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Electroweak unification

and the W and Z boson physics




Boson polarisation states

* A real (i.e. not virtual) massless spin-1 boson can exist in two transverse
polarization states, a massive spin-1 boson also can be longitudinally polarized

* Boson wave-functions are written in terms of the polarization four-vector ek

RM — ghp=ipx — Hp.ﬁf(fi.f—Er)

* For a spin-1 boson travelling along the z-axis, the polarization four vectors are:

el = \%(0,1 —,0); e = —(ps,0,0,E) ‘€l = —%(0,1,:,0)
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Longitudinal polarization isn’ t present for on-shell massless particles, the photon
can exist in two helicity states ; = +1 (LH and RH circularly polarized light)



W boson decay

*To calculate the W-Boson decay rate first consider |}~ — ¢y,

Want matrix element for Incoming W-boson : Eﬁ (Pl)

i ps Ve Out-going electron : #(p3)
W= I Out-going V, : v(p4)l
pes Vs i at1-Y)
_ _ EW .
_EMf'z' =&y (Fl)-u(PS)- _IE i(l _TSJ'V(F‘I} ::::aggtor

= |Mji= %%(Pl)ﬁ(ﬂﬂz)?‘“%il — P )(pa)

* This can be written in terms of the four-vector scalar product of the W-boson
polarization £, (p1) and the weak charged current j/#

Mf-f—i‘% a(p)*| with | =a(p3) P L (1 =P )v(ps)




W decay — the lepton current

* First consider the lepton current j* = H(pg)}/“%(l —7)v(ps)
* Work in Centre-of-Mass frame

Pl = (mWaOEOaO)r
p3 = (E,Esin6,0,Ecos6)
ps = (E,—Esin0,0,—Ecos0)

m
with F—= - W

2

* |n the ultra-relativistic limit only LH particles and RH anti-particles participate
in the weak interaction so

M =u(p3)r*5(1 =7 )(ps) =) (p3) " vi(ps)

Note:  3(1—7")v(ps) =vi(ps)  @(p3)7*vi(pa) ;
|

Chiral projection operator, “Helicity conservation”, e.qg.

- /

u(p3)y* "r(m)\




-We have already calculated the current e

JE=1u(p3)yY vi(pa) W ‘/ul(pa}
when considering eTe” — utu” 6

- :

Jﬁ =2E(0,—cos 0, —i,sin 0) v, a/T(ﬁ'ﬂi)

«For the charged current weak Interaction we only have to consider this single
combination of helicities

M =a(p3) L — ¥ )v(pa) =7, (p3)Y*vi(ps) = 2E(0, —cos 8, —i,sin )

and the three possible W-Boson pnlarlzatmn states:

et = (01—;0) g = (pE,UUE) gl = —

—=(0,1,i,0)
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* For a W-boson at rest these become:

1
M 0 _ H_ :
\/i( ioa=( ) B x/i( )

* Can now calculate the matrix element for the dlfferent polarization states
W . ..
My = 14 u(pr)j*  with M —2—(0,—c056,—:,s1n9)

V2 72
+ giving Decay at rest : E, = E, = m,,/2
E_|M_= VL‘,E%(U,],—I 0).mwy (0,—cosO,—i,sin@) = %gwmw(l—l—cﬂsﬂ}
&L | My = %(0 1).my (0, —cos 0, —i,sinB) = —%gwmw sin @
EL|\ M, = %{(U,l,z,U).mw(U,—mSB,—f,sinﬁ) = sgwmw (1 —cos )

M_|* = gjymiy, (1 +cos 6)*
= M |* = gfymiy 5 sin® 6
M |* = giymi, (1 —cos8)*




* The angular distributions can be understood in terms of the spin of the particles
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* The dlfferentlal decay rate can be found usmg
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where p* is the C.0.M momentum of the final state particles, here p™ = =



* Hence for the three different polarisations we obtain:

dli'. gy | iy gy | sin 6 dly gtom, 1
dQ  64n° 4 dQ  64mt 2 dQ  64r’ 4

* Integrating over all angles using

(14+cos6)’ (1—cosf)’

