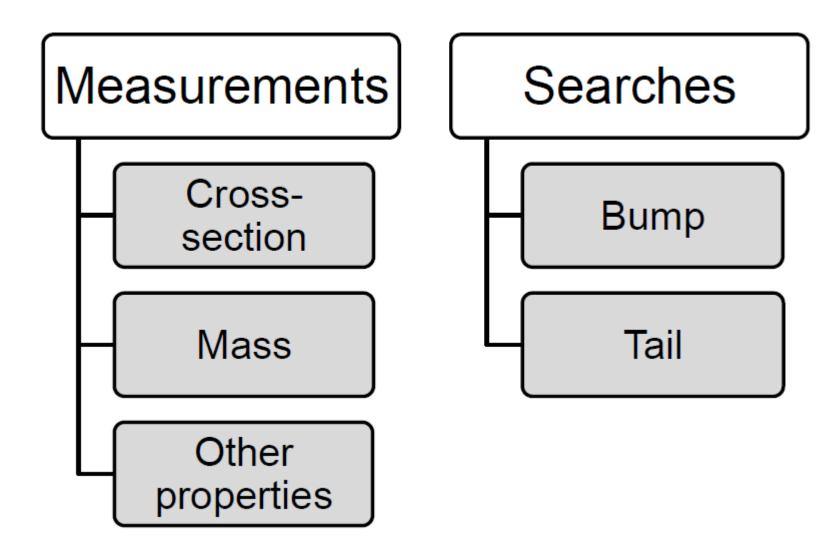
Introduction to particle physics: experimental part

RAW data to Physics

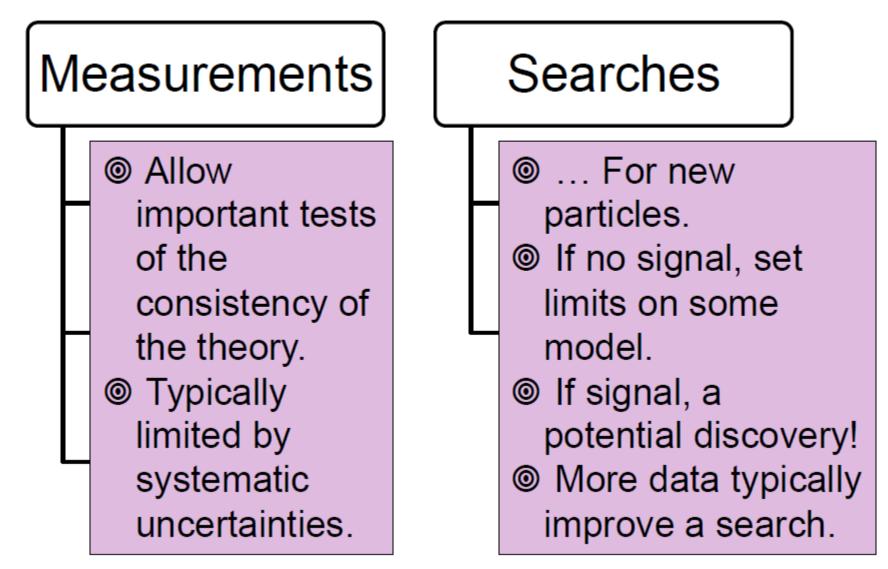
• The road from collisions to physics publications

From RAW data to Standard Model particles

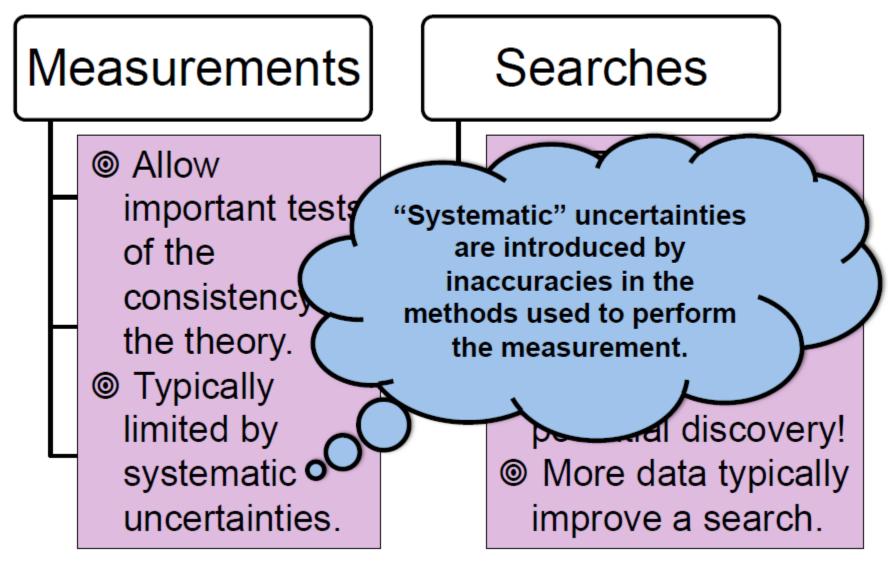
 About measuring properties of the final particles created from protonproton collisions


From Standard Model particles to measurements and searches

• About how we analys data using ingredients we have constructed


Large fraction of slides from A. Sfyrla lectures at CERN Summer School 2018

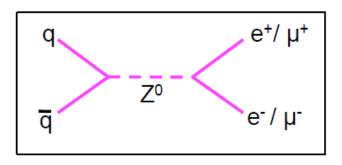
Prof. dr hab. Elżbieta Richter-Wąs


Physics analyses

Physcis analyses

Physics analyses

Physics analyses

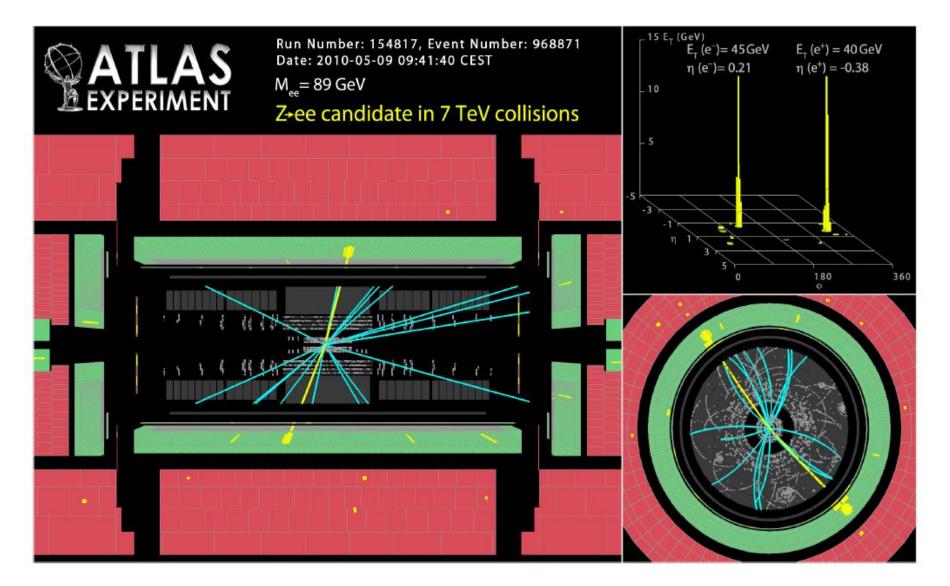

SIMPLE EXAMPLE:

MEASURING Z⁰ CROSS-SECTION AT LHC

Measuring Z⁰ cross-section at LHC

Solution States Stat

We can reconstruct it in the e⁺e[−] or µ⁺µ[−] decay modes


 Discovery and study of the Z^o boson was a critical part understanding the electroweak force.

◎ And now, at the LHC?

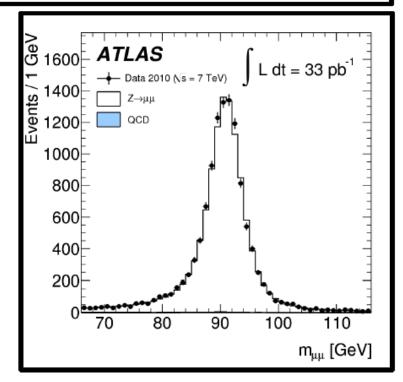
- Important test of theory: does the measurement agree with the theoretical prediction at LHC collision energy?
- A standard candle for studying reconstruction and deriving calibrations.
- Can be used for luminosity determination!

