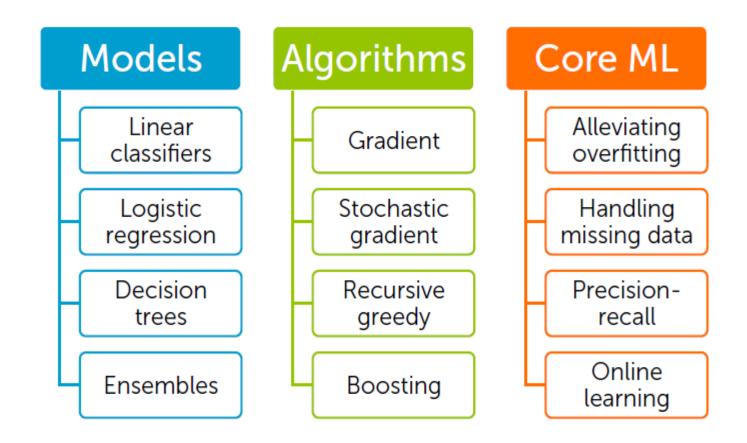
WFAiS UJ, Informatyka Stosowana I stopień studiów

What is a classification?

From features to predictions



Overwiew of the content



Linear classifier

An inteligent restaurant review system

Positive reviews not positive about everything

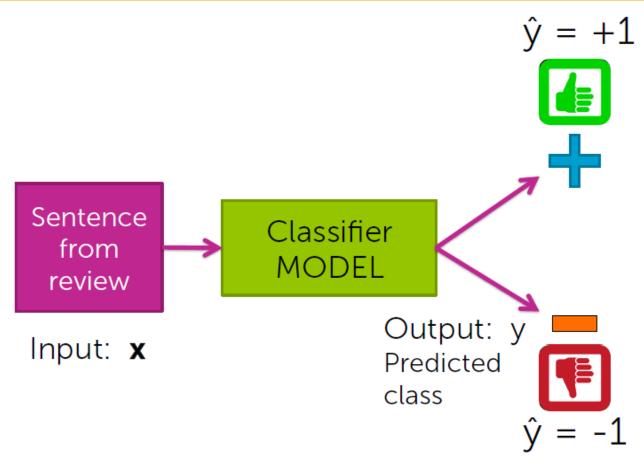
Sample review:

Watching the chefs create incredible edible art made the <u>experience</u> very unique.

My wife tried their <u>ramen</u> and it was pretty forgettable.

All the <u>sushi</u> was delicious! Easily best <u>sushi</u> in Seattle.

Classifying sentiment of review



Note: we'll start talking about 2 classes, and address multiclass later

A (linear) classifier: scoring a sentence

Word	Coefficient
good	1.0
great	1.2
awesome	1.7
bad	-1.0
terrible	-2.1
awful	-3.3
restaurant, the, we, where,	0.0

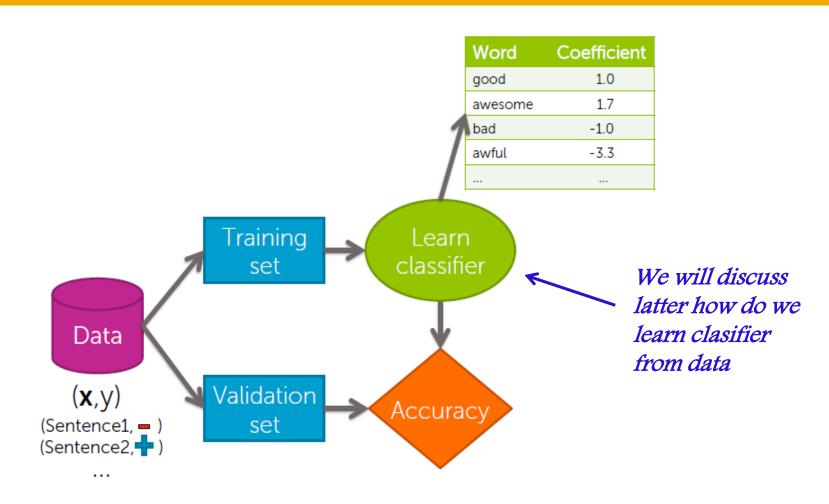
Input **x**_i:
Sushi was <u>great</u>,
the food was <u>awesome</u>,
but the service was <u>terrible</u>.

Score(xi) =
$$1.2+1.7-2.1$$

= $0.8 > 0$
=> $y = +1$
positive review

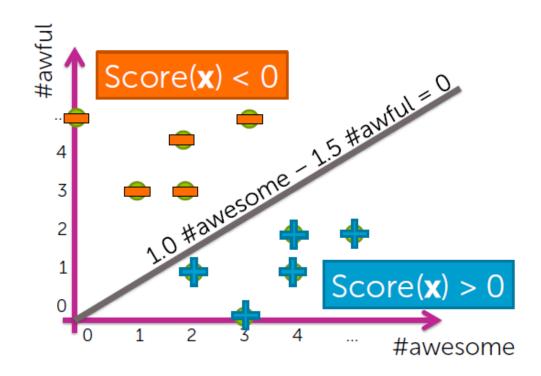
Called a linear classifier, because output is weighted sum of input.

Training a classifier = Learning the coefficients



Decision boundary example

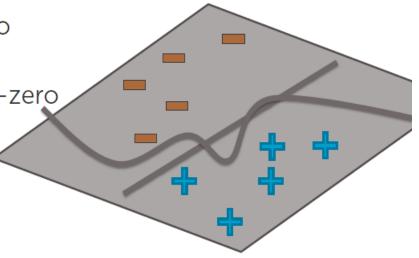
Word	Coefficient	
#awesome	1.0	Coordy) 10 Hayyosama 15 Hayyfu
#awful	-1.5	Score(x) = $1.0 \text{ #awesome} - 1.5 \text{ #awfu}$



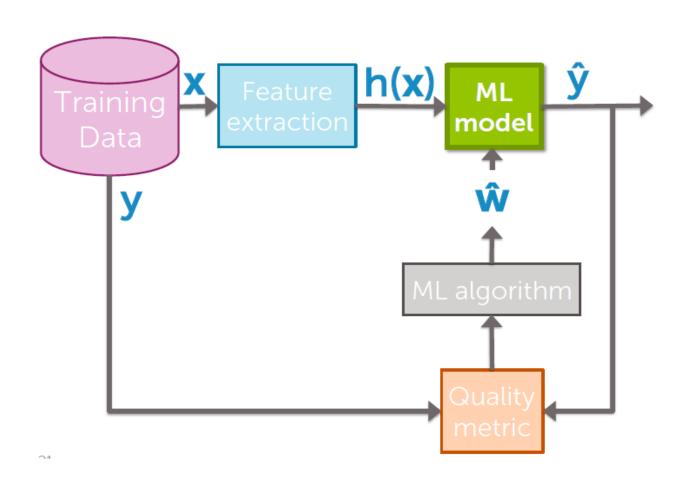
Decision boundary

Decision boundary separates positive & negative predictions

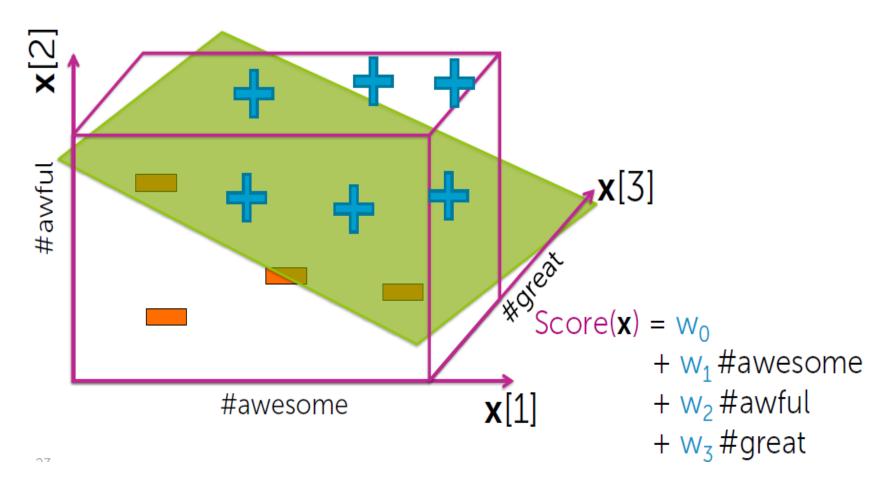
- For linear classifiers:
 - When 2 coefficients are non-zero
 - → line
 - When 3 coefficients are non-zero
 - plane
 - When many coefficients are non-zero
 - hyperplane
- For more general classifiers
 - → more complicated shapes



Flow chart:



Coefficients of classifier



General notation

```
Output: y 4 {-1,+1}
Inputs: \mathbf{x} = (\mathbf{x}[1], \mathbf{x}[2], ..., \mathbf{x}[d])
Notational conventions:
    \mathbf{x}[i] = i^{th} input (scalar)
    h_i(\mathbf{x}) = j^{th} feature (scalar)
    \mathbf{x}_i = \text{input of i}^{\text{th}} \text{ data point } (vector)
    \mathbf{x}_{i}[j] = j^{th} input of i^{th} data point (scalar)
```

Simple hyperplane

```
Model: \hat{y}_i = sign(Score(\mathbf{x}_i))
Score(\mathbf{x}_{i}) = w_{0} + w_{1} \mathbf{x}_{i}[1] + ... + w_{d} \mathbf{x}_{i}[d]
feature 1 = 1
feature 2 = x[1] ... e.g., #awesome
feature 3 = x[2] \dots e.g., #awful
feature d+1 = x[d] ... e.g., #ramen
```

D-dimensional hyperplane

More generic features...

```
Model: \hat{\mathbf{y}}_i = \text{sign}(\text{Score}(\mathbf{x}_i))
\text{Score}(\mathbf{x}_i) = \mathbf{w}_0 \, \mathbf{h}_0(\mathbf{x}_i) + \mathbf{w}_1 \, \mathbf{h}_1(\mathbf{x}_i) + \dots + \mathbf{w}_D \, \mathbf{h}_D(\mathbf{x}_i)
= \sum_{j=0}^{D} \mathbf{w}_j \, \mathbf{h}_j(\mathbf{x}_i) = \mathbf{w}^T \mathbf{h}(\mathbf{x}_i)
```

```
feature 1 = h_0(\mathbf{x}) ... e.g., 1

feature 2 = h_1(\mathbf{x}) ... e.g., \mathbf{x}[1] = \text{\#awesome}

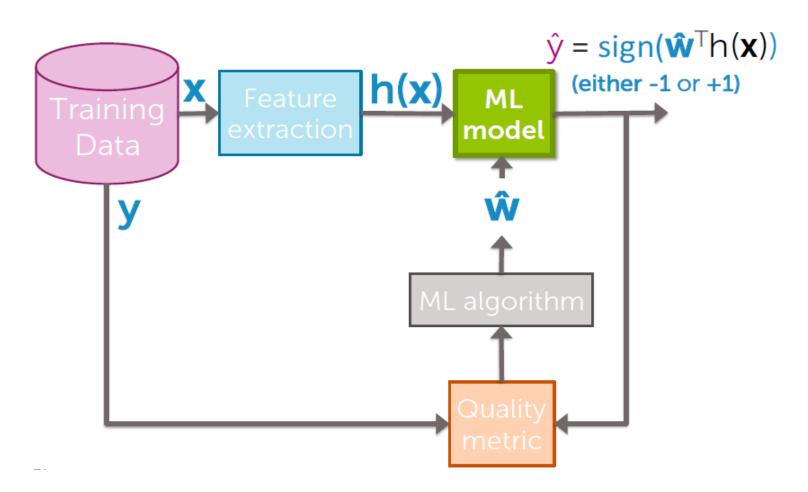
feature 3 = h_2(\mathbf{x}) ... e.g., \mathbf{x}[2] = \text{\#awful}

or, \log(\mathbf{x}[7]) \mathbf{x}[2] = \log(\text{\#bad}) x \text{\#awful}

or, \text{tf-idf}(\text{``awful''})

...
feature D+1 = h_D(\mathbf{x}) ... some other function of \mathbf{x}[1],..., \mathbf{x}[d]
```

Flow chart:

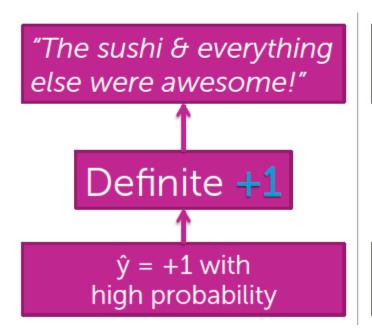


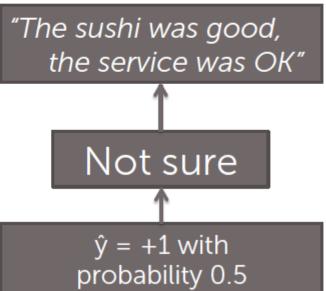
Linear classifier

Class probability

How confident is your prediction?

- Thus far, we've outputted a prediction +1 or -1
- But, how sure are you about the prediction?