" . 3!
/._11[] +cos6)“dgdcos O = /%51112 Bd¢dcos @ = Tﬂ:
* Gives 2
Swmw
I'_=I=1,=
Lt 48:

* The total W-decay rate is independent of polarization; this has to be the case
as the decay rate cannot depend on the arbitrary definition of the z-axis

* For a sample of unpolarized W boson each polarization state is equally likely,

for the average matrix element sum over all possible matrix elements and
average over the three initial polarization states

(Mpl*) = JM_* + ML + M)
= Lgwmy [L(1+4cos8)*+ Ssin® 0+ 1 (1 —cos6)’]
= 38wy

* For a sample of unpolarized W-bosons, the decay is isotropic (as expected)



* For this isotropic decay

dr’ P 2 4r|p*| "
= M7y = I'=s ——(|M|*
2
= (W — v = SWW
W ¢ V) 481

* The calculation for the other decay modes (neglecting final state particle masses)

is same. For quarks need to account for colour and CKM matrix. No decays to
top — the top mass (175 GeV) is greater than the W-boson mass (80 GeV)

W= —du K3|H:d
W™ — st [x3|Vy
W= — bu x?"l’fub
* Unitarity of CKM matrix gives, e.g. |'u"m;|2 +

* Hence BR(W — gq') = 6BR(W — eV)
and thus the total decay rate :

W —e v,
W —u vy
W™ —1 Vv,

.

2
2

[y =9 w—ev =

Sgﬁ; mw

167

= 2.07GeV

W —dc
W~ — sc
W— — bc

VH.&'F + ‘VJ:HJF =1

:’{3‘1”&!'2
% 3| V,|?

3’(3‘1’::'&'2

Experiment: 2.14%0.04 GeV

(our calculation neglected a 3% QCD
correction to decays to quarks )




From W to Z

* The W= bosons carry the EM charge - suggesting Weak are EM forces are related.

* W bosons can be produced in e’e annihilation =~ g 25 prr—— —
e w €'+Ww+§ -

5 15 -
€ W™ & —— W
* With jUSt these two dlagrams there is a pmblem " 3
the cross section increases with C.0.M energy s |
and at some point violates QM unitarity

0 R AR AR

UNITARITY VIOLATION: when QM calculation gives larger 150 160 170 180 190 200 210
flux of W bosons than incoming flux of electrons/positrons V/5/GeV

* Problem can be “fixed” by introducing a new boson, the Z. The new diagram
mterferes neg:f-.ttrb..rel'juF Wlth the abnve twn dlagrams flxlng the unltarltyr problem

LY

kuw*i

:> >vmz\¢‘i: M Y Ve
W\;W_

L
ararararara’

\Mqrww -|- Mzww ‘|‘M1—'WW| |M}'WW ‘|‘MvWW|
* Only works if Z, v, W couplings are related: need ELECTROWEAK UNIFICATION

11



SU(2),: the weak interaction

* The Weak Interaction arises from SU(2) local phase transformations
' [ ————— _W-Wp:.uf*:..wef&{ﬂd%, s S

wherethe G are the generators of the SU(2) symmetry, i.e the three Pauli
spin matrices
P —> |3 Gauge Bosons W,‘u} Wf, W{u
* The wave-functions have two components which, in analogy with isospin,

are represented by “weak isospin”
* The fermions are placed in isospin doublets and the local phase transformation

corresponds to ! .
" (e5) = (¢5) =<2 (%)
€ € €

* Weak Interaction only couples to LH particles/RH anti-particles. hence only

place LH particles/RH anti-particles in weak isospin doublets: [y = %
RH particles/LH anti-particles placed in weak isospin singlets: iy =0

Weak Isospin

b=

Iy =

() (), (), (), 0) 6), ==
e ) W)\ N NS\ ol =3

lw =0 (VE.‘)R': (ff_)m ---(H}fh (d)m Note: RH/LH refer to chiral states
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Ve
* For simplicity only consider Xi = ( i)_‘.