Physics analyses

Reconstructing Z⁰'s

How do we know it's a Z^o?

Identify Z decays using the invariant mass of the 2 leptons $M^2 = (L_1 + L_2)^2$ where $L_i = (E_i, \underline{p}_i) = 4$ -vector for lepton i


Under assumption that lepton is massless compared to mass of Z^0 => $M^2 = 2 E_1 E_2 (1 - \cos \theta_{12})$ where θ_{12} = angle between the leptons

So need to reconstruct the electron and muon energy and direction. Then can calculate the mass.

Select Z^O events with 'analysis cuts':

- Events with 2 high momentum electrons or muons
- Require the electrons or muons are of opposite charge
- With di-lepton mass close to the Z⁰ mass (e.g. 70<m_{I+I}<110 GeV)</p>

Very little background in Z^o mass region!

e*/ µ*

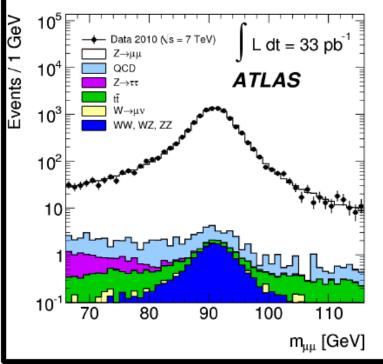
e⁻/μ⁻

70

Reconstructing Z⁰'s

How do we know it's a Z^O?

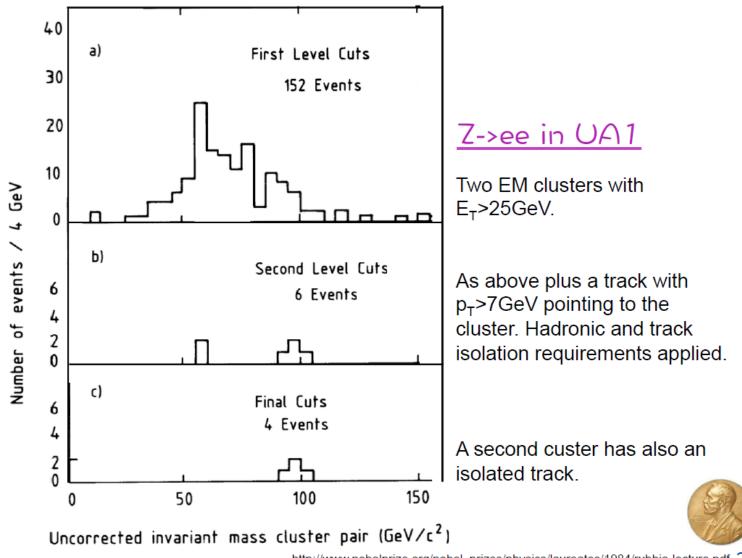
Identify Z decays using the invariant mass of the 2 leptons $M^2 = (L_1+L_2)^2$ where $L_i = (E_i, \underline{p}_i) = 4$ -vector for lepton i


Under assumption that lepton is massless compared to mass of Z^0 => $M^2 = 2 E_1 E_2 (1 - \cos \theta_{12})$ where θ_{12} = angle between the leptons

So need to reconstruct the electron and muon energy and direction. Then can calculate the mass.

Select Z^O events with 'analysis cuts':

- Events with 2 high momentum electrons or muons
- Require the electrons or muons are of opposite charge
- With di-lepton mass close to the Z⁰ mass (e.g. 70<m_{|+|-}<110 GeV)</p>



70

e+/ µ+

e-/μ-

A step back in time ...

http://www.nobelprize.org/nobel_prizes/physics/laureates/1984/rubbia-lecture.pdf 20

Measuring the Z⁰ cross-section

Theoretically

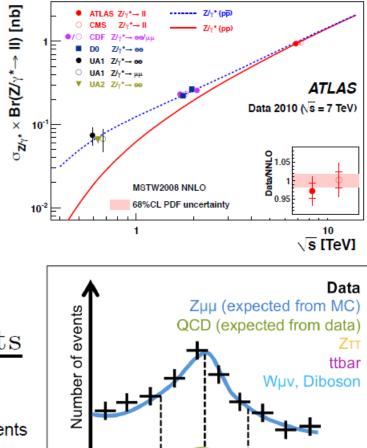
Cross-section calculated for:

- Specific production mechanism (pp, pp, e⁺e⁻)
- Centre-of-Mass of the collisions (7, 8, 13 TeV at LHC)

Experimentally

$$\sigma \cdot \mathrm{BR} = \frac{\mathrm{Number of events}}{\alpha \cdot \epsilon \cdot \mathrm{L}}$$

N of events:


N of events on data – N of expected background events α – acceptance:

fraction of events passing selection requirements

ε – efficiency:

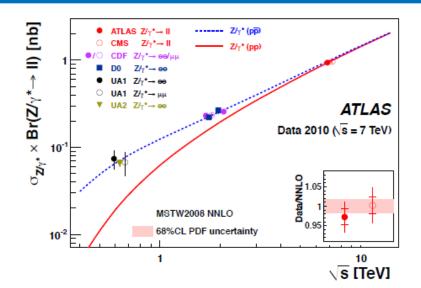
reconstruction efficiency of relevant objects