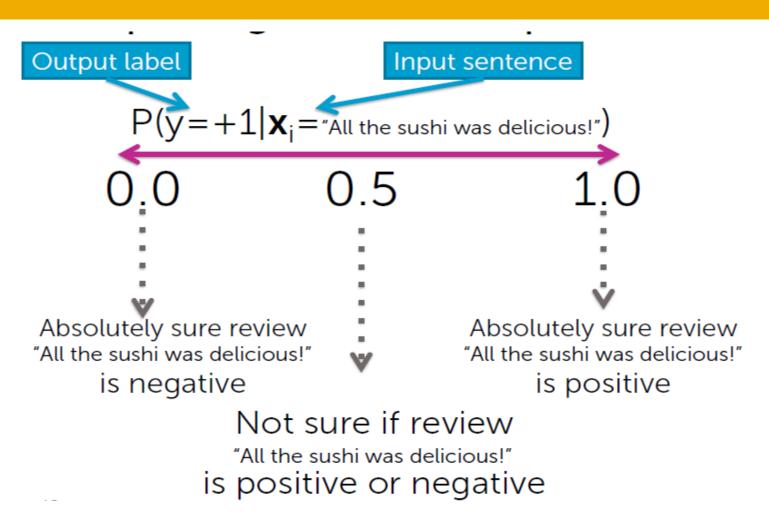
Conditional probability

Probability a review with 3 "awesome" and 1 "awful" is positive is 0.9

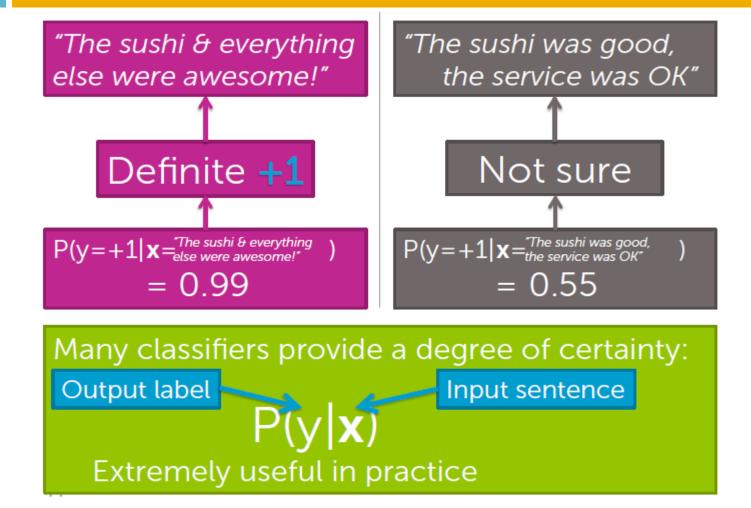
x = review text	y = sentiment
All the sushi was delicious! Easily best sushi in Seattle.	+1
Sushi was awesome & everything else was awesome ! The service was awful , but overall awesome place!	+1
My wife tried their ramen, it was pretty forgettable.	-1
The sushi was good, the service was OK	+1
awesome awesome awful awesome	+1
awesome awesome awful awesome	-1
less.	
awesome awesome awful awesome	+1

I expect 90% of rows with reviews containing 3 "awesome" & 1 "awful" to have y = +1 (Exact number will vary for each specific dataset)

Interpreting conditional probabilities



How confident is your prediction?



Learn conditional probabilities from data

Training data: N observations (\mathbf{x}_i, y_i)

x [1] = #awesome	x [2] = #awful	y = sentiment
2	1	+1
0	2	-1
3	3	-1
4	1	+1

Optimize **quality metric** on training data

Find best model P by finding best

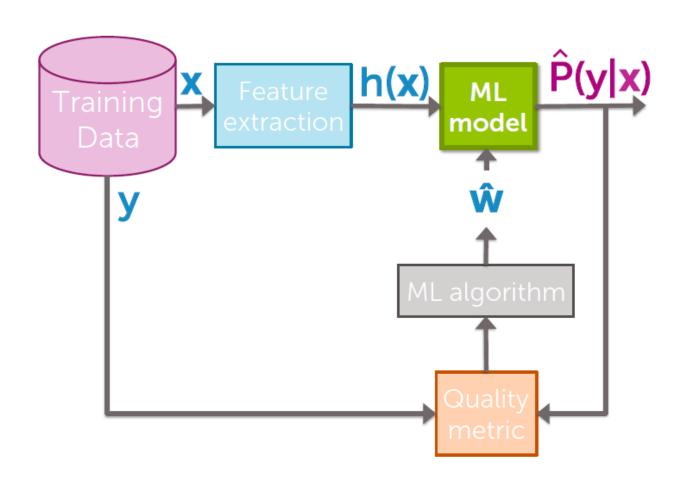
Useful for predicting ŷ

Predicting class probabilities

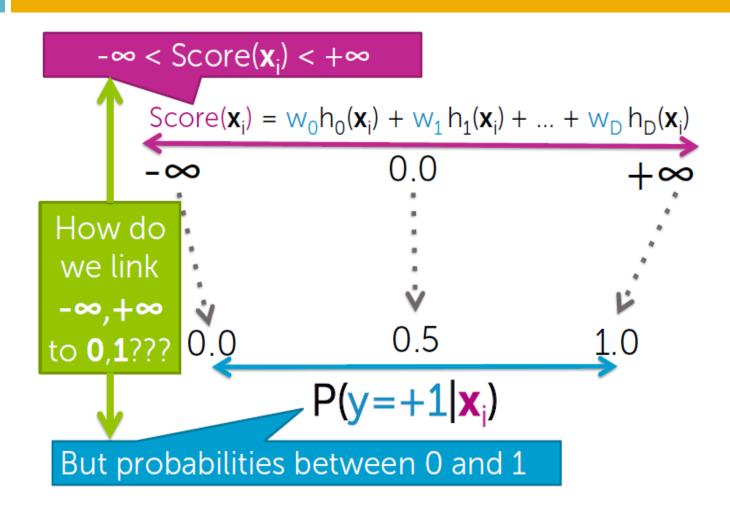
Predict most likely class $\hat{P}(y|x) = \text{estimate of class probabilities}$ Input: \hat{x} Predict most likely class probabilities $\hat{P}(y|x) = \text{estimate of class probabilities}$ If $\hat{P}(y=+1|x) > 0.5$: $\hat{y} = +1$ Else: $\hat{y} = -1$

- Estimating $\hat{\mathbf{P}}(\mathbf{y}|\mathbf{x})$ improves interpretability:
 - Predict $\hat{y} = +1$ and tell me how sure you are

Flow chart:

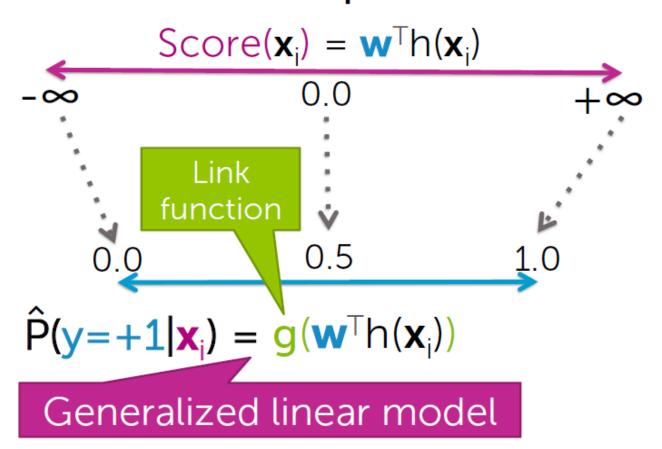


Why not just use regression to build classifier?

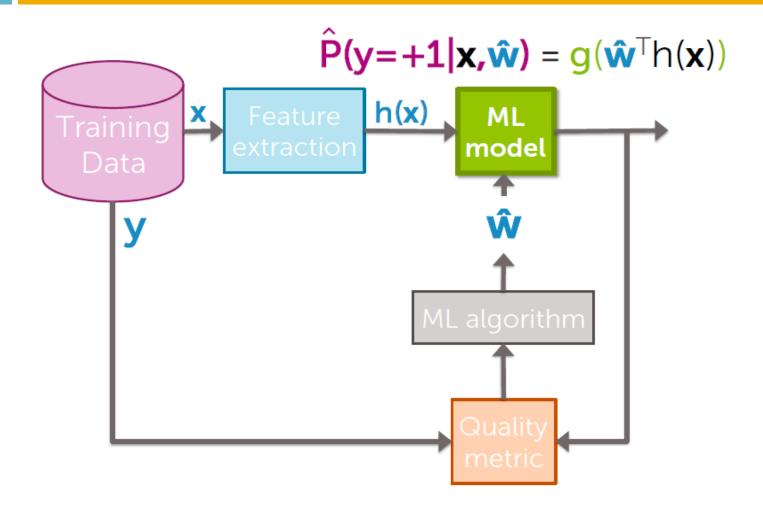


Link function

Link function: squeeze real line into [0,1]



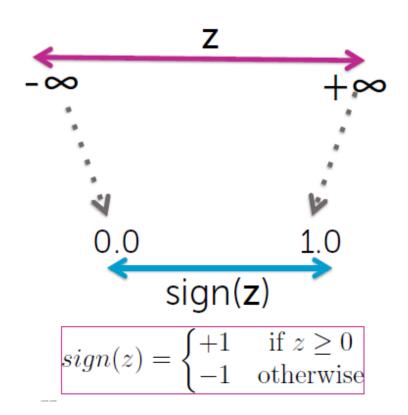
Flow chart:

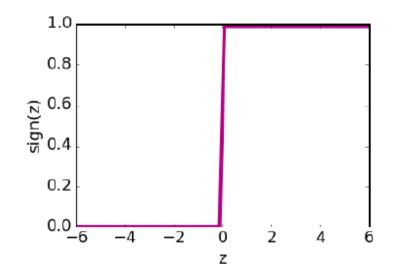


Logistic regression classifier:

Ilinear score with logistic link function

Simplest link function: sign(z)



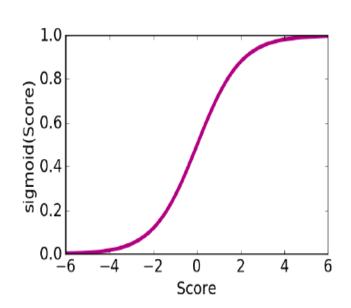


But, sign(z) only outputs -1 or +1, no probabilities in between

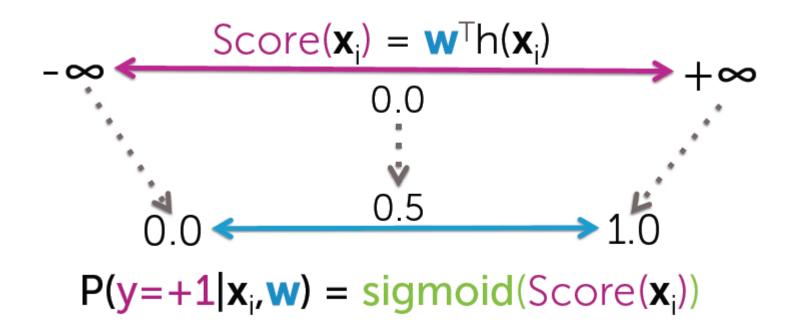
Logistic function (sigmoid, logit)

$$sigmoid(Score) = \frac{1}{1 + e^{-Score}}$$

Score	-∞	-2	0.0	+2	+∞
sigmoid(Score)	0.0	0.12	0.5	0.88	1.0

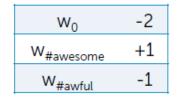


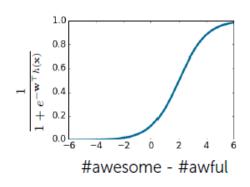
Logistic regression model



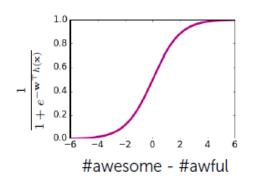
Effect of coefficients

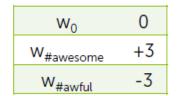
Effect of coefficients on logistic regression model

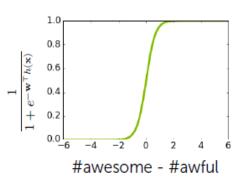




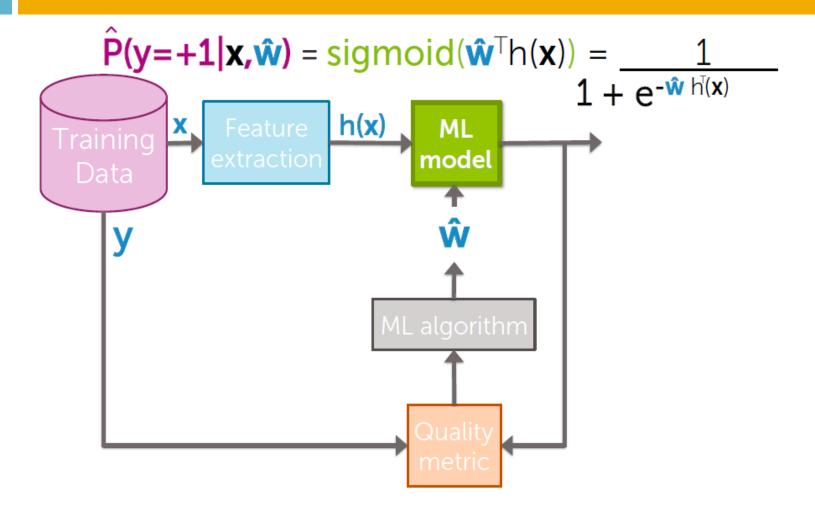
W ₀	0
W _{#awesome}	+1
W _{#awful}	-1







Flow chart:



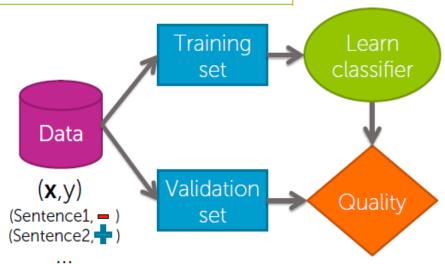
Learning logistic regression model

Training a classifier = Learning the coefficients

Word	Coefficient	Value
	$\hat{\mathbf{w}}_{0}$	-2.0
good	\hat{W}_1	1.0
awesome	\hat{W}_2	1.7
bad	$\hat{\mathbf{W}}_3$	-1.0
awful	\hat{W}_4	-3.3
	***	***

$$\hat{P}(y=+1|x,\hat{w}) = 1$$

1 + $e^{-\hat{w}\hat{h}(x)}$



Categorical inputs

- Numeric inputs:
 - #awesome, age, salary,...
 - Intuitive when multiplied by coefficient
 - · e.g., 1.5 #awesome

• e.g., 1.5 #awesome

Numeric value, but should be interpreted as category (98195 not about 9x larger than 10005)

Categorical inputs:

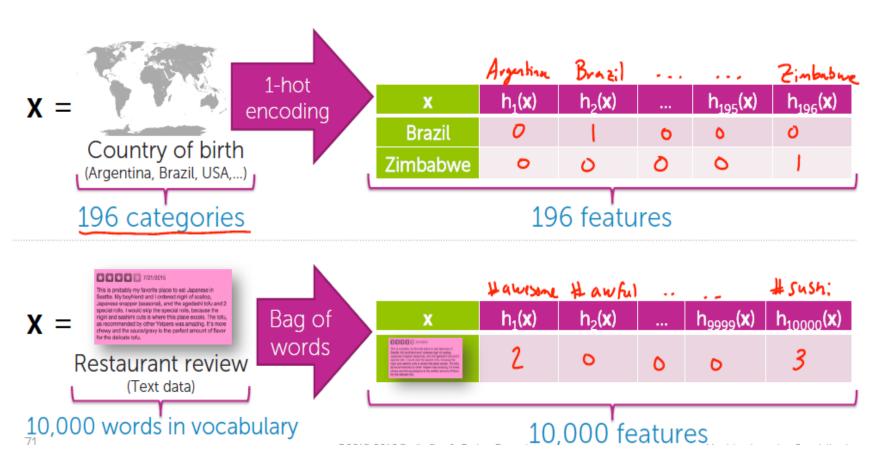
Country of birth (Argentina, Brazil, USA,...)