-The gauge symmetry specifies the form of the interaction: one term for each
of the 3 generators of SU(2) — [note: here include interaction strength in current]

— 3 1 2 - | 3 £ |
=8wX Y 301 XL Ju=8wX, 30X Ju=8wX V5031
* The charged current W*/W- interaction enters as a linear combinations of W,, W,

W = (W Wy

*+ The W+ interaction terms

Ji =5y £i5) = S5a vt s (o io)xe
* EXxpress in terms of the weak isospin Iadder operators oL = 5 ({TI -+ mr'g}

i = ‘%fﬂ’“ O+ XL } Origin of hj—;g— in Weak CC

EETETY

W*| v, SW corresponds to ;‘lf' s Wy Yo x

_|_ H
w i | Bars indicates
adjoint Spinors

which can be understood in terms of the weak isospin doublet

= %E;.WU+IL = i—;‘%{?fnér.)]‘# (H [1]) (g)f f;i_f Yer = i::y_v}ﬂ‘% (1—9)e
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* Similarly

Ve
sW . N
Ju. = %ILYPH XL

corresponds to

W | e
w-

,u_ 8w ,— _ 00y /vy _ 8w _EW o u
—V,—Z:]’“G—Xf ﬁ(\*’f,.ef.)?#(] [])(E)L—ﬁem‘“vf,—ﬁ'ﬂ}‘“g(] r)v

*However have an additional interaction due to W*
1 = |
J3 = ewx Y 303 XL

|
_:I:1

3
W

LY VL — gw ge.’ Per

expanding this:

_ | R 1 0 v =
J?Zgwi(\’r..ﬂf.]}'”( _| gw 3V
L /

Iwgw B I%*gw €
i 2 35

I::> NEUTRAL CURRENT INTERACTIONS !
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Electroweak unification

* Tempting to identify the W3 as the /

* However thls is not the case, have two physical neutral spin-1 gauge bosons, }’,
and the W is a mixture of the two,

* Equivalently write the photon and Z in terms of the W3 and a new neutral
spin-1 boson the B

*The physical bosons (the Z and photon field, A ) are:
_ 3 o
Ay = By cos By + W sin By By is the weak
Zy = —By sin Oy + W, cos By mixing angle

*The new boson is associated with a new gauge symmetry similar to that
of electromagnetism : U(1),

*The charge of this symmetry is called WEAK HYPERCHARGE Y

Y =20— 273 Q is the EM charge of a particle
_ W Iy is the third comp. of weak isospin

%g!yg_ -By convention the coupling to the B, is ig
o er: ¥ =2(—1)-2(—3)=-1 v ¥ =41
5 B i ep:rY=2(-1)-2(0)=-2 Ve ¥ =0

mamama®

(this identification of hypercharge in terms of Q and |; makes all of the following work out)

15



* For this to work the coupling constants of the W3, B, and photon must be related
e.g. consider contributions involving the neutral interactions of electrons:

Y “” = e Yu W = ecrUcYueL + eCrUeYucr

a3
W JLV = —5reL e
Y — &y s 5
B Ju=75 waprZ E‘LY:;,?J.!EL+ chYEHTﬂER

* The relation Ay, = B, cos By + WE sin By is equivalent to requiring
W .
Ji" = jycos By + ji sinBy

*Writing this in full:
ee OcYuer +eerQeYuer = 38 C0S Oy €LY, Yuer +ErYe, Yuer] — 58w sin Oy [ELYuer]

—e€ Y e, — eCRYuCr = E'g’cns Ow | —CLYuerL — 2€rYur| — %gw sin By (€ YueL]

which works if: | ¢ = gy sin By = g'r cos By (i.e. equate coefficients of L and R terms)

* Couplings of electromagnetism, the weak interaction and the interaction of the
U(1), symmetry are therefore related.