L – luminosity

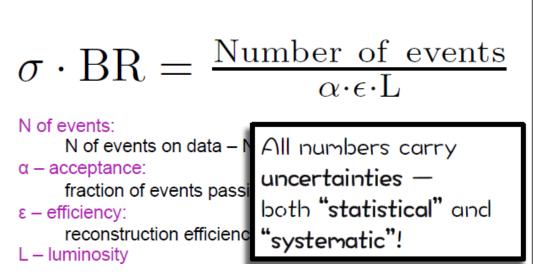
m₁

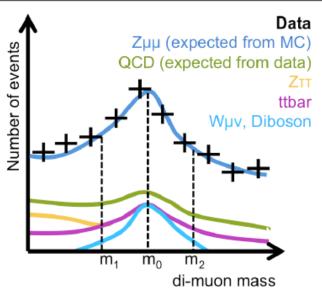
 m_0

 m_2

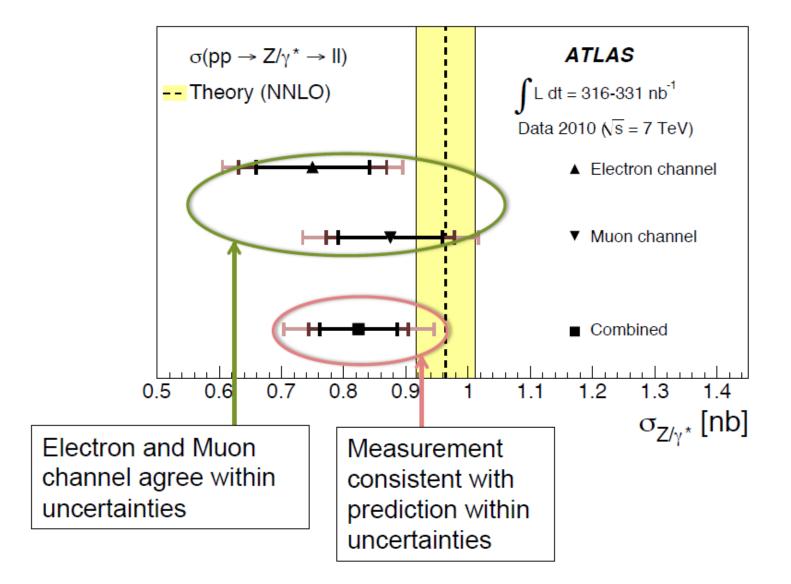

di-muon mass

Measuring the Z⁰ cross-section

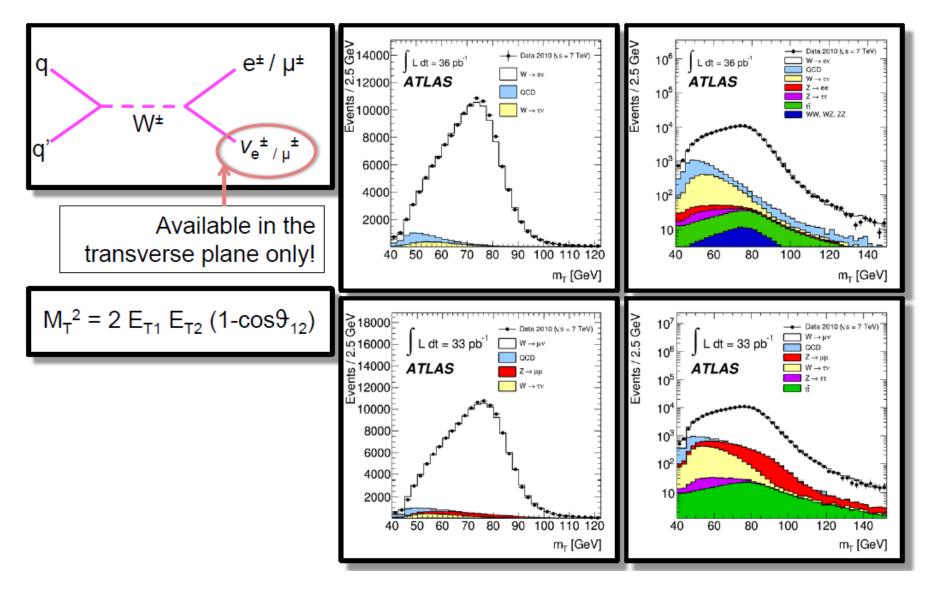

Theoretically

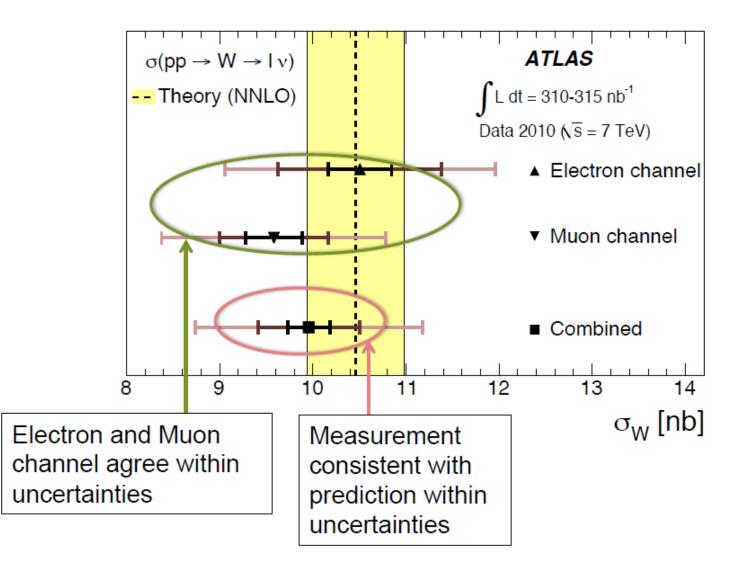

Cross-section calculated for:

- Specific production mechanism (pp, pp̄, e⁺e⁻)
- Centre-of-Mass of the collisions (7, 8, 13 TeV at LHC)