Zipcode (10005, 98195,...)

How do we multiply category by coefficient???

Must convert categorical inputs into numeric features

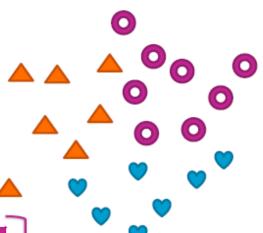
Encoding categories as numeric features



Multiclass classification

- C possible classes:
 - y can be 1, 2,..., C
- N datapoints:

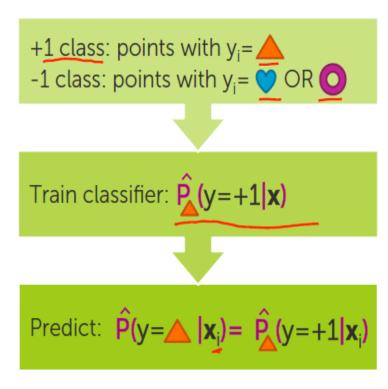
Data point	x[1]	x [2]	у
x ₁ ,y ₁	2	1	
x ₂ ,y ₂	0	2	
x ₃ ,y ₃	3	3	0
x ₄ ,y ₄	4	1	0

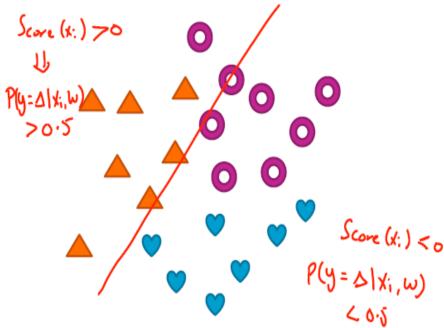


Learn:

1 versus all

Estimate $\hat{P}(y=\triangle|x)$ using 2-class model



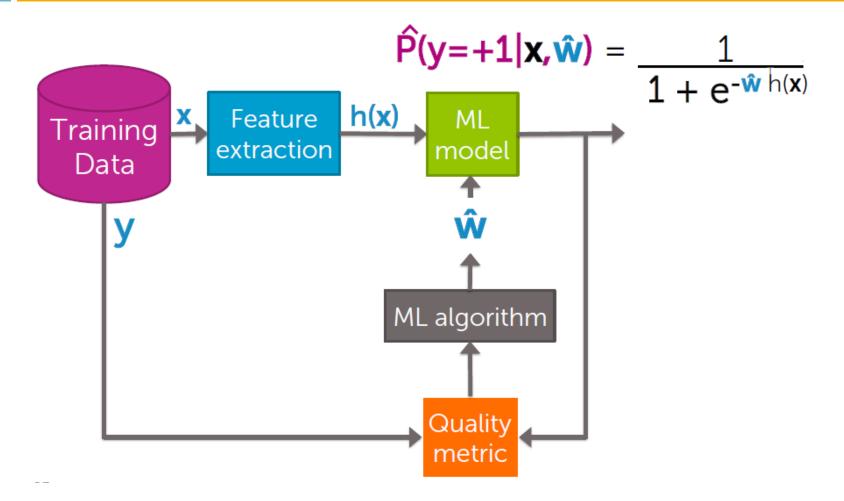


1 versus all

1 versus all: simple multiclass classification using *C* 2-class models



Summary: Logistic regression classifier



Linear classifier

Parameters learning

Maximizing likelihood (probability of data)

Data point	x [1]	x[2]	у	Choose w to maximize
x ₁ ,y ₁	2	1	+1	P(y=+1 X,,w) = P(y=+ XDJ=2,XDJ=1,w)
x ₂ ,y ₂	0	2	-1	P(g=-1 x2,w)
x ₃ ,y ₃	3	3	-1	P(9=-1 x3,w)
x ₄ ,y ₄	4	1	+1	P(9=+11×4,w)
x ₅ ,y ₅	1	1	+1	
x ₆ ,y ₆	2	4	-1	
x ₇ ,y ₇	0	3	-1	
x ₈ ,y ₈	0	1	-1	
x ₉ ,y ₉	2	1	+1	

Must combine into single measure of quality?

Multiply Probabilitie

(4=+1|x,w) P(4=-1|x,w) P(4=-1|x,w)...

Maximum likelihood estimation (MLE)

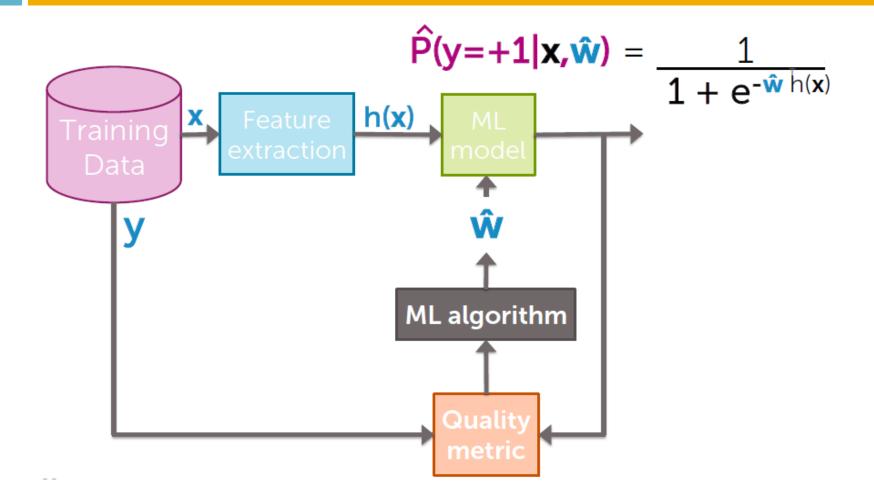
Learn logistic regression model with MLE

Data point	x [1]	x [2]	у	Choose w to maximize
x ₁ ,y ₁	2	1	9 :+1	$P(\underline{y=+1} x[1]=2, x[2]=1,w)$
x ₂ ,y ₂	0	2	-1	P(y=-1 x[1]=0, x[2]=2,w)
x ₃ ,y ₃	3	3	-1	P(y=-1 x[1]=3, x[2]=3,w)
$\mathbf{X}_{\Delta}, \mathbf{y}_{\Delta}$	4	1	+1	P(y=+1 x[1]=4, x[2]=1,w)

No w achieves perfect predictions (usually)

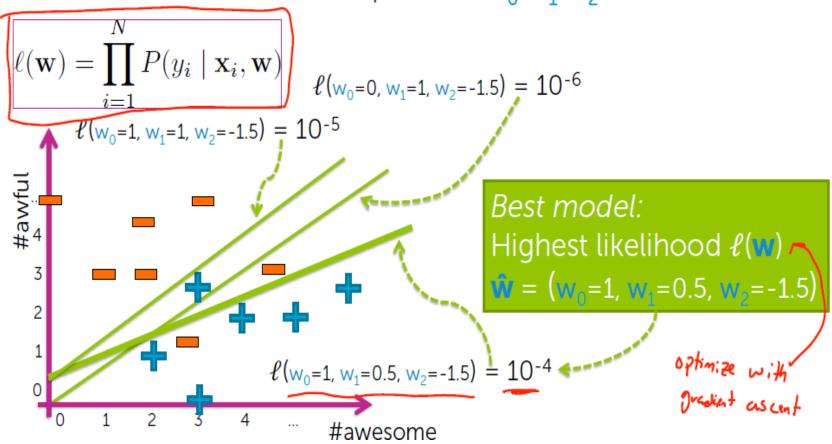
Likelihood $\ell(\mathbf{w})$: Measures quality of fit for model with coefficients \mathbf{w}

Flow chart:

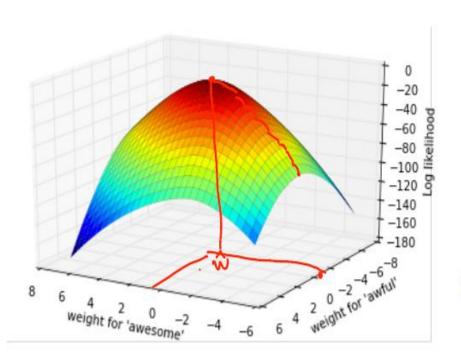


Find "best" classifier

Maximize likelihood over all possible w_0, w_1, w_2



Maximizing likelihood



Maximize function over all possible w_0, w_1, w_2 $\prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$ and $\ell(\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2) \text{ is a function of 3 variables}$

No closed-form solution → use gradient ascent

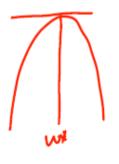
12/01/2021

Gradient ascent

Convergence criteria

For convex functions, optimum occurs when

In practice, stop when

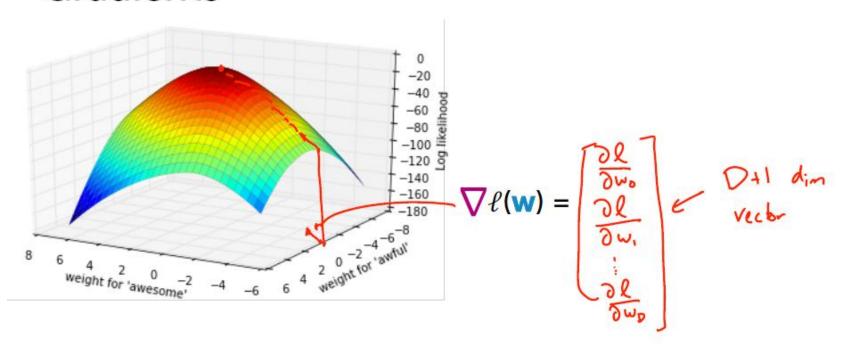


Algorithm:

while not converged
$$w^{(t+1)} \leftarrow w^{(t)} + \eta \frac{d\ell}{dw} \bigg|_{w^{(t)}}$$

Gradient ascent

Moving to multiple dimensions: Gradients



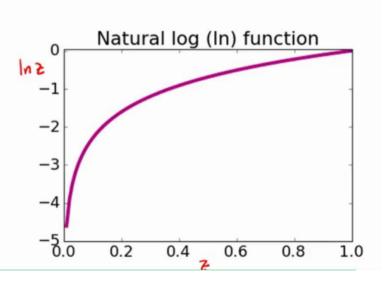
The log trick, often used in ML...

- Products become sums:
- Doesn't chan'ge maximum!
 - If w maximizes f(w):

```
Then \hat{\mathbf{w}}_{ln} maximizes \ln(f(\mathbf{w})):

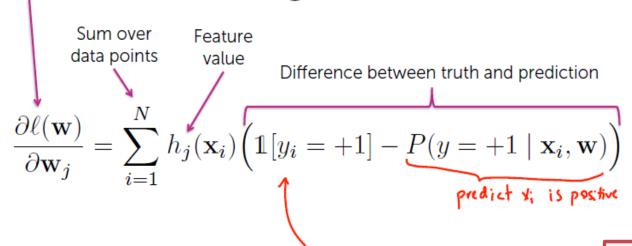
\hat{\mathbf{w}}_{ln} = \arg\max_{\mathbf{w}} \ln(f(\mathbf{w})):

\hat{\mathbf{w}}_{ln} = \arg\max_{\mathbf{w}} \ln(f(\mathbf{w}))
```



Derivative for logistic regression

Derivative of (log-)likelihood



See slides at the end of this lecture If you are interested how it is derived. Indicator function:

$$\mathbb{1}[y_i = +1] = \begin{cases} 1 & \text{if } y_i = +1 \\ 0 & \text{if } y_i = -1 \end{cases}$$

Derivative for logistic regression

Computing derivative

$$\frac{\partial \ell(\mathbf{w}^{(t)})}{\partial \mathbf{w}_j} = \sum_{i=1}^{N} h_j(\mathbf{x}_i) \Big(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}^{(t)}) \Big)$$

w(e)

W ₀ ^(t)	0
$W_{1}^{(t)}$	1
W ₂	-2

			Yes Saur	J'(R) = #4 (
Contribution to derivative for w ₁	P(y=+1 x _i ,w)	у	x [2]	x[1]
2(1-0.5)=1	0.5	+1	1	2
0 (0-0.02) = 0	0.02	-1	2	0
3 (0 - 0.05)=-0.15	0.05	-1	3	3
(1-0.88)=0.48	0.88	+1	1	4