16



The Z boson

*In this model we can now derive the couplings of the Z Boson

Zy = —BysinBy +Wjcos@y  [iy]  forthe electron 7 = |
7 — L sinOy[ELY, erY, -3 Ow
Ji = —3& sin v[Er¥e, Yuer +€r EE}’“ER] 58w cos Oy [eL Yy e ]

«Writing this in terms of wégk isospin and""c':ha_rge:

fii = =38/ sin 6w [EL(2Q — 215y Jyuew + T (2Q) uck] + iygw cos By [er puet

“rarsrart

For RH chiral states |,=0

-Gathering up the terms for LH and RH chiral states:
o ! : / . — [ :
Ju= [g I3, sin Oy — ¢’ O'sin By +ng_34; cos BW] €LYueL — [g (Jsin Bw] eRYuer

-Using: e=gysinBy = g'cosBy gives

3 ) )
7 , (L — Osin” By ) | _ , Qsin” By
= €L YuCr — e
4 = gz(Iy — Osin® 6w) [eLyuer) — g2Q'sin” Oy [erYuer]
W
with |e = gz cos By sin Oy i.e. 8z = cos B

17



* Unlike for the Charged Current Weak interaction (W) the Z Boson couples
to both LH and RH chiral components, but not equally...

jh = gz(ly — Qsin® Ow)[Eryuer] — gz0sin” Bw[erYuer]
gzcr[eryuer| + gzerlerYuer]

: ey : e
Cr-87 L CR.87 R
CL Cg
Z Z
73 . 2 0 S P 6
¢, = Iy — Qsin” Oy cr = —Qsin” By
T 1 t
]
W- part of Z couples only to B, part of Z couples equally to
LH components (like W*) LH and RH components

* Use projection operators to obtain vector and axial vector couplings
EL']’”ML ZE}’M%(I —'}'};)u ER‘}’#HR :ETH%(] +'}'5)H

it = gz [eL 3 (1— 1) +cr (1 +%))] u

18



it

* Which in terms of V and A components gives:

with [cy =cp+ep=1

—20sin® Oy

* Hence the vertex factor for the Z boson is:

. ] ]
—igz5Yu lov —ca¥s]

— %Zm [(er+cr) +(cx =) ¥s)] u

ji= %Eﬁu [cy —cays]u

CAZCL—CR=I.;1;

Z

* Using the experimentally determined value of the weak mixing angle:

sin” By 2~ 0.23

—>

Fermion

Q

Ly

CLECRgl:’V

™
Ta

e T
HCI

dsb

vap:vt

-+

Sl b — [ol— © F2l—

+2§0 -+

:“—0 27 0. 23 —0 04""

un -En

035 -—0 15 +01

;—042 008 _035

.
H !

MI-— [ b= | PIl—

+
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/-boson decay: I,

* In W-boson decay only had to consider one helicity combination of (assuming we
can neglect final state masses: helicity states = chiral states)

5 ¢ - W-boson couples:

. 7 | p

W . to LH particles :

: . and RH anti-particles
\ E_E Nrarararararararararararararar P rar P ra P E R R IR PP Pyl

* But Z-boson couples to LH and RH particles (with different strengths)
* Need to consider only two helicity (or more correctly chiral) combinations:

— —

L Py P P ey e N T LT TR T TN TR FE R P Py PR Py pe P P TR po PR ST RY T P p e nluuuuuuuuuu-

This can be seen by considering either of the combinations which give zero
e.g. urY(cy +ca¥s)vg = HT% (1+ ?ﬁ)?’oi’“ (cv+ fATﬁ)EI (1- )y
= L1 =P (1 =) ey +ear )
L (1+79) (1= 1) (cv +cars)v =0
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/-boson decay: I,

* In terms of left and right-handed combinations need to calculate:

X / g7-CL X / 87-Cr
e €

* For unpolarized £ bosons:

2 | 2,22 2.2 .2 2,2 272 2
(M i) :E 2c187my + 2cpgzmy] = 587my(cp +cg)
average over polarization

dI’ _ ‘p*| |M|2

* Using c%; —{—Cf,l — Z(EE_I_CJZ‘E} and 00~ 1m0l
W

2
I:} [(Z—eTe )= gj;:rz (C% +cﬁ}

21



/-boson branching ratios

* (Neglecting fermion masses) obtain the same expression for the other decays
— &Mz
NZ—ff)= Z (EV+CA)
-Using values for ¢, and c, obtain:
Br(Z—ete )=Br(Z—u u )=Br(Z—1t"17)|~3.5%
Br(Z — viv|)=Br(Z — v2V2) = Br(Z — v3V3) [~ 6.9%
Br(Z — dd) = Br(Z — s5) = Br(Z — bb)|~ 15%
Br(Z — uui) = Br(Z — ¢C)|~ 12%
-The Z Boson therefore predominantly decays to hadrons