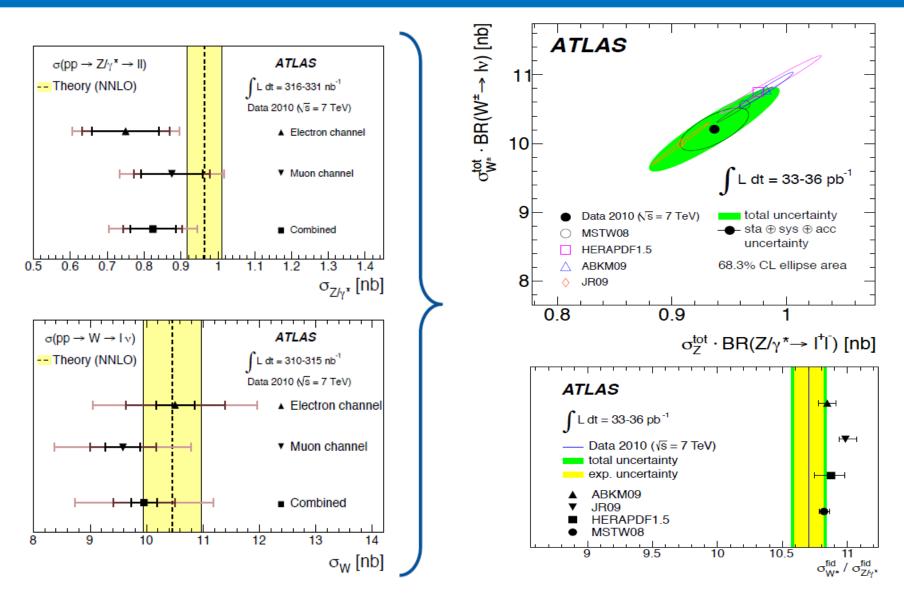


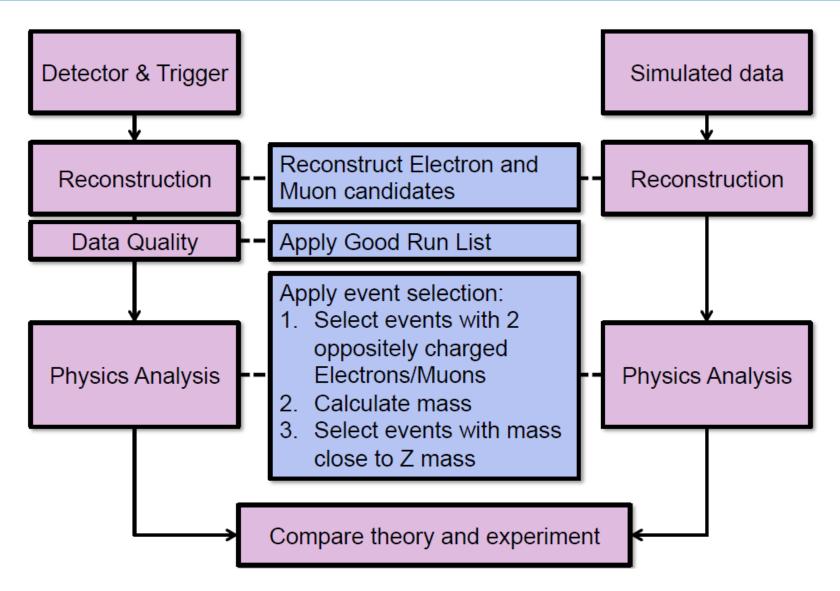
Experimentally



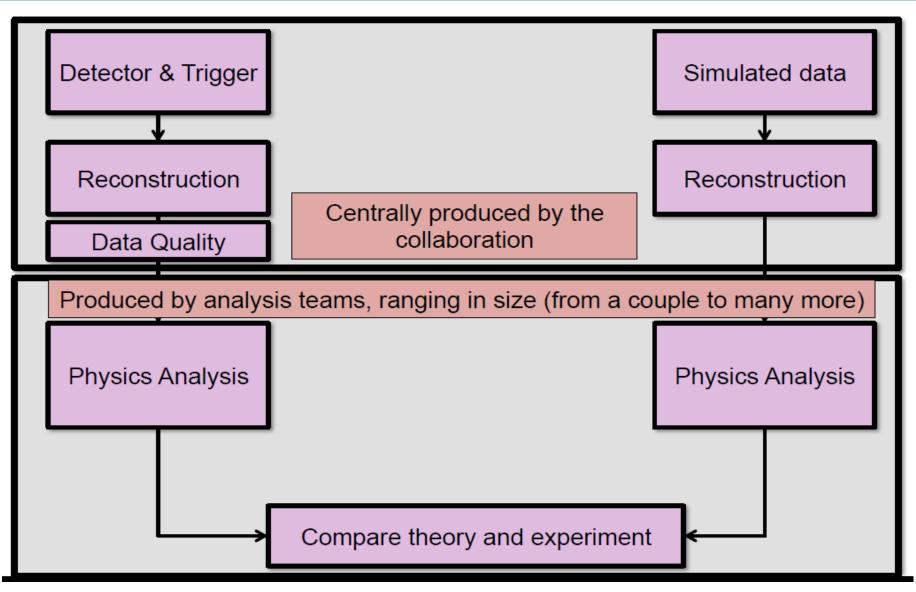

Measuring the Z⁰ cross-section

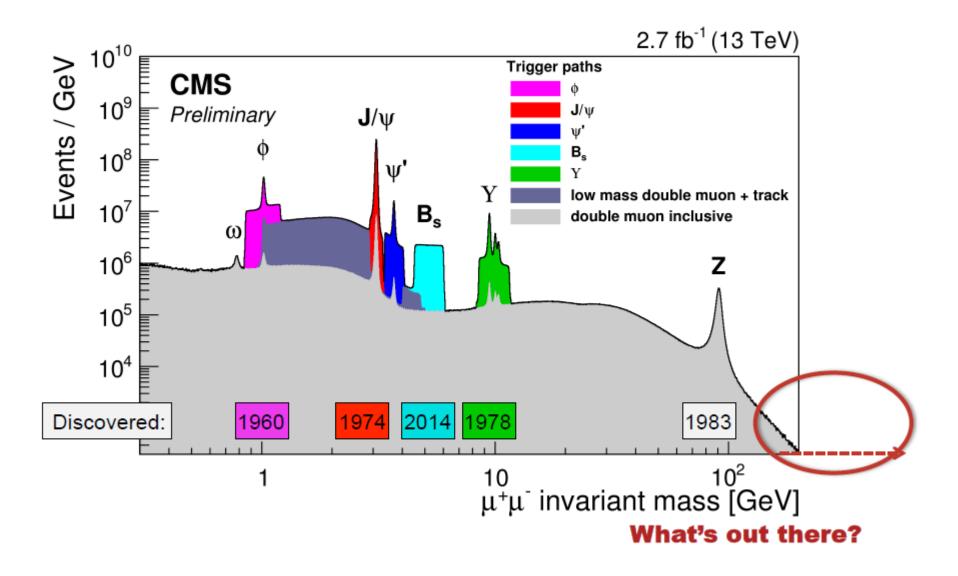
Measuring the W cross-section


Measuring the W cross-section


"Final" calibration

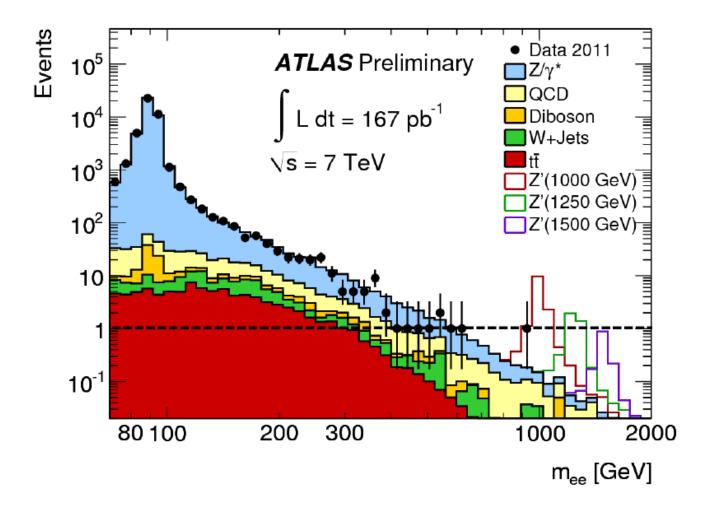
pp total	σ = 95.35 ± 0.38 ± 1.3 mb (data) COMPETE RRpi2u 2002 (theory)		······································	\$ 8	8×10 ⁻⁸	Nucl. Phys. B, 486-548 (2014)
Jets R=0.4	$\sigma = 563.9 \pm 1.5 + 55.4 - 51.4 \text{ mb} \text{ (data)} \\ \text{NLOJete+, CT10 (theory)} \\ \end{array}$	$0.1 < \rho_T < 2$ TeV $0.3 < m_B < 5$ TeV		.	4.5	arXiv:1410.8857 [hep-ex]
Dijets R=0.4 y <3.0, y*<3.0	$\sigma = 86.87 \pm 0.26 \pm 7.56 \pm 7.2 \text{ mb} \text{ (data)} \\ \text{NLOJet++, CT10 (theory)}$				4.5	JHEP 05, 059 (2014)
W total	$\sigma = 94.51 \pm 0.194 \pm 3.726 \text{ rb} (\text{ldata}) \\ \text{FEWZ+HERAPDF1.5 NNLO (theory)}$		\$	0 .	.035	PRD 85, 072004 (2012)
Z total	$\sigma = 27.94 \pm 0.178 \pm 1.096 ~\rm{rb}~(data) \\ {\rm FEWZ}{\rm +HERAPDF1.5~NNLO~(theory)}$		۰	0 .	.035	PRD 85, 072004 (2012)
tt	$\begin{split} \sigma &= 182.9 \pm 3.1 \pm 6.4 \text{ pb (data)} \\ & \text{top++NNL} (0\text{+NNL} (0\text{heory})) \\ \sigma &= 242.4 \pm 1.7 \pm 10.2 \text{ pb (data)} \\ & \text{top++NNL} (0\text{heory}) \\ & \text{top++NLL} (0\text{heory}) \end{split}$	¢ 4		T		Eur. Phys. J. C 74: 3109 (2014) Eur. Phys. J. C 74: 3109 (2014)
t _{t-chan}	$\begin{array}{l} \sigma = 68.0 \pm 2.0 \pm 8.0 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{NLO+NLL} \ \mathrm{(theory)} \\ \sigma = 82.6 \pm 1.2 \pm 12.0 \ \mathrm{pb} \ \mathrm{(data)} \\ \mathrm{NLO+NLL} \ \mathrm{(theory)} \end{array}$	¢ 4				PRD 90, 112006 (2014) ATLAS-CONF-2014-007
	$\label{eq:second} \begin{split} \sigma &= 68.0 \pm 7.0 \pm 19.0 \ \mathrm{pb} \ \mathrm{(data)} \\ & \mathrm{MC(PNLO} \ \mathrm{(heatry)} \end{split}$	•	LHC pp $\sqrt{s} = 7 \text{ TeV}$ Theory		4.6	JHEP 01, 049 (2015)
WW total	$ \sigma = 51.9 \pm 2.0 \pm 4.4 \text{ pb (data)} \\ \text{MCFM (theory)} \\ \sigma = 71.4 \pm 1.2 \pm 5.5 \pm 4.9 \text{ pb (data)} \\ \text{MCFM (theory)} $	¢ 4	Observed stat stat+syst	1	1.0	PRD 87, 112001 (2013) ATLAS-CONF-2014-033
Wt total	$ \begin{aligned} \sigma &= 16.8 \pm 2.9 \pm 3.9 \mathrm{pb} \mathrm{(data)} \\ & \mathrm{NLO+NLL} \mathrm{(theory)} \\ \sigma &= 27.2 \pm 2.8 \pm 5.4 \mathrm{pb} \mathrm{(data)} \\ & \mathrm{NLO+NLL} \mathrm{(theory)} \end{aligned} $	¢ ¤		T		PLB 716, 142-159 (2012) ATLAS-CONF-2013-100
H ggF total	$\sigma = 23.9 \pm 3.9 \pm 3.9 \text{ pb} \text{ (data)} \\ \text{LHC-HXSWG (theory)}$	4	LHC pp $\sqrt{s} = 8 \text{ TeV}$ Theory	2	20.3	ATLAS-CONF-2015-007
WZ total ZZ	$\begin{split} \sigma &= 19.0 - 1.4 - 1.3 + 1.0 \ \text{pb} \ \text{(data)} \\ \text{McFW} & (\text{harcy}) \\ \sigma &= 20.3 - 0.8 - 0.7 + 1.4 - 1.3 \ \text{pb} \ \text{(data)} \\ \text{McFW} & (\text{harcy}) \\ \sigma &= 6.7 \pm 0.7 + 0.5 - 0.4 \ \text{pb} \ \text{(data)} \\ \text{McFW} & (\text{harcy}) \\ \sigma &= 6.7 \pm 0.7 + 0.5 - 0.4 \ \text{pb} \ \text{(data)} \\ \text{McFW} & (\text{harcy}) \\ \end{array}$	¢ 4	△ Observed stat stat+syst	a 1	3.0	EPJC 72, 2173 (2012) ATLAS-CONF-2013-021 JHEP 03, 128 (2013)
total H vBF	$\sigma = 7.1 + 0.5 - 0.4 \pm 0.4 \text{ pb} (data)$ $\sigma = 2.43 + 0.6 - 9.55 \text{ pb} (data)$ LHC-HXSWG (theory)	À ATLAS		ī	20.3 20.3	ATLAS-CONF-2013-020 ATLAS-CONF-2015-007
total ttW total	σ = 300.0 + 120.0 - 100.0 + 70.0 - 40.0 fb (data)	ATLAS Run 1	Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$	2	20.3	ATLAS-CONF-2014-038
ttZ total	σ = 150.0 + 55.0 - 50.0 + 21.0 fb (data) HELAC-NLO (theory)			2	20.3	ATLAS-CONF-2014-038