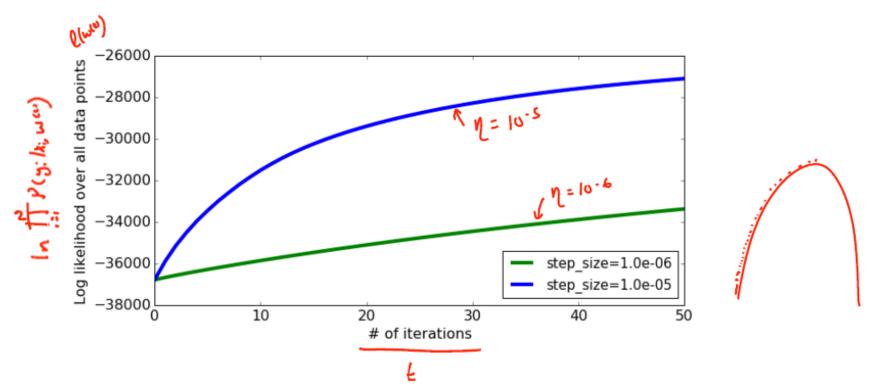
Total derivative:

$$\frac{\partial l(w^{(i)})}{\partial w_{i}} = 1 + 0 - 0.15 + 0.48 = 1.33$$

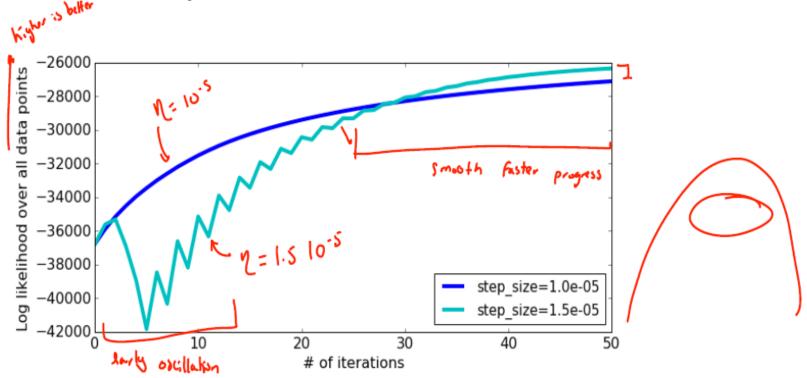
$$\frac{\partial w_{i}}{\partial w_{i}} = w_{i}(u) + \eta \frac{\partial l(w^{(i)})}{\partial w_{i}} = 0.1$$

$$= 1 + 0.1 + 1.33 = 1.133 = 1.133$$

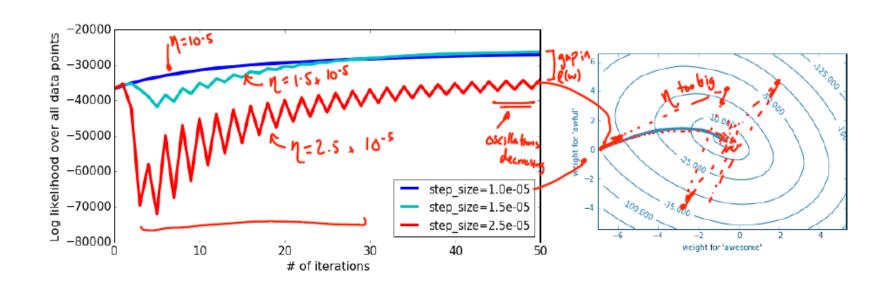
If step size is too small, can take a long time to converge



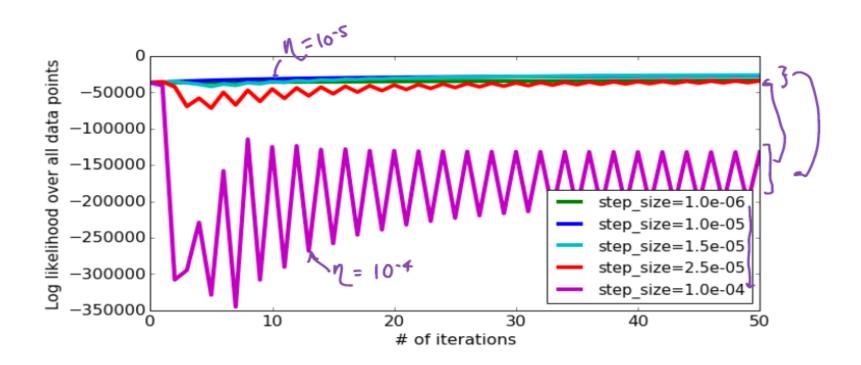
Compare converge with different step sizes



Careful with step sizes that are too large



Very large step sizes can even cause divergence or wild oscillations

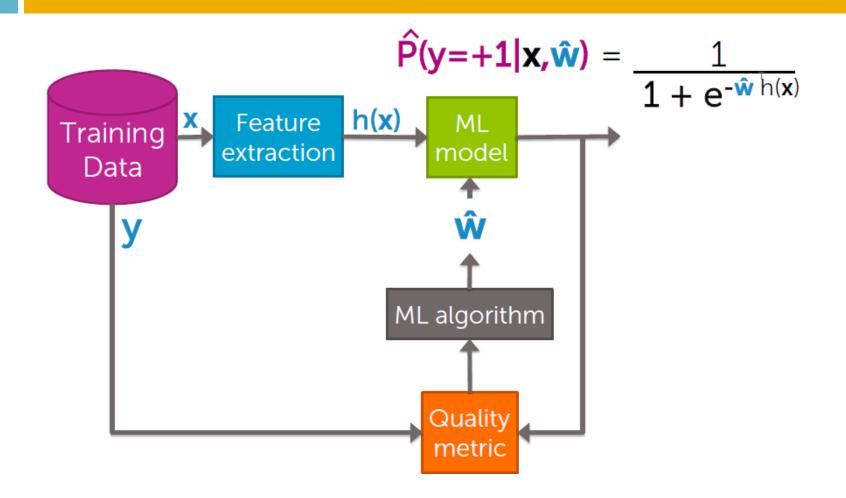


Simple rule of thumb for picking step size n

- Unfortunately, picking step size requires a lot of trial and error ⊗
- Try a several values, exponentially spaced
 - Goal: plot learning curves to
 - find one η that is too small (smooth but moving too slowly)
 - find one η that is too large (oscillation or divergence)
- Try values in between to find "best" η La exponentially space pick one that leads best training data likelihood
- Advanced tip: can also try step size that decreases with

iterations, e.g.,

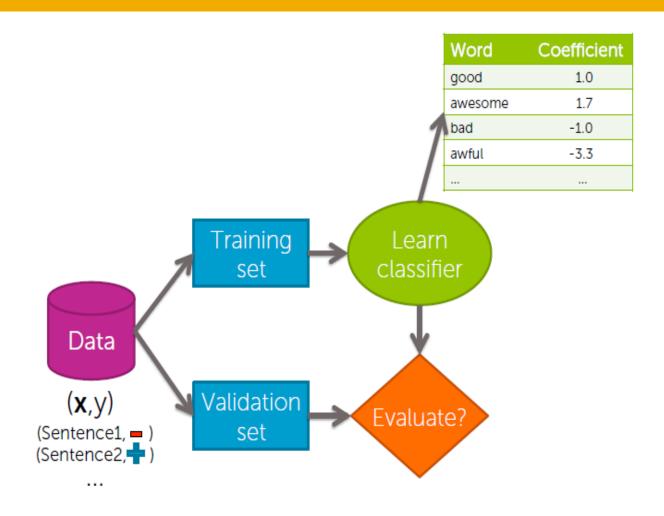
Flow chart: final look at it



Linear classifier

Overfitting & regularization

Training a classifier = Learning the coefficients



Classification error & accuracy

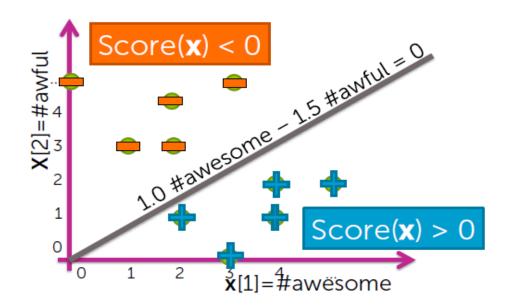
Error measures fraction of mistakes

- Best possible value is 0.0
- Often, measure accuracy
 - Fraction of correct predictions

Best possible value is 1.0

Decision boundary example

Word	Coefficient	
#awesome	1.0	Scarc(v) 10 Hayyasana 15 Hayyay
#awful	-1.5	Score(x) = $1.0 \text{ #awesome} - 1.5 \text{ #awful}$



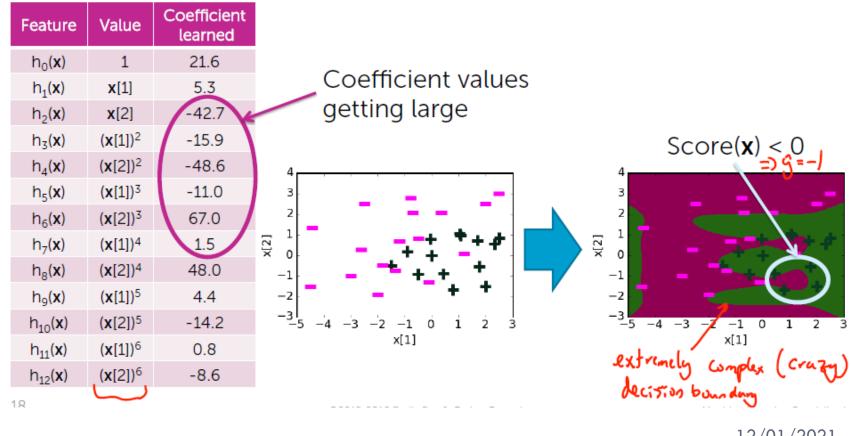
Learned decision boundary

	Feature	Value	Coefficient learned	
	h ₀ (x)	V ₂ 1	0.23	~~0
	h ₁ (x)	₩ , x [1]	1.12	Sure(x)<0
	h ₂ (x)	₩ 2 X [2]	-1.07	0.23+1.12 XEIJ-1.07 XEZ]=0
4 3 2 1 1 0 -1 -2 -3	5 -4 -3 -2	+ + + + + -+ x[1]	+ + +	To the second of

Quadratic features (in 2d)

Feature
h ₀ (x)
h ₁ (x)
h ₂ (x)
$h_3(\mathbf{x})$
h ₄ (x)
-5 -4 -3 -

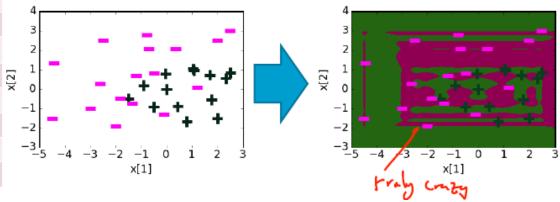
Degree 6 features (in 2d)

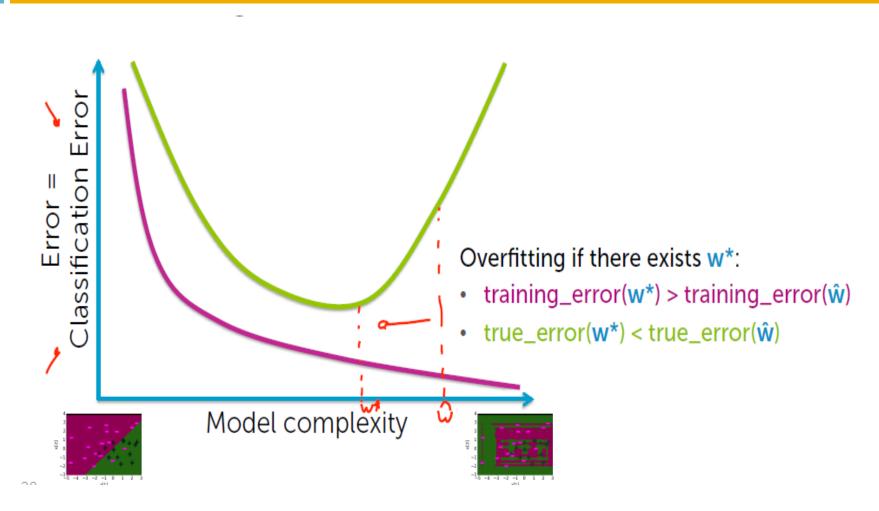


Degree 20 features (in 2d)

Feature	Value	Coefficient learned
h ₀ (x)	1	8.7
$h_1(\mathbf{x})$	x [1]	5.1
h ₂ (x)	x [2]	78.7
h ₁₁ (x)	(x [1]) ⁶	-7.5
h ₁₂ (x)	(x [2]) ⁶	3803
h ₁₃ (x)	$(x[1])^7$	-21.1
h ₁₄ (x)	$(x[2])^7$	-2406
h ₃₇ (x)	$(x[1])^{19}$	-2*10 ⁻⁶
h ₃₈ (x)	(x [2]) ¹⁹	-0.15
h ₃₉ (x)	(x[1]) ²⁰	-2*10-8
h ₄₀ (x)	(x [2]) ²⁰	0.03
10		

Often, overfitting associated with very large estimated coefficients **ŵ**





Overfitting in logistic regression

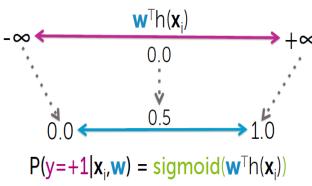
The subtle (negative) consequence of overfitting in logistic regression

Overfitting -> Large coefficient values

 $^{\text{T}}h(\mathbf{x}_i)$ is very positive (or very negative) \rightarrow sigmoid($^{\text{T}}h(\mathbf{x}_i)$) goes to 1 (or to 0)

Model becomes extremely overconfident of predictions

Logistic regression model

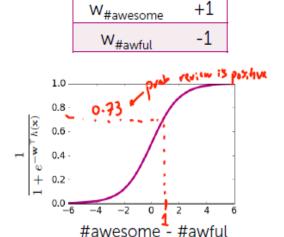


Remember about this probability interpretation

Effect of coefficients on logistic regression model

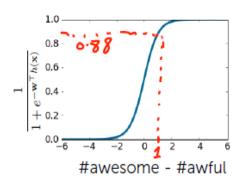
With increasing coefficients model becomes overconfident on predictions

Input x: #awesome=2, #awful=1

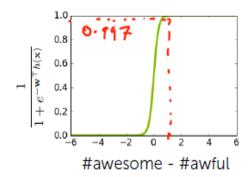


W₀

W ₀	0
W _{#awesome}	+2
W _{#awful}	-2



W ₀	0
W _{#awesome}	+6
W _{#awful}	-6



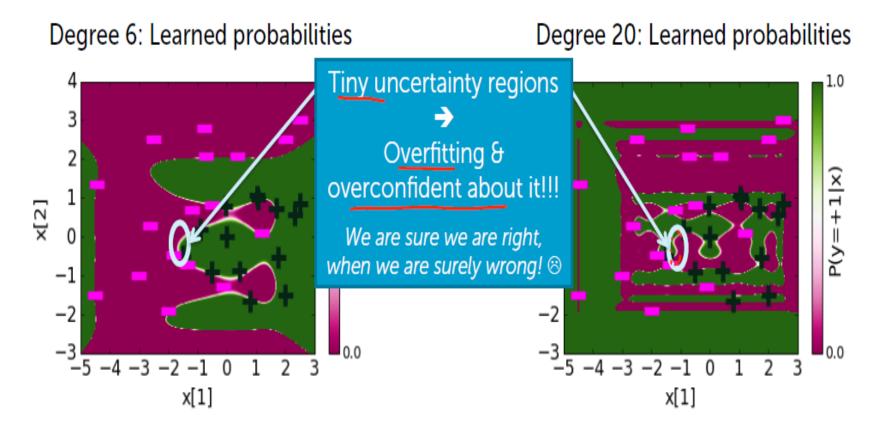
Learned probabilities

$P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$		Feature	Value	Coefficient learned	
$P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T} h(\mathbf{x})}}$		$h_0(\mathbf{x})$	1	0.23	
$P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$		$h_1(\mathbf{x})$	x [1]	1.12	
$P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{\top} h(\mathbf{x})}}$ $\text{Make Sinse prob ≈ 0.5} -1$ $\text{wide region of uncertainty}$ -2 -3 $-5 -4 -3 -2 -1 0 1 2 3$		$h_2(\mathbf{x})$	x [2]	-1.07	pol 20
	P(y)	y = +1			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