BF(Z — hﬂdFUHS) ~ 69% Mainly due to factor 3 from colour

-Also predict total decay rate (total width)
[z=Y.,=2.5GeV
Experiment: [’y =2.4952 +0.0023 GeV
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Summary

* The Standard Model interactions are mediated by spin-1 gauge bosons
* The form of the interactions are completely specified by the assuming an
underlying local phase transformation == GAUGE INVARIANCE

U(1).,, —> QED
SU(2), —> Charged Current Weak Interaction + W*

su@3)., | = |acp

* In order to “unify” the electromagnetic and weak interactions, introduced a
new symmetry gauge symmetry : U(1) hypercharge

U(1)y = |B,
* The physical Z boson and the photon are mixtures of the neutral W boson
and B determined by the Weak Mixing angle

* Have we really unified the EM and Weak interactions 7 Well not really...

-Started with two independent theories with coupling constants £W.€

Ended up with coupling constants which are related but at the cost of
introducing a new parameter in the Standard Model By

«Interactions not unified from any higher theoretical principle... but it works!
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Precision tests of the Standard Model

o(eTe™ — Z — hadrons)/nb




The Z resonance

* Want to calculate the cross-section for ete™ — Z — ;J,+u_
Feynman rules for the diagram below give:

et \pz p4/ u* e*e" vertex: (pg) —Igz'y“ f’v CA'VS pl}
—iguv
Z propagator: -3
q 1 _’”z
e 7 P3\ . —
& w'u vertex: ”(P3) %’ZT —("A?’s)
= —iMsi=[W(p2)-—igzy" 3(ch —ca7)-ulpi )]-qu‘;}-[ﬁ(pa)-—igz?”%(cﬁ—cﬁ}ﬁ)-V(pa):
Z
2
8, _
- Mﬁ:—ﬁgw[”@z)?"ul cy —ciy) u(py)-[a(ps)y"” v—f,q?’s)
Z

* Convenient to work in terms of helicity states by explicitly using the Z coupling to
LH and RH chiral states (ultra-relativistic limit so helicity = chirality)

%(Cu —C‘,q’}’s) =CL%(1 —'}’S)+CR]§(1 +}’S}
\ —

LH and RH projections operators

25



hence cy = (CL -I-CR), CA = (CL — CR)
and %[CV—CA}’5) = %(CL‘FCR_(CL_CR)'VS)
= ab(1-P)+exp(147)

. | |
with €L = E(C'V +ca), cg= E(CV—CA)
* Rewriting the matrix element in terms of LH and RH couplings:

2

Mji = = 52— guy ¢ T(p2) P 5 (1= P)u(p1) + 5T (p2)7* §(1+ ¥ )ulp1 )

x[eru(pa)y” 3 (1= )v(pa) + cgit(p3) v 3 (1+ 7 )v(pa)]
* Apply projection operators remembering that in the ultra-relativistic limit
s0=Pu=u; 0+ u=u;, ;(1=P=v, ;(1+7 )=y
= M= =g [ (p)Y ) (p1) + hP(p2) P u (p1)
X[cpu(ps) Y vi(ps) +cgulps)y’v)(pa)]

* For a combination of V and A currents, 7; }'*” v = 0 etc, gives four orthogonal
contributions

{

= 7 éizm% guv[ci P (p2) ¥ u (p1) + cgv  (p2) v ur (p1)]
[cp 1 (p3) Y vi(pa) + gty (p3)Y'v(p4)]

26



* Sum of 4 terms

------------------------------------------

M 8 el 7 ()" g (p0)] [y ()Y v (ps)] 57 ﬁ pLue*

RR = ——— =5 CRCp8uv |V \P2)Y ur(p1) (U1 (pP3)Y v (P4 '
qz_m‘% RCpSUVIY] T 1 | u+//

‘ el

: 2

: 87 - - - A .