Measuring cross-sections ratio

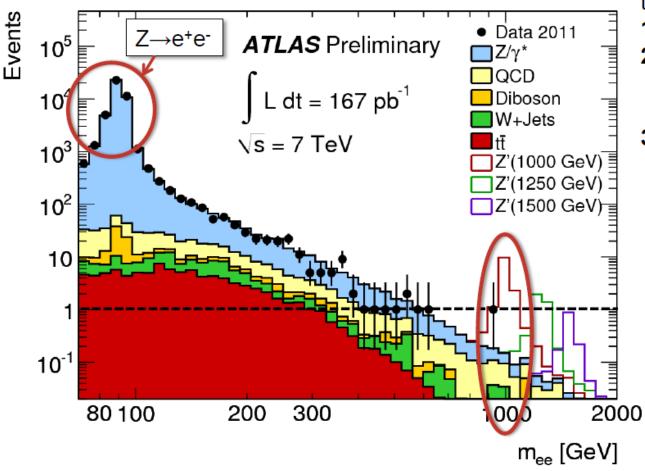


Analysis flow in Z⁰ cross-section measurement

Analysis flow in Z⁰ cross-section measurement



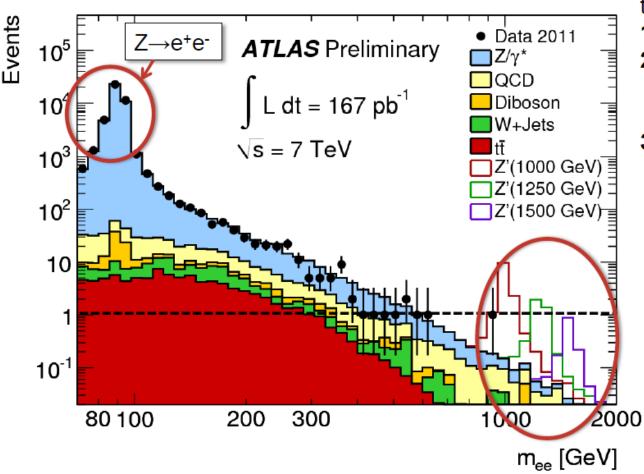
Simple search example


SIMPLE SEARCH EXAMPLE:

SEARCH FOR A HEAVY Z'

Iike Z->ee but at higher mass.

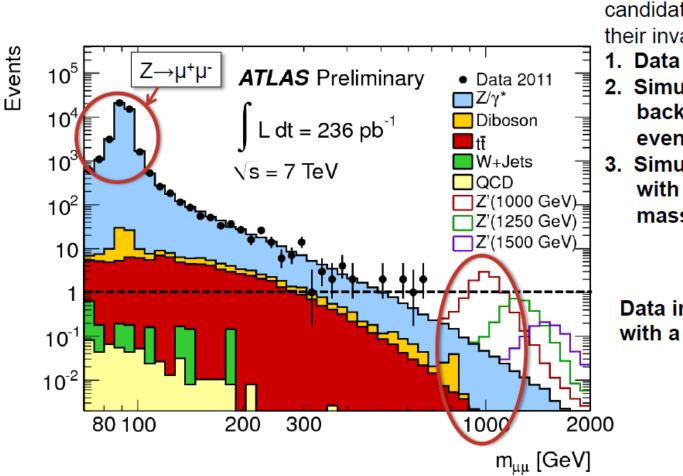
Iike Z->ee but at higher mass.



Select 2 electron candidates and plot their invariant mass for:

- 1. Data
- 2. Simulated background events
- 3. Simulated signal with different masses

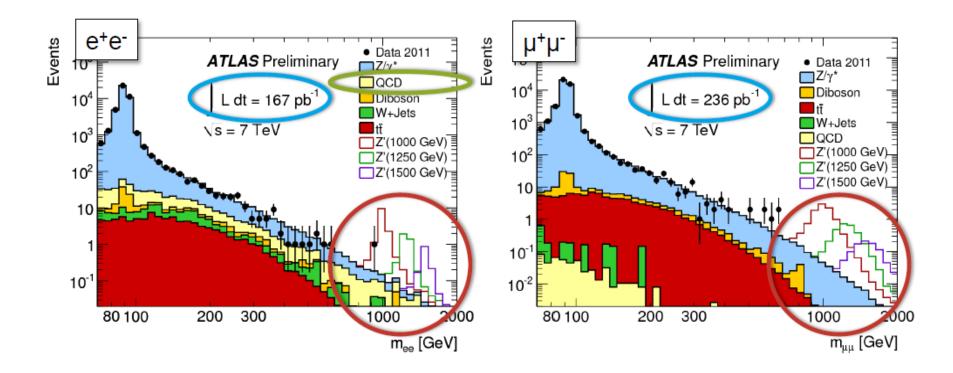
Data inconsistent with a 1TeV Z'


© Like Z->ee but at higher mass.

Select 2 electron candidates and plot their invariant mass for:

- 1. Data
- 2. Simulated background events
- 3. Simulated signal with different masses

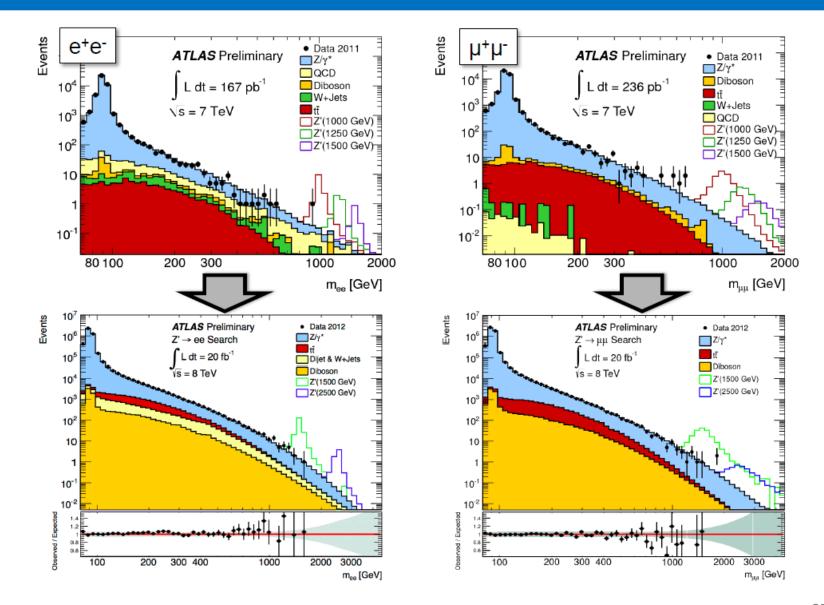
Cross-section decreases with mass (higher the mass of the Z', the more data needed to discover it)