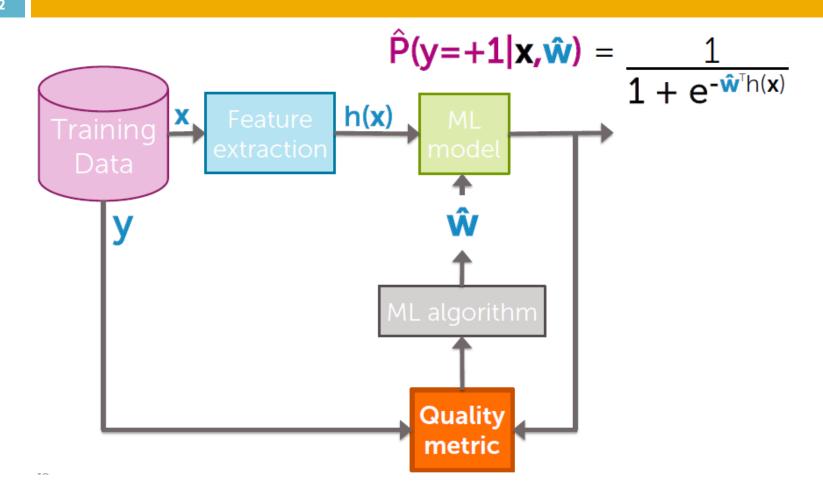
Quadratic features: learned probabilities

Feat	ure V	alue	Coefficient learned						
h _o (x	c)	1	1.68	1					
h ₁ ()	()	x[1]	1.39	1.0		prob. g	2 41		
h ₂ ()	()	x [2]	-0.58	better Fit to	4	' '		'	1.0
h ₃ ()	() (x	([1]) ²	-0.17	hit to	3 -				
h ₄ ()	(x	([2]) ²	-0.96	data	2				
P(y =	$+1 \mid \mathbf{x}, \mathbf{v}$	w) = -	1 1 + e-w ^T l Waled regi		1 1 0 -1 -2 -3	4 -3 -2 -	1 0 1	+ + + + + + 2 3	P(y=+1 x)
28				@2015 2016 Emily E	ov & Carlos Cuastrir	x[1] Machi	no Loamina Spor	cialization

Overfitting -- overconfident predictions



Quality metric → penelazing large coefficients



Desired total cost format

Want to balance:

- How well function fits data
- ii. Magnitude of coefficients

```
Total quality =

measure of fit - measure of magnitude
of coefficients

(data likelihood)
large # = good fit to
training data

want to balance

measure of magnitude
of coefficients

large # = overfit
```

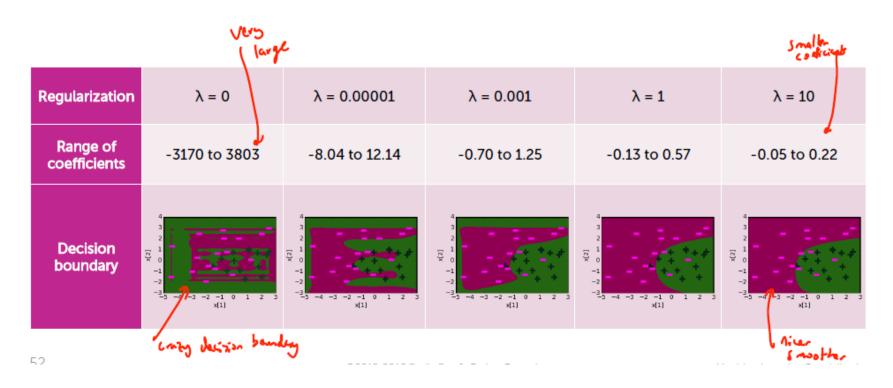
Measure of magnitude of logistic regression coefficients

What summary # is indicative of size of logistic regression coefficients?

- Sum of squares $(L_2 \text{ norm})$ $\|\|u\|_{L^2}^2 = w_0^2 + w_1^2 + w_2^2 + \cdots + w_0^2$ - Sum of absolute value $(L_1 \text{ norm})$ $\|\|w\|_{L^2} = \|w_0\| + \|w_1\| + \|w_2\| + \cdots + \|w_0\|$ Sparse solution

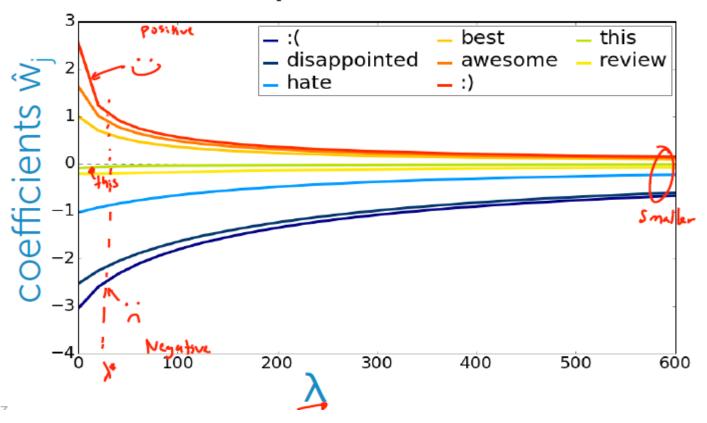
Visualizing effect of regularisation

Degree 20 features, effect of regularization penalty λ



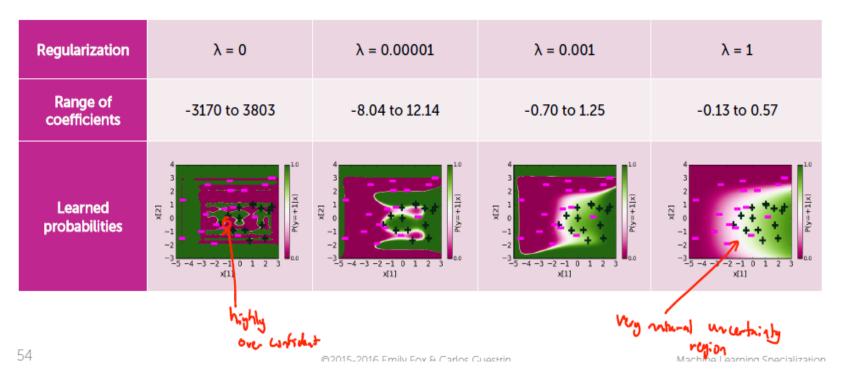
Effect of regularisation

Coefficient path

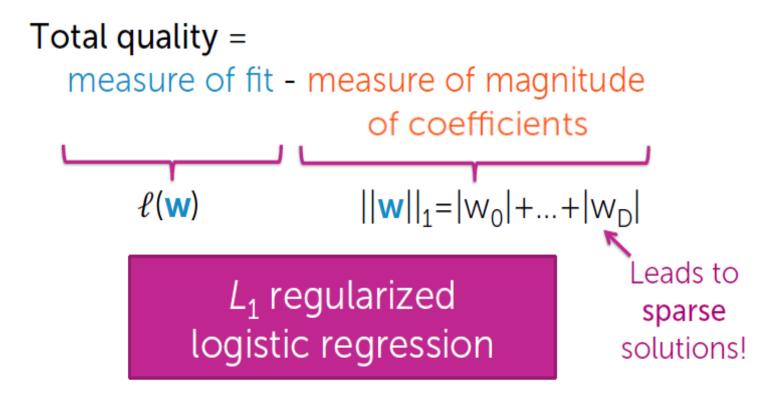


Visualizing effect of regularisation

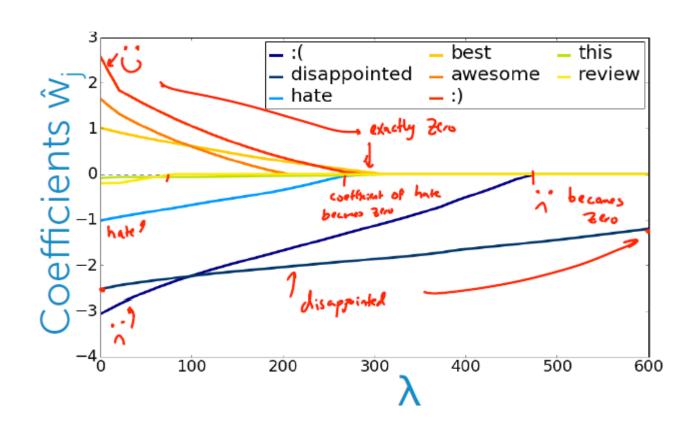
Degree 20 features: regularization reduces "overconfidence"



Sparse logistic regression



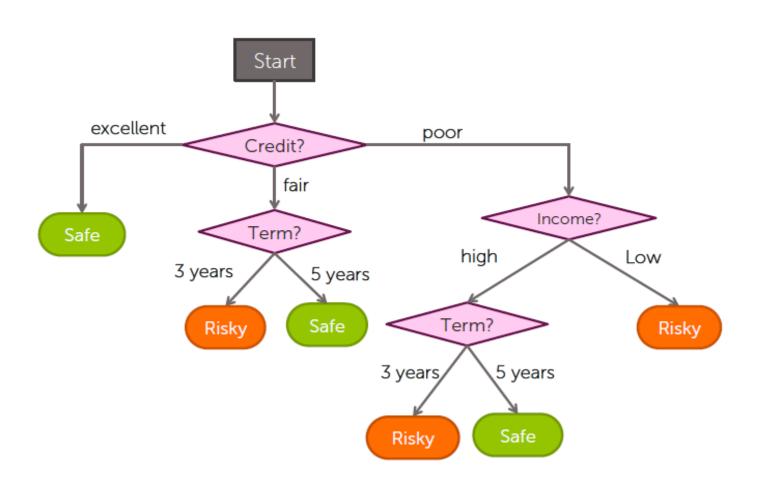
L1 regularised logistic regression



Decision trees

What makes a loan risky?

Classifier: decision trees



Quality metric: Classification error

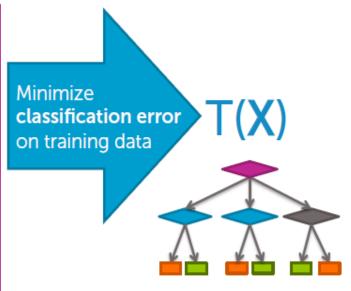
Error measures fraction of mistakes

```
Error = # incorrect predictions # examples
```

- Best possible value : 0.0
- Worst possible value: 1.0

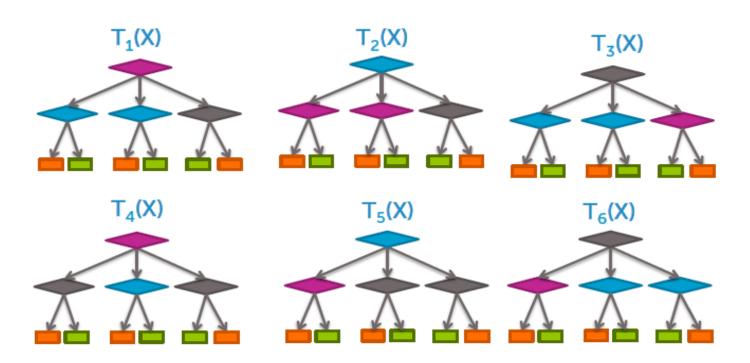
Find the tree with lowest classification error

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe



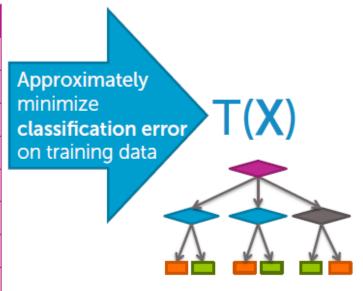
How do we find the best tree?

Exponentially large number of possible trees makes decision tree learning hard! (NP-hard problem)



Simple (greedy) algorithm finds good tree

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe



Greedy decision tree learning

Step 1: Start with an empty tree

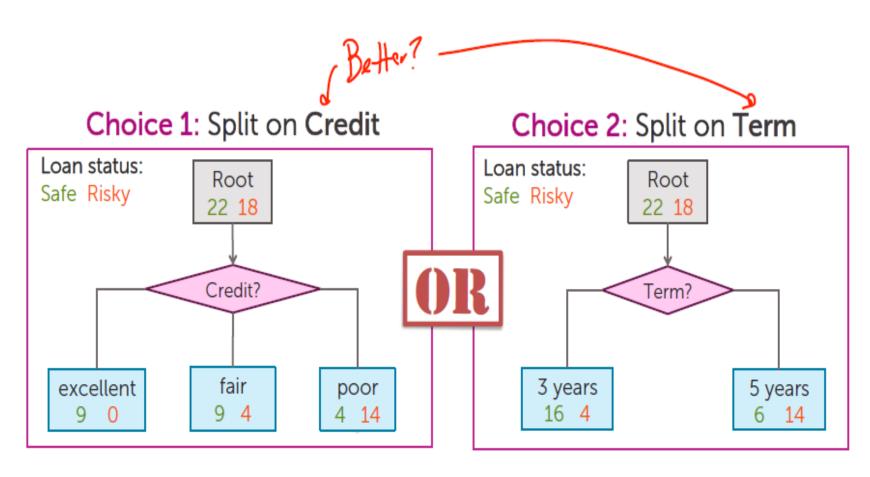
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 &
 continue (recurse) on this split

Problem 1: Feature split selection

Problem 2: Stopping condition

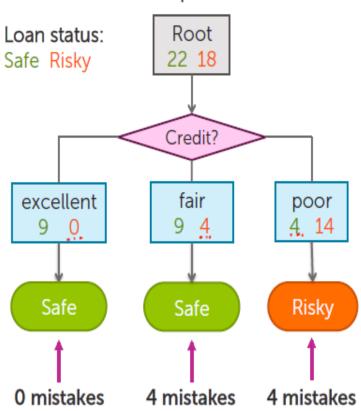
Recursion

How do we select the best feature to split on?



Classification error

Choice 1: Split on Credit

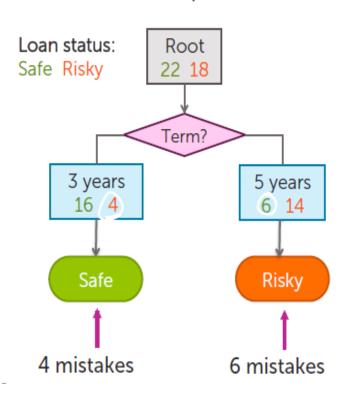


$$Error = \underbrace{\frac{4+4}{40}}_{= 0.25}$$

Tree	Classification error
(root)	0.45
Split on credit	0.2

Classification error

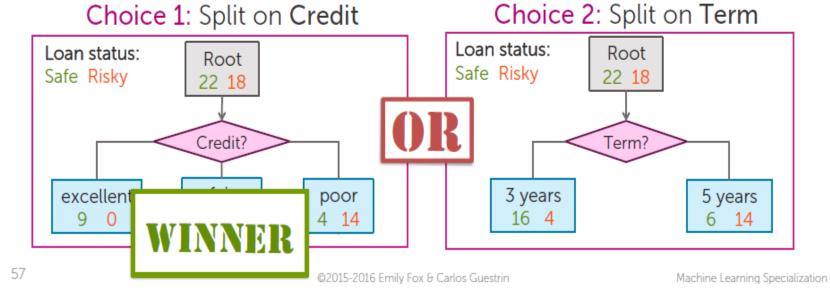
Choice 2: Split on Term



Tree	Classification error	
(root)	0.45	
Split on credit	0.2	
Split on term	0.25	

Choice 1 vs Choise 2

Tree	Classification error	
(root)	0.45	
split on credit	0.2	-First Split
split on loan term	0.25	2}"'



Greedy decision tree learning algorithm

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

Greedy decision tree algorithm

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

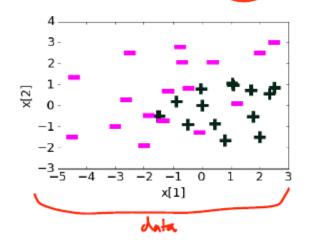
Stopping conditions 1 & 2

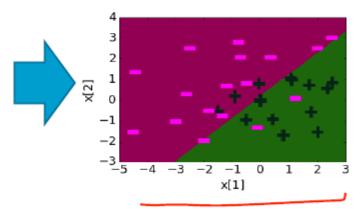
Recursion

Decision trees vs logistic regression

Logistic regression

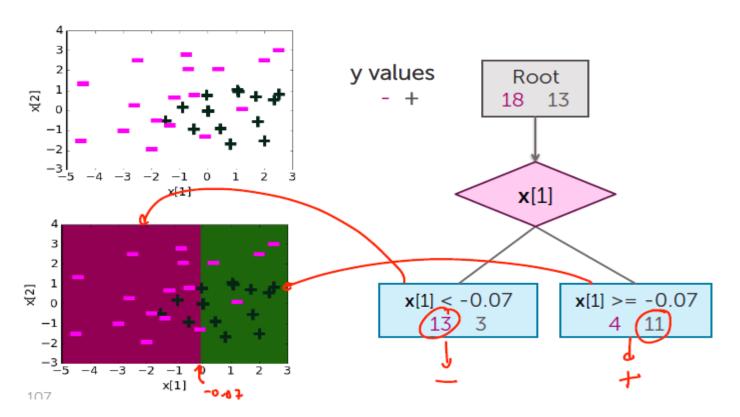
Feature	Value	Weight Learned
$h_0(\mathbf{x})$	1	0.22
$h_1(x)$	x [1]	1.12
h ₂ (x)	x [2]	-1.07





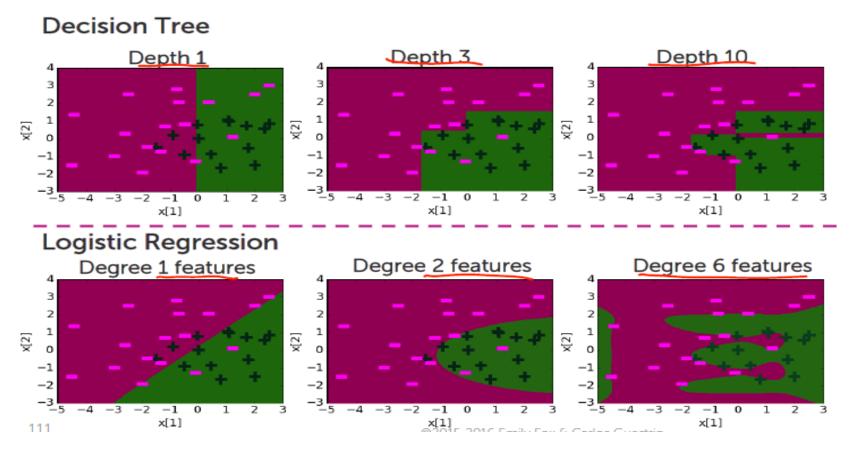
Decision trees vs logistic regression

Depth 1: Split on x[1]



Decision tree vs logistic regression

Comparing decision boundaries



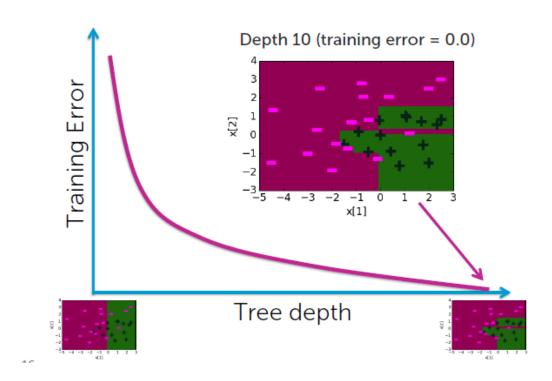
Overfitting in decision trees

Overfitting in decision tree

What happens when we increase depth?

Overfitting in decision tree

Deeper trees → lower training error



Early stopping

- Limit tree depth: Stop splitting after a certain depth
- Classification error: Do not consider any split that does not cause a sufficient decrease in classification error
- Minimum node "size": Do not split an intermediate node which contains too few data points

Greedy decision tree learning

- Step 1: Start with an empty_tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions

 Majoring
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Stopping conditions 1 & 2

or

Early stopping conditions 1, 2 & 3

Recursion

Strategies for handling missing data

Handling missing data

Missing value skipping: Ideas 1 & 2

Idea 1: Skip data points where any feature contains a missing value

 Make sure only a few data points are skipped

Idea 2: Skip an entire feature if it's missing for many data points

 Make sure only a few features are skipped

Handling missing data

Common (simple) rules for purification by imputation

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	3 yrs	high	risky
poor	?	low	safe
fair	?	high	safe

Impute each feature with missing values:

- Categorical features use mode: Most popular value (mode) of non-missing x_i
- Numerical features use average or median: Average or median value of non-missing x_i

Many advanced methods exist, e.g., expectation-maximization (EM) algorithm

Handling missing data

Missing value imputation: Pros and Cons

Pros

- Easy to understand and implement
- Can be applied to any model (decision trees, logistic regression, linear regression,...)
- Can be used at prediction time: use same imputation rules

Cons

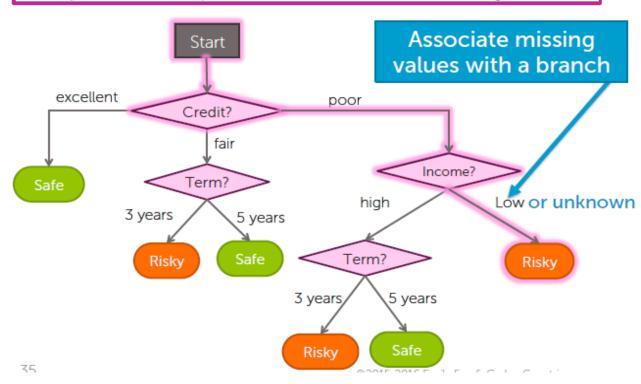
May result in systematic errors

Example: Feature "age" missing in all banks in Washington by state law

Idea 3: addapt algorithm

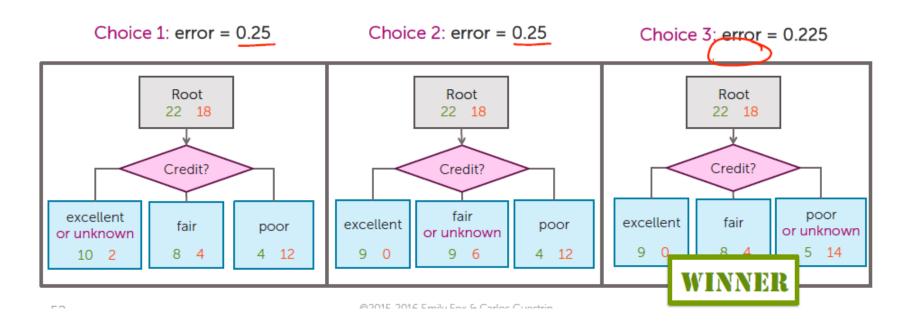
Add missing values to the tree definition

 $\mathbf{x}_i = (Credit = poor, Income = ?, Term = 5 years)$



Feature split selection with missing data

Use classification error to decide



ldea 3: addapt algorithm

Explicitly handling missing data by learning algorithm: Pros and Cons

Pros

- Addresses training and prediction time
- More accurate predictions

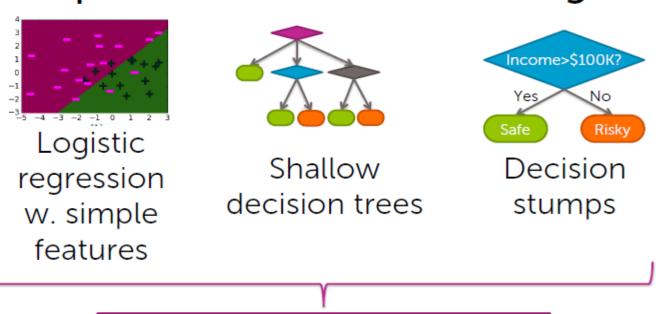
Cons

- Requires modification of learning algorithm
 - Very simple for decision trees

Ensemble classifiers and boosting

Simple classifiers

Simple (weak) classifiers are good!

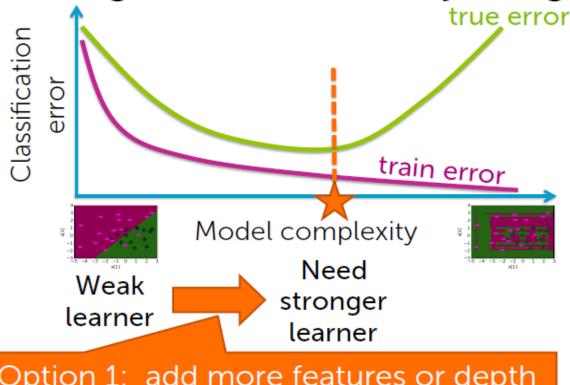


Low variance. Learning is fast!

But high bias...

Simple classifiers

Finding a classifier that's just right



Option 1: add more features or depth

Option 2: ?????

Can they be combined?

Boosting question

"Can a set of weak learners be combined to create a stronger learner?" *Kearns and Valiant (1988)*

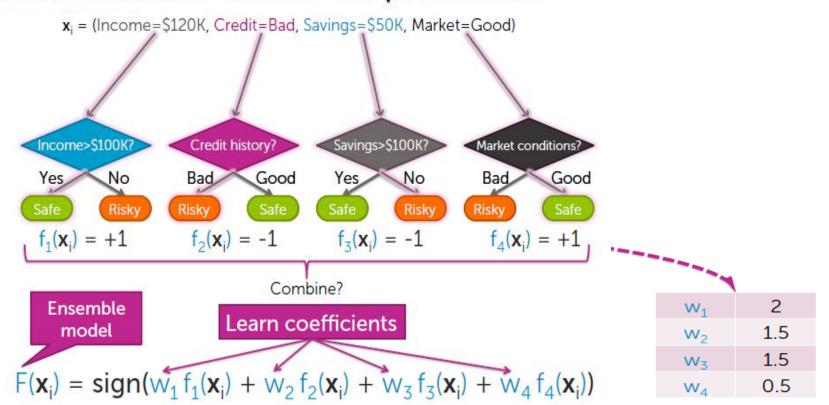
Yes! Schapire (1990)

Boosting

Amazing impact: • simple approach • widely used in industry • wins most Kaggle competitions

Ensemble methods

Each classifier "votes" on prediction



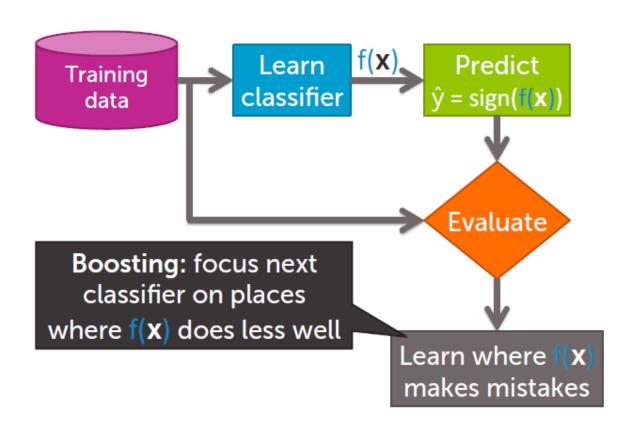
Ensemble classifier

- Goal:
 - Predict output y
 - Either +1 or -1
 - From input x
- Learn ensemble model:
 - Classifiers: $f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_T(\mathbf{x})$
 - Coefficients: $\hat{w}_1, \hat{w}_2, ..., \hat{w}_T$
- Prediction:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

Boosting

Boosting = Focus learning on "hard" points



Weighted data

Learning on weighted data:

More weight on "hard" or more important points

- Weighted dataset:
 - Each \mathbf{x}_i , \mathbf{y}_i weighted by α_i
 - More important point = higher weight α_i
- Learning:
 - Data point j counts as α_i data points
 - E.g., $\alpha_i = 2 \rightarrow$ count point twice