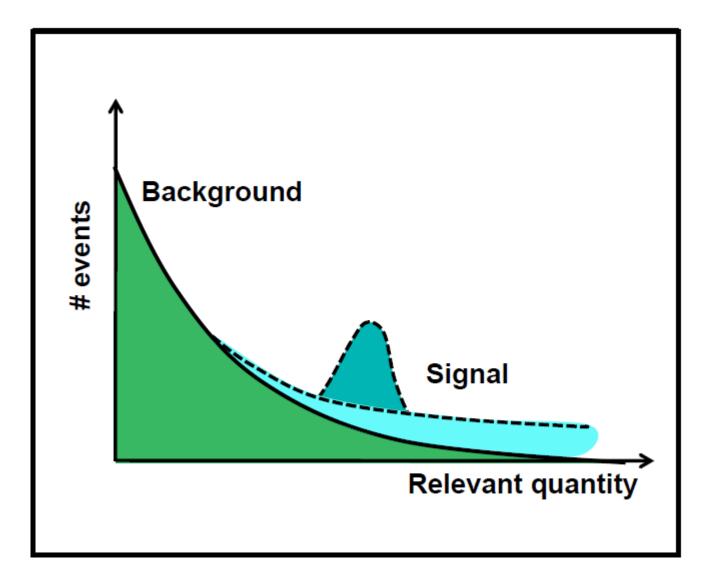

And similar for muons

Select 2 muon candidates and plot their invariant mass for:

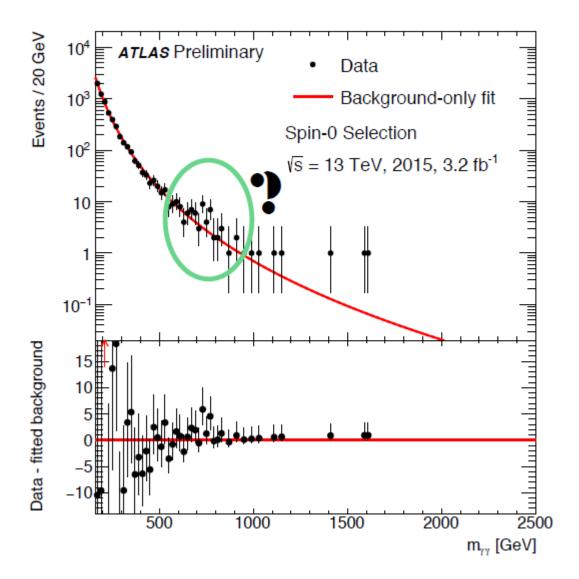
- 2. Simulated background events
- 3. Simulated signal with different masses

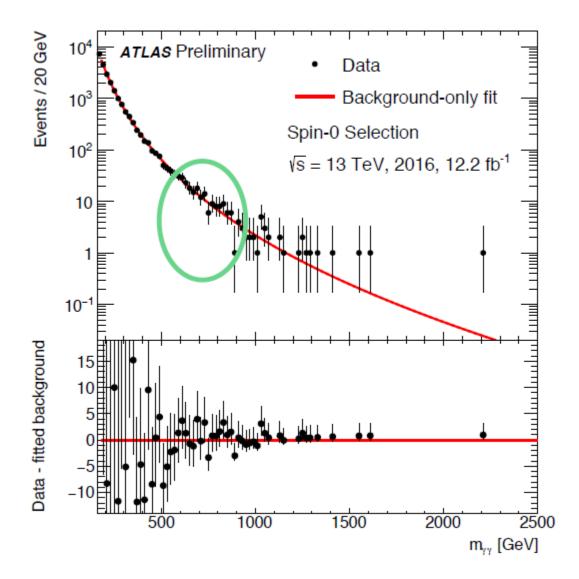
Data inconsistent with a 1TeV Z'


A small comparison

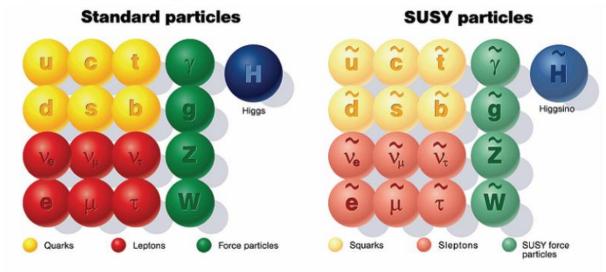

Differences in:

- Resolution
- Background composition
- Dataset


Evolution...


Searches

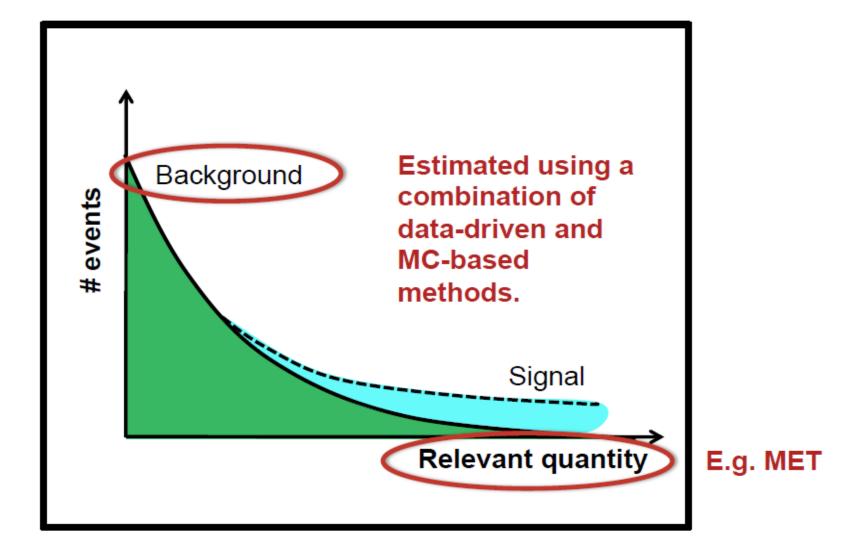
A well known bump search



A well known bump search

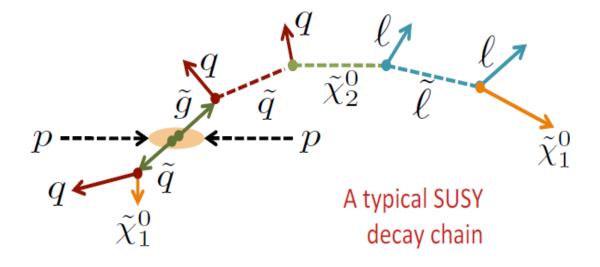
Typical SUSY searches

Super-symmetry?

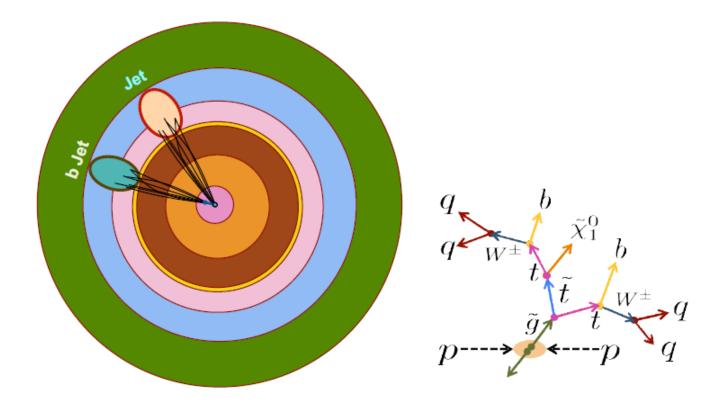

- Composite quark and/or leptons?
- New Heavy bosons?
- Gravitons?

...