Weighted data

Learning from weighted data in general

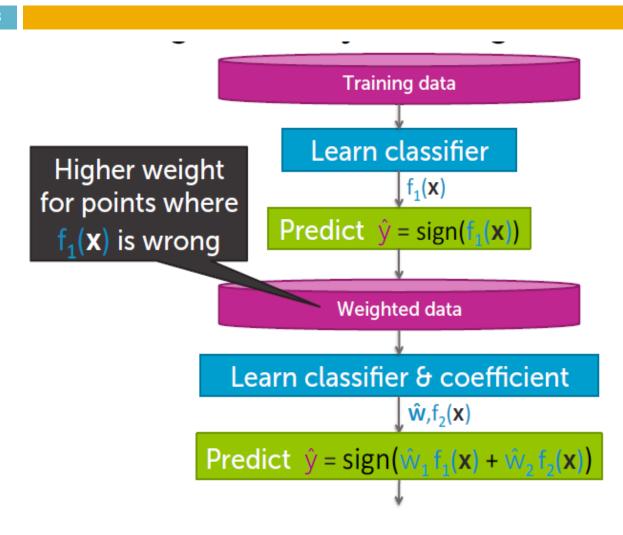
- Usually, learning from weighted data
 - Data point i counts as α_i data points
- E.g., gradient ascent for logistic regression:

Sum over data points

$$\mathbf{w}_{j}^{(t+1)} \leftarrow \mathbf{w}_{j}^{(t)} + \eta \sum_{i=1}^{N} \mathbb{E}(\mathbf{x}_{i}) \Big(\mathbb{1}[y_{i} = +1] - P(y = +1 \mid \mathbf{x}_{i}, \mathbf{w}^{(t)}) \Big)$$

Weigh each point by $\alpha_{\rm i}$

Boosting = greedy learning ensembles from data



Boosting convergence & overfitting

Boosting question revisited

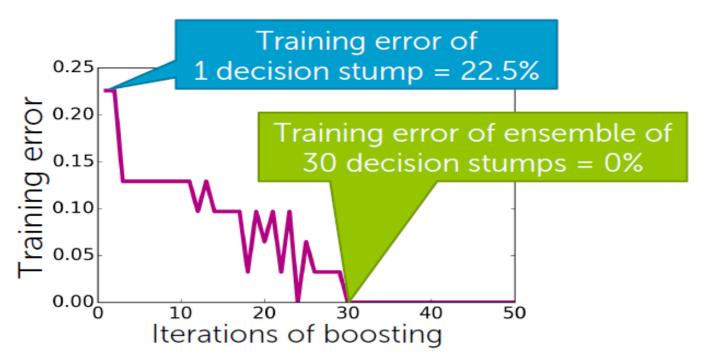
"Can a set of weak learners be combined to create a stronger learner?" *Kearns and Valiant (1988)*

Yes! Schapire (1990)

Boosting

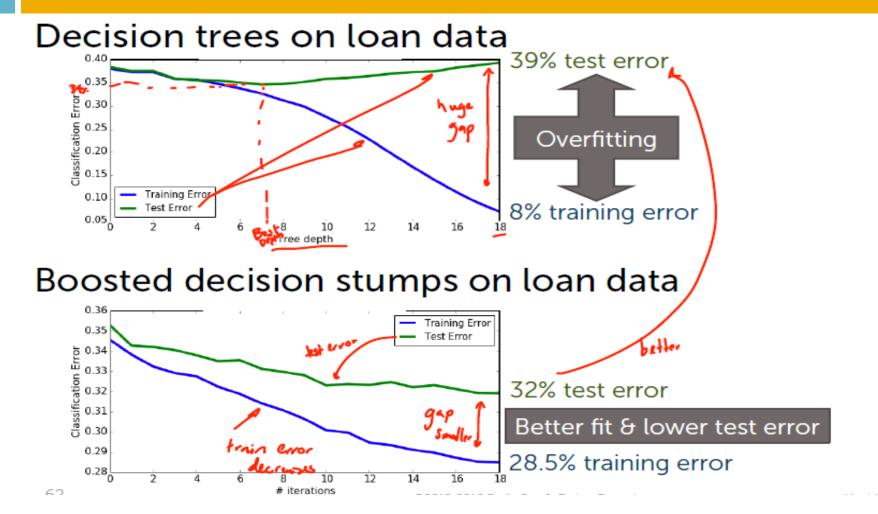
Boosting convergence & overfitting

After some iterations, training error of boosting goes to zero!!!



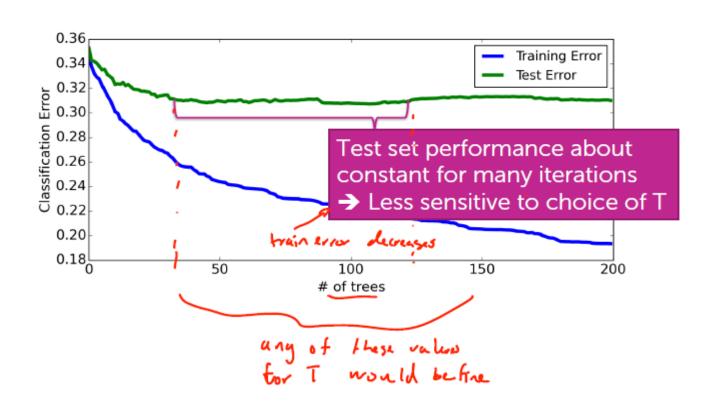
Boosted decision stumps on toy dataset

Example



Example

Boosting tends to be robust to overfitting



Boosting: summary

Variants of boosting and related algorithms

There are hundreds of variants of boosting, most important:

Gradient boosting

 Like AdaBoost, but useful beyond basic classification

Many other approaches to learn ensembles, most important:

Random forests

- Bagging: Pick random subsets of the data
 - Learn a tree in each subset
 - Average predictions
- Simpler than boosting & easier to parallelize
- Typically higher error than boosting for same number of trees (# iterations T)

Boosting: summary

Impact of boosting (spoiler alert... HUGE IMPACT)

Amongst most useful ML methods ever created

Extremely useful in computer vision

Standard approach for face detection, for example

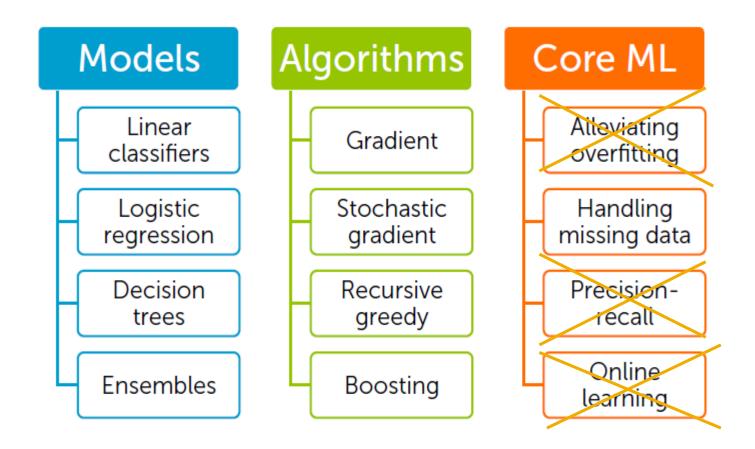
Used by **most winners** of ML competitions (Kaggle, KDD Cup,...)

 Malware classification, credit fraud detection, ads click through rate estimation, sales forecasting, ranking webpages for search, Higgs boson detection,...

Most deployed ML systems use model ensembles

 Coefficients chosen manually, with boosting, with bagging, or others

Classification: summary



Details

Derivative of likelihood for logistic regression

The log trick, often used in ML...

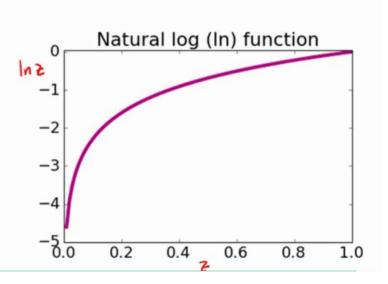
- Products become sums:
- Doesn't chan'ge maximum!
 - If w maximizes f(w):

```
Then \hat{\mathbf{w}}_{ln} = \underset{\mathbf{w}}{\operatorname{arg max}} f(\mathbf{w})

Then \hat{\mathbf{w}}_{ln} = \underset{\mathbf{w}}{\operatorname{arg max}} \ln(f(\mathbf{w})):

\hat{\mathbf{w}}_{ln} = \underset{\mathbf{w}}{\operatorname{arg max}} \ln(f(\mathbf{w}))

\hat{\mathbf{w}} = \hat{\mathbf{w}}_{ln}
```



Log-likelihood function

• Goal: choose coefficients w maximizing likelihood:

$$\ell(\mathbf{w}) = \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

Math simplified by using log-likelihood – taking (natural) log:

$$\underbrace{\ell\ell(\mathbf{w}) = \ln \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})}_{\text{ratural log}}$$

Log-likelihood function

Using log to turn products into sums $\lim_{h \to \infty} \frac{1}{h} \int_{\mathbb{R}^n} \ln f_i$

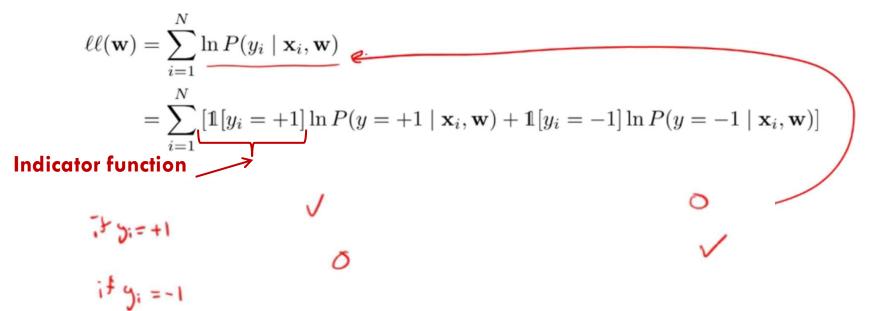
The log of the product of likelihoods becomes the sum of the logs:

$$\ell\ell(\mathbf{w}) = \ln \prod_{i=1}^{N} P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

$$= \sum_{i=1}^{N} \ln P(y_i \mid \mathbf{x}_i, \mathbf{w})$$

Rewritting log-likelihood

· For simpler math, we'll rewrite likelihood with indicators:



Logistic regression model: P(y=-1|x,w)

Probability model predicts y=+1:

$$P(y=+1|x,w) = 1 + e^{-w h(x)}$$

Probability model predicts y=-1:

$$P(y=-1|X,\omega) = 1 - P(y=+1|X,\omega) = 1 - \frac{1}{1+e^{-\omega\tau h(\alpha)}}$$

$$= 1 + e^{-\omega\tau h(\alpha)} - 1 = e^{-\omega\tau h(\alpha)}$$

$$= 1 + e^{-\omega\tau h(\alpha)}$$

Plugging in logistic function for 1 data point

$$P(y = +1 \mid \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^{T}h(\mathbf{x})}} \qquad P(y = -1 \mid \mathbf{x}, \mathbf{w}) = \frac{e^{-\mathbf{w}^{T}h(\mathbf{x})}}{1 + e^{-\mathbf{w}^{T}h(\mathbf{x})}}$$

$$\frac{\ell\ell(\mathbf{w}) = \mathbb{I}[y_{i} = +1] \ln P(y = +1 \mid \mathbf{x}_{i}, \mathbf{w}) + \mathbb{I}[y_{i} = -1] \ln P(y = -1 \mid \mathbf{x}_{i}, \mathbf{w})}{1 + e^{-\mathbf{w}^{T}h(\mathbf{x}_{i})}} + \left(1 - \mathbb{I}[y_{i} = +1]\right) \ln \frac{e^{-\mathbf{w}^{T}h(\mathbf{x}_{i})}}{1 + e^{-\mathbf{w}^{T}h(\mathbf{x}_{i})}} + \left(1 - \mathbb{I}[y_{i} = +1]\right) \left[-\mathbf{w}^{T}h(\mathbf{x}_{i}) - \ln \left(1 + e^{-\mathbf{w}^{T}h(\mathbf{x}_{i})}\right)\right]$$

$$= -\left(1 - \mathbb{I}[y_{i} = +1]\right) w^{T}h(x_{i}) - \ln \left(1 + e^{-\mathbf{w}^{T}h(x_{i})}\right)$$

$$= -\left(1 - \mathbb{I}[y_{i} = +1]\right) w^{T}h(x_{i}) - \ln \left(1 + e^{-\mathbf{w}^{T}h(x_{i})}\right)$$

$$= -\ln \left(1 + e^{-\mathbf{w}^{T}h(x_{i})}\right)$$

$$\ln e^{\alpha} = \alpha$$

$$\ln (g_{i=-1}) = 1 - 10 (g_{i=+1})$$

$$\ln \frac{1 + e^{-\omega \tau h(x_{i})}}{1 + e^{-\omega \tau h(x_{i})}} = -\ln(1 + e^{-\omega \tau h(x_{i})})$$

$$\ln e^{-\omega \tau h(x_{i})} - \ln(1 + e^{-\omega \tau h(x_{i})})$$

$$\ln e^{-\omega \tau h(x_{i})}$$

$$\ln e^{-\omega \tau h(x_{i})} = \ln(1 + e^{-\omega \tau h(x_{i})})$$

Gradient for 1 data point

$$\ell\ell(\mathbf{w}) = -(1 - \mathbb{1}[y_i = +1])\mathbf{w}^{\top}h(\mathbf{x}_i) - \ln\left(1 + e^{-\mathbf{w}^{\top}h(\mathbf{x}_i)}\right)$$

$$\frac{\partial U}{\partial w_{j}} = -\left(1 - 1[y_{i} = +1]\right) \frac{\partial}{\partial w_{j}} w^{T} h(x_{i}) - \frac{\partial}{\partial w_{j}} \ln\left(1 + e^{-w^{T} h(x_{i})}\right)$$

$$= -\left(1 - 1[y_{i} = +1]\right) h_{j}(x_{i}) + h_{j}(x_{i}) P(y_{i} = -1 | x_{i}, w_{i})$$

$$=h_{3}(x_{i})\left[1|[y_{i}=+i]-P(y_{i}=+i]x_{i},w)\right]$$

Finally, gradient for all data points

Gradient for one data point:

$$h_j(\mathbf{x}_i) \Big(\mathbb{1}[y_i = +1] - P(y = +1 \mid \mathbf{x}_i, \mathbf{w}) \Big)$$

Adding over data points:

$$\frac{\partial \ell \ell}{\partial \omega_{j}} = \frac{N}{\sum_{i=1}^{N} h_{j}(x_{i}) \left(1 \left[L_{g:=+1} \right] - P(y=+1|x_{i},\omega) \right)}$$

Details

ADA boosting

AdaBoost: learning ensemble

[Freund & Schapire 1999]

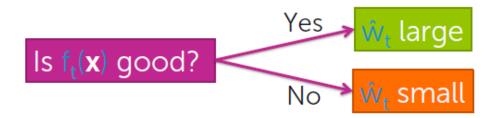
- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$ with data weights α_i
 - Compute coefficient ŵ,
 - Recompute weights α_i

- Problem 1: How much do I trust fo?
Problem 2: Weigh mistakes more?

Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

AdaBoost: Computing coefficients w_t



- $f_t(\mathbf{x})$ is good $\rightarrow f_t$ has low training error
- Measuring error in weighted data?
 - Just weighted # of misclassified points

Weighted classification error

Total weight of mistakes:

$$= \sum_{i=1}^{\infty} \alpha_i \ \mathcal{I}(\hat{y}_i \pm \hat{y}_i)$$

Total weight of all points:

$$=\sum_{i=1}^{N}\alpha_{i}$$

Weighted error measures fraction of weight of mistakes:

- Best possible value is 0.0 - worstyle > Randon chusiker = 0.5

AdaBoost formula

AdaBoost: Formula for computing coefficient \hat{w}_t of classifier $f_t(x)$

$$\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)$$

$$\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \frac{1 - weighted_error(f_t)}{weighted_error(f_t)}$$

$$\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \frac{1}{weighted_error(f_t)}$$

$$\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \frac{1}{weighted_error(f_t)}$$

$$\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \frac{1}{weighted_error(f_t)}$$

$$\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \frac{1}{weighted_error(f_t)}$$

$$\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \frac{1}{weighted_error(f_t)} \frac{1$$

AdaBoost: learning ensemble

- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$ with data weights α_i
- ₹ 1

– Compute coefficient \hat{w}_t

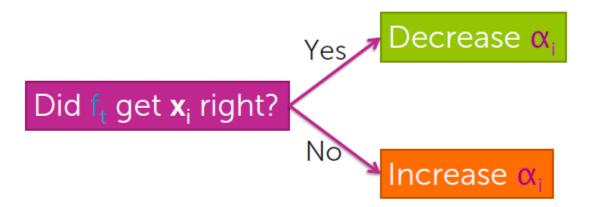
- Recompute weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

$$\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)$$

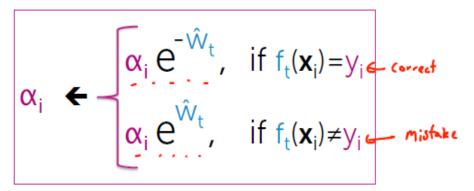
AdaBoost: updating weights α_i

Updating weights α_i based on where classifier $f_t(x)$ makes mistakes



AdaBoost: updating weights α_i

AdaBoost: Formula for updating weights α_i



	$f_t(\mathbf{x}_i) = y_i$?	\hat{W}_{t}	Multiply α_i by	
Did f _t get x _i right?	Correct	7-3	L = 0.1	Decruse importance of xi,y;
	Correct	0	e° =1	Keep importance the same
	Mistake	2.3	$e^{2.3} = 9.98$	Increasing importance of xi, y:
	Mis take	0	e° = 1	Keep imprene rhesane

AdaBoost: learning ensemble

- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$ with data weights α_i
 - Compute coefficient \hat{w}_t
 - Recompute weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

$$\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)$$

$$\alpha_i \leftarrow \begin{cases} \alpha_i e^{-\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) = y_i \\ \alpha_i e^{\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) \neq y_i \end{cases}$$

AdaBoost: normlizing weights α_i

If **x**_i often mistake, If \mathbf{x}_i often correct, weight α_i gets very weight α_i gets very large small Can cause numerical instability after many iterations Normalize weights to add up to 1 after every iteration

Χi

AdaBoost: learning ensemble

• Start same weight for all points: $\alpha_i = 1/N$

 $\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 - weighted_error(f_t)}{weighted_error(f_t)} \right)$

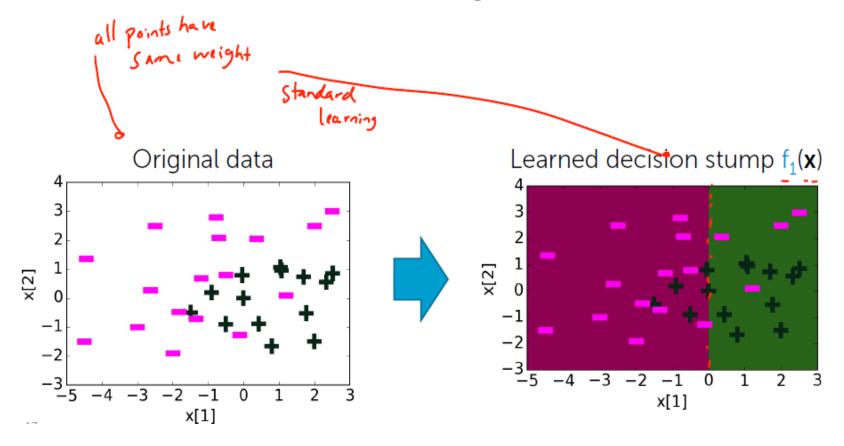
- For t = 1,...,T
 - Learn $f_{t}(\mathbf{x})$ with data weights α_{i}
 - Compute coefficient \hat{w}_t
 - Recompute weights α_i
 - Normalize weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

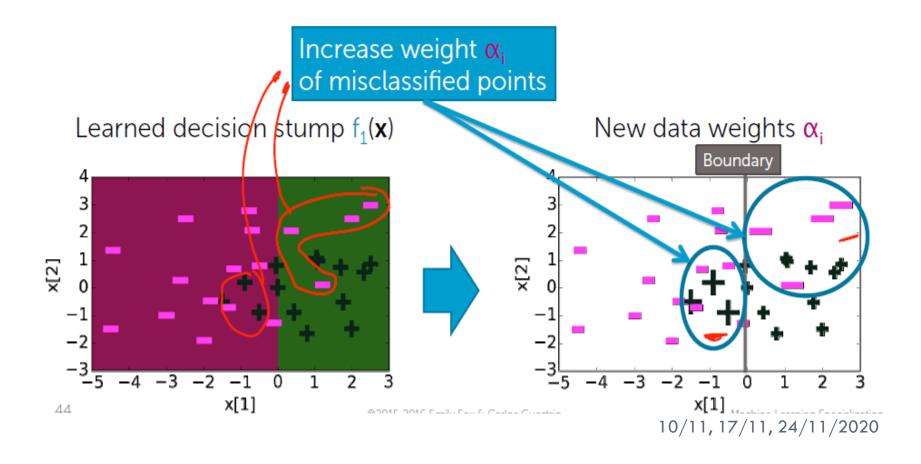
$$\alpha_i \leftarrow \begin{cases} \alpha_i e^{-\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) = y_i \\ \alpha_i e^{\hat{W}_t}, & \text{if } f_t(\mathbf{x}_i) \neq y_i \end{cases}$$

$$\alpha_i \leftarrow \frac{\alpha_i}{\sum_{j=1}^N \alpha_j}$$

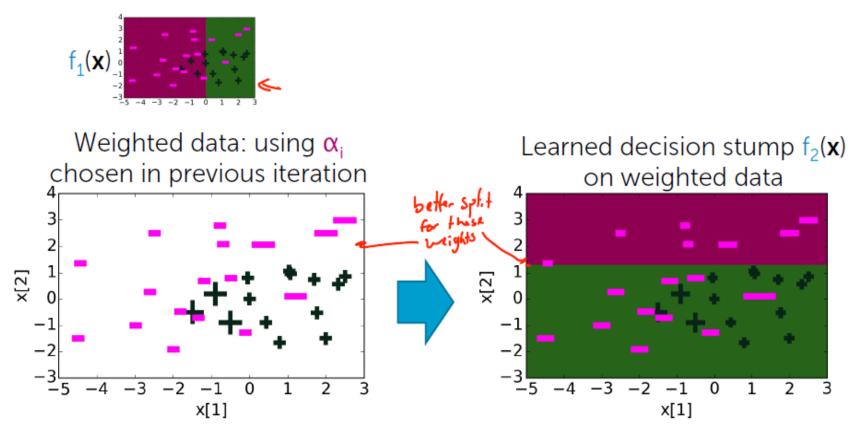
t=1: Just learn a classifier on original data



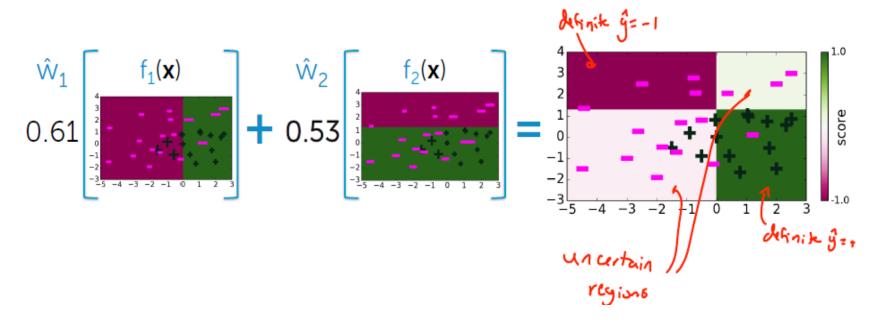
Updating weights α_i



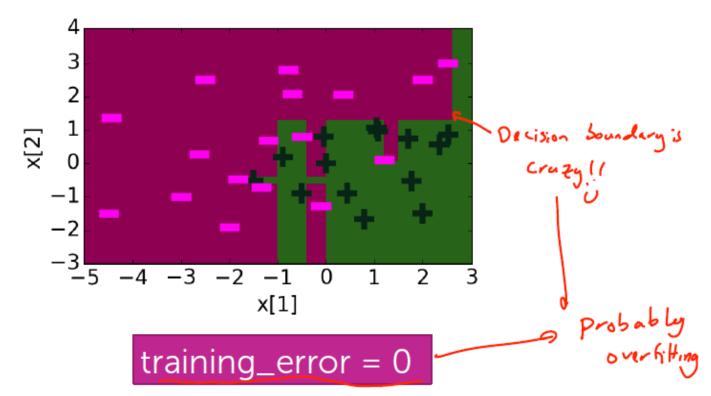
t=2: Learn classifier on weighted data



Ensemble becomes weighted sum of learned classifiers



Decision boundary of ensemble classifier after 30 iterations



AdaBoost: learning ensemple

- Start same weight for all points: $\alpha_i = 1/N$
- $\hat{\mathbf{w}}_t = \frac{1}{2} \ln \left(\frac{1 weighted_error(f_t)}{weighted_error(f_t)} \right)$

- For t = 1,...,T
 - Learn $f_{+}(\mathbf{x})$ with data weights α_{i}
 - Compute coefficient ŵ_t
 - Recompute weights α_i
 - Normalize weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

$$\alpha_{i} \leftarrow \begin{cases} \alpha_{i} e^{-\hat{W}_{t}}, & \text{if } f_{t}(\mathbf{x}_{i}) = y_{i} \\ \alpha_{i} e^{\hat{W}_{t}}, & \text{if } f_{t}(\mathbf{x}_{i}) \neq y_{i} \end{cases}$$

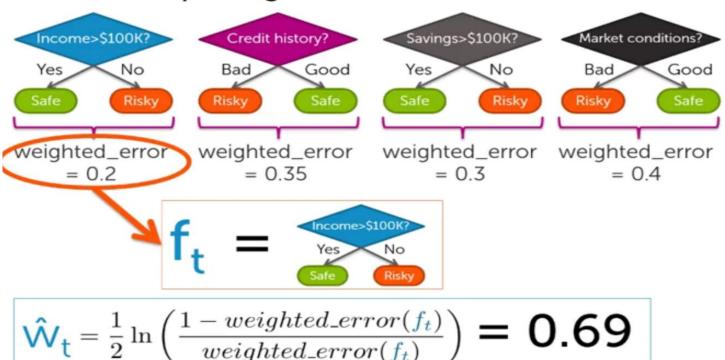
$$\alpha_i \leftarrow \frac{\alpha_i}{\sum_{j=1}^N \alpha_j}$$

- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$: pick decision stump with lowest weighted training error according to α_i
 - Compute coefficient ŵ_t
 - Recompute weights α_i
 - Normalize weights α_i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

Finding best next decision stump $f_t(x)$

Consider splitting on each feature:



- Start same weight for all points: $\alpha_i = 1/N$
- For t = 1,...,T
 - Learn $f_t(\mathbf{x})$: pick decision stump with lowest weighted training error according to α_i
 - Compute coefficient ŵ_t
 - Recompute weights α_i
 - Normalize weights <mark>α</mark>i
- Final model predicts by:

$$\hat{y} = sign\left(\sum_{t=1}^{T} \hat{\mathbf{w}}_t f_t(\mathbf{x})\right)$$

Updating weights α_i $\alpha_i e^{-\hat{v}'} = \alpha_i e^{-0.69} = \frac{\alpha_i/2}{\alpha_i/2} \text{ ,if } f_t(x_i) = y_i$ $\alpha_i e^{\hat{w}_t} = \alpha_i e^{0.69} = \frac{2\alpha_i}{\alpha_i} \text{ ,if } f_t(x_i) \neq y_i$

Credit	Income	у	ŷ	Previous weight α	New weight α
Α	\$130K	Safe	Safe	0.5	0.5/2 = 0.25
В	\$80K	Risky	Risky	1.5	0.75
С	\$110K	Risky	Safe	1.5	2 * 1.5 = 3
Α	\$110K	Safe	Safe	2	1
Α	\$90K	Safe	Risky	1	2
В	\$120K	Safe	Safe	2.5	1.25
С	\$30K	Risky	Risky	3	1.5
С	\$60K	Risky	Risky	2	1
В	\$95K	Safe	Risky	0.5	1
A	\$60K	Safe	Risky	1	2
Α	\$98K	Safe	Risky	0.5	1