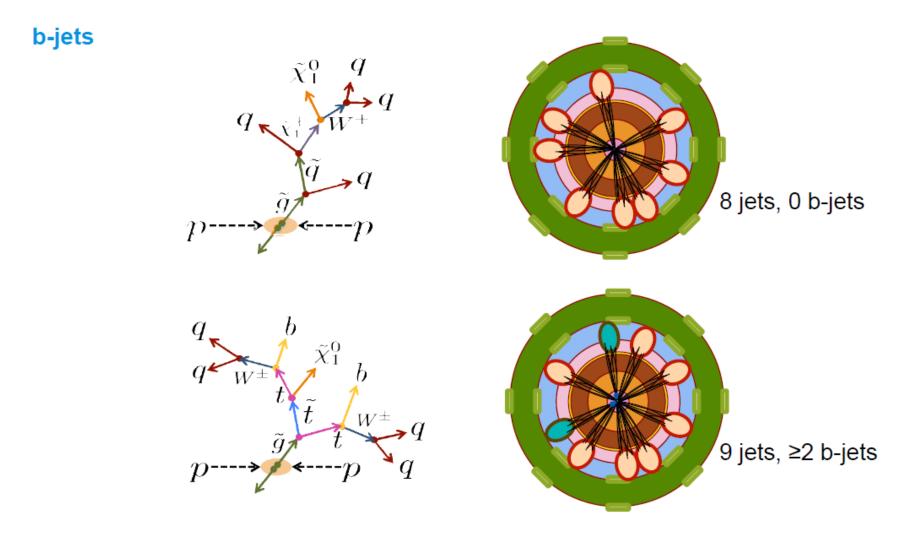
Dark Matter particles?



Typical SUSY searches

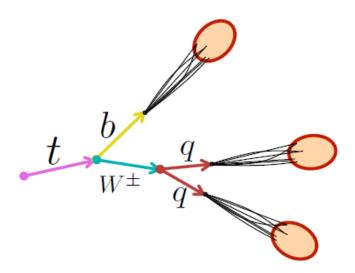

Another search example

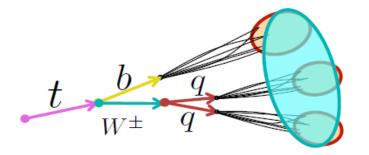
SEARCH FOR SUSY IN EVENTS WITH LARGE JET MULTIPLICITIES



Event selection

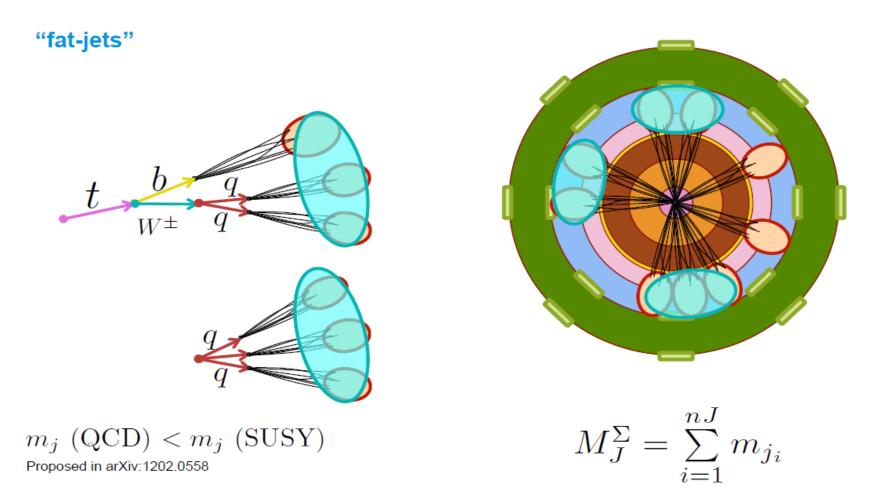
b-jets


Event selection



Signal regions can range in jet p_T and jet & b-jet multiplicity.

Event selection

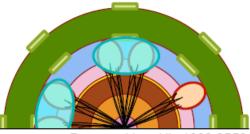


Fat-jets are a key signature in searches for boosted objects, e.g. boosted tops.

Event selection

Signal regions can range in jet multiplicity and M_J^{Σ} cuts.

60


Example of search

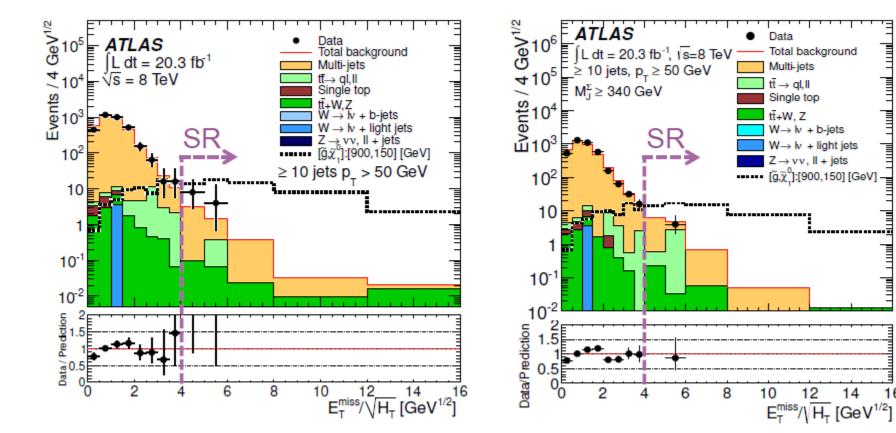
"b-jet strea	ım"													
ID		8j5	0		9j5	0	≥10j	50		7j8	0		≥8j8	8 0
Jet ŋ							< 2.	0						
Jet p _T	50 GeV					80			80 0	GeV				
Jet count		=8	3		=9)	≥10)		=7			≥8	3
b-jets	0	1	≥2	0	1	≥2	-		0	1	≥2	0	1	≥2
ME _T /√H _T			•				> 4 Ge	eV	1⁄2					•

"fat-jet stream"

ID	≥8	j50	≥9	j50	≥10j50				
Jet η			< 2	2.8					
Jet p _T	50 GeV								
Jet count	2	28	2	:9	≥10				
M_J^Σ (GeV)	>340	>420	>340	>420	>340	>420			
ME _T /√H _T	> 4 GeV ¹ / ₂								

Proposed in arXiv:1202.0558

$$M_J^{\Sigma} = \sum_{i=1}^{nJ} m_{j_i}$$

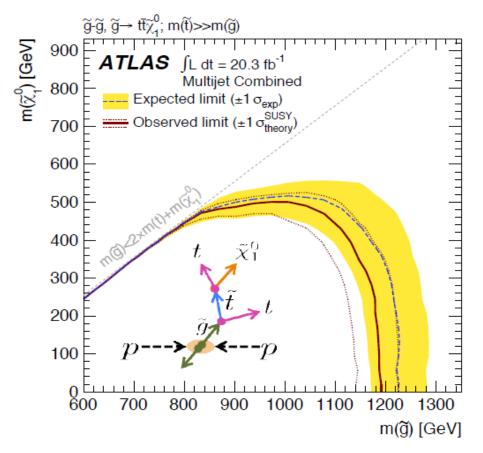

Results

ID		8j50			9j50		210j50	
b-jets	0	1	≥2	0	1	≥2	0	
Expected evts	35±4	40±10	50±10	3.3±0.7	6.1±1.7	8.0±2.7	7 1.37±0.3	
Observed evts	40	44	44	5	8	7	3	
Significance (σ)	0.7	-0.02	-0.6	0.8	0.6	-0.28	1.11	
ID		7	j80			≥8j80		
b-jets	0		1	≥2	0	1	≥2	
Expected evts	11.0±2	2.2 1	17±6	25±10	0.9±0.6	1.5±0.9	3.3±2.2	
	12		17	13	2	1	3	
Observed evts								

ID	≥8	j50	≥9	50	≥10j50		
M_J^Σ (GeV)	340	420	340	420	340	420	
Expected evts	75±19	45±14	17±7	11±5	3.2±3.7	2.2±2.0	
Observed evts	<mark>6</mark> 9	37	13	9	1	1	
Significance (o)	-0.27	-0.6	-0.6	-0.34	-0.8	-0.6	

39

Results


16

+ light jets

Interpretations

Real or Simplified models

Simplified topologies include typically one production and one decay process. Provide useful information for theorists.

26 Contents		
27 1 Introduction		3
28 2 Differences compared to the previous multijet analysis		3
20 3 Data-set and Monte Carlo samples		5
30 3.1 Data Sample		
31 3.2 Standard Model Monte-Carlo		
33 4 Trigger		10
34 5 Object selection and event cleaning		
35 5.1 Definition of Primary Objects	65	11.2 Interpretation
36 5.2 General Analysis Cuts	66	11.2.1 Model ind
37 6 Effect of Pile-up on jets	67	11.2.2 Limits
	68 1	2 Conclusions
38 7 Event selection		
30 7.1 Signal region optimization	69 A	B-tagging in Different
40 7.2 Jet mass selection	70	3 Optimization studies
41 7.3 Signal region definitions	70	B.1 Multijet plus b-jets
42 8 Standard Model background estimation	72	B.2 Multijet plus M_1^{Σ} s
43 8.1 Multi-Jet Production	73	B.3 Multijet plus M_1^{Σ} c
44 8.1.1 Central jets, split by <i>b</i> -tag	74	B.3.1 Reweightin
45 8.1.2 Total Jet Mass, M_{Σ}^{Σ}		
46 8.2 Leptonic backgrounds	75	C Trigger
47 8.2.1 <i>tī</i> and <i>W</i> +jets Background	76	O Theory Systematic Var
48 8.2.2 Z+jets Background	77	D.1 tt Systematic varia
49 8.3 Other SM Processes	78	D.2 Single Top System
50 8.4 Summary	79	D.3 Vector Boson + Je
	80	D.4 Ttbar+V Systemat
51 9 Systematic uncertainties	81	E Sensitivity to SUSY mo
52 9.1 Experimental Uncertainties	81	2 Sensitivity to SOST me
53 9.2 Theoretical Uncertainties	82 B	Signal contamination
9.2.1 W systematics $$		
9.2.3 $W + b/\bar{b}/b\bar{b}$ +jets Systematics	83 (G Heavy Flavour systema
57 9.2.4 $Z \rightarrow \nu\nu$ +jets Systematics	84	I Signal region distributi
58 9.2.5 Single Top Systematics	85	H.1 b-jet SRs
59 9.2.6 <i>tī</i> +W/Z Systematics	86	H.2 M_J^{Σ} SRs
50 10 Statistical Methods	sr I	Minor backgrounds
61 11 Results and Interpretation	88]	Fit tests
61 11 Results and Interpretation 62 11.1 Fit results		C. Staron and a
63 11.1.1 <i>b</i> -jet analysis stream	89	Stream overlap
64 11.1.2 M_J^{Σ} analysis stream	90 I	L HEP data
	91 I	A Event displays

CONTENTS OF A RANDOM SEARCH INTERNAL DOCUMENTATION

65 66 67		11.2 Interpretation 11.2.1 Model independent limits 11.2.2 Limits	156
68	12	Conclusions	161
69	A	B-tagging in Different Monte-Carlo Samples	165
70 71 72 73 74	B	Optimization studies B.1 Multijet plus b-jets signal regions B.2 Multijet plus M_I^{Σ} signal regions B.3 Multijet plus M_J^{Σ} control regions - systematic uncertainties B.3.1 Reweighting distributions using the leading fat jet p_T	173 177
75	С	Trigger	197
76 77 78 79 80	D	Theory Systematic Variations D.1 $t\bar{t}$ Systematic variations D.2 Single Top Systematic variations D.3 Vector Boson + Jets Systematic variations D.4 Ttbar+V Systematic variations	204 204
81	Е	Sensitivity to SUSY models	208
82	F	Signal contamination	229
83	G	Heavy Flavour systematics	237
84 85 86	н	Signal region distributions H.1 b-jet SRs H.2 M_J^{Σ} SRs	242 242 244
87	I	Minor backgrounds	247
88	J	Fit tests	250
89	К	Stream overlap	250
90	L	HEP data	256
91	M	Event displays	285

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations]

- Data-set and Monte Carlo samples
- Trigger
- Object definitions
- Background dete
 A
- Systematic unce
- Statistical methol
- Results
- Interpretations]

The data and simulation samples used in the analysis. Data for the measurement / search, simulation to compare data to predictions.

Monte carlo sample specifics:

- Generator, tunes.
- Statistics.

- Data-set and Monte Carlo samples
- Trigger .
- Object defin
- Background det
- Systematic uncer
- Statistical metho
- Results
- Interpretations]

The trigger used to collect the data with.

Trigger specifics:

- Prescales; typically unprescaled triggers are used, prescaled triggers for QCD / high stat measuments.
- Trigger (in)efficiencies.

- Data-set and Monte Carlo samples
- Trigger

0

0

Stat

- Object definitions and event selections
 - The exact definition of objects (electrons, muon, jets, ...) and how these are combined in selecting events to be analyzed.

Object definition specifics:

"Flavor" of the identification (loose, medium, tight).
 Calibrations.

Event selection specifics:

- Inter Sevent cleaning (e.g. from noise and cosmics).
 - Momentum, geom. acceptance and multiplicity of objects.
 - Igher level cuts, such as invariant mass.
 - Signal regions".

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event
- Background determination
 A
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations]

Events that are imitating the signal we are searching for or measuring.

Background determination specifics:

- Can/must be data-driven or simulation-based.
- Second Straight St

- Data-set and Monte Carlo
- Trigger
- Object definitions and even
- Background determination
 A sector of the secto
- Systematic uncertainties
- Statistical methods
- Results
- Interpretations]

- Any 'intermediate' measurement we have performed carries uncertainties (statistical and systematic).
- Systematic" uncertainties are introduced by inaccuracies in the methods used to perform the measurement.
- Efficiencies, acceptance, number of events, luminosity, cross sections used in Monte Carlo scaling...
- Some of them are "centrally" assessed by the performance groups of an experiment. Some of them are analysis-specific.

- Data-set and Monte Carle
- Trigger
- Object definitions and even
- Background determinatio
 A
- Systematic uncertaintig
- Statistical methods
- Results
- Interpretations]

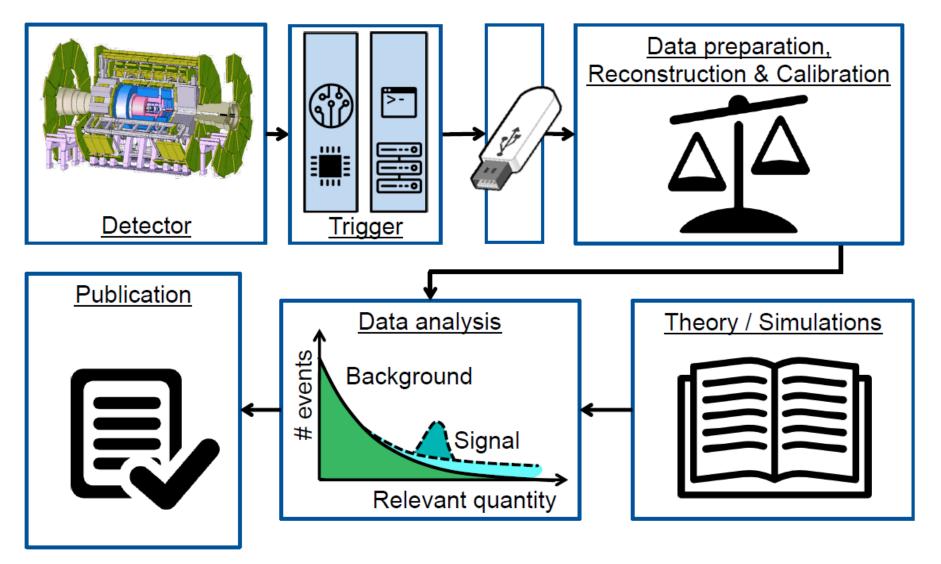
Dealing with large data-sets, we use statistical methods to make sense of the numbers we measure.

Typical method:

Do a fit to extract signal from background.

Methodologies can vary a lot, but nowdays they are pretty unified within and across experiments.

Neural nets and other machine learning methods are broadly used, primarily to improve signal over background discrimination!


- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results •
- Interpretations]

Produce the results in tables and plots. These include details of what is found in the signal region.

- Data-set and Monte Carlo samples
- Trigger
- Object definitions and event selections
- Background determination
- Systematic uncertainties
- Statistical methods
- Results
- [Interpretations]

Put the results into context: interpret them in theoretical models.

(Instead of) conclusions