Mp = ——>5—cger guv [T (p2) ¥ ur (p)][1) (p3) ¥ vi (pa)) © ~ e

9y i

g2 2 W

Mig = ——=“—cicguv[Vi(p2) 7" u (p)][a (pa)y"vi(ps)] =S =

q- —ny ut
.................................... - o

87

§MLL=—qﬁ_—gﬁifgég#v[m(ﬁﬂ]ﬂﬂ(Pl)][ﬁl(PB)'J’va(Fﬂr)] == &= o

ms, ot /

%

Remember: the L/R refer to the helicities of the initial/final state particles

* Fortunately we have calculated these terms before when considering
ete” —y—utu giving:
[P (p2) ¥ ur (p1)][y (p3) 7'V  (p4)] = 5(1 4 cos 8)  ete.
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* Applying the QED results to the Z exchange with

gives:

2
|MRL|2 — S2 87

2 2 82
|MLR| =S5 Z

&

=g
s —m3

2
§—mz

— e
§—mz

2

e
§— Iy

9

r=

2

2

(ck)*(ck)*(1+cosB)?
() (c})*(1 —cos 8)
(cf)*(ck)*(1 —cos )

(¢§)*(cp)*(1+cos )

2
87 2C€C'u
— s =4E?

* As before, the angular dependence of the matrix elements can be understood

in terms of the spins of the incoming and outgoing particles e.g.

MRR

|111)ﬂ

[1,1) =
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The Breit-Wigner resonance

* Need to consider carefully the propagator term 1/(5‘ — m%-) which

diverges when the C.o0.M. energy is equal to the rest mass of the Z boson

* To do this need to account for the fact that the Z boson is an unstable particle
-For a stable particle at rest the time development of the wave-function is:

W~ e—z'mr
*For an unstable particle this must be modified to
Y~ e—irrtre—rr/Z
so that the particle probability decays away exponentially
vy~ T = o t/T with 7=
*Equivalent to making the replacement
m—m—il'/2
*In the Z boson propagator make the substitution:
mz —mz—il'z/2
* Which gives:
(s—m%) — [s— (my—ilz/2)] = s —m5+ :mgl} + 4FZ a7 s —my+imgly
where it has been assumed that I 7 < my )
* Which gives 1|2 1 2 1

—_—

—_ m2
sz

S, 12 L 212
s —mz +imzl'z (s —mz)* +m;I7
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* And the Matrix elements become

4.2
875 e\2 2 2
Manl? = : PV (1 +cosO
| RRl (3—m%)3+m%l"% (('R) (('R) ( ) etc.

* |n the limit where initial and final state particle mass can be neglected:

do I
10 = 2
* Giving: de2 6477
dogg 1 g7 N2y
dQ 642 (s —m3)? +mil3 (c)" (¢
dorr. 1 8ys p
= 2 (e _ 2 g 212 ("‘L)j(f,
dQ  64n° (s—m3)> +miT%
dopg _ I 3423 e\2
dQ  6dr? (s —m%)z —}—m%l“% (cL)(e
dQ  64r2 (s — m‘%}z +m%-F% (cL)(e
2 > ) 2 w
* BEC&USElMLLl ‘I’lMRRl = |MLR| ‘|_|MRL| , the f / :
: . T ol : ‘e 0) :
differential cross section is asymmetric, i.e. parity > < .
violation (although not maximal as was the case / €
for the W boson). n
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Cross-section with unpolarised beams

* To calculate the total cross section need to sum over all matrix elements and
average over the initial spin states. Here, assuming unpolarized beams (i.e. both
e* and both e" spin states equally likely) there a four combinations of
initial electron/positron spins, so

> ™ l - 2 2
(Mgl ) =55 (|MRR| +IMLL| + |Mpr|* + |Mge|*)
g .
= %-%( ) +mzr§f“ (cg)P(cR)? +(e£)*(1)?](1 +cos 8)?

+[(c§)*(cr)? + (cf)*(c1)?](1 — cos 8)* }

* The part of the expression {...} can be rearranged:
{o} = [(cg)? + (g )?][(ck)* + (c)’](1 + cos® B)
+2[(cg)? = (cf)?[(cg)* — (cp)*] cos 8 (1)

and using c%, "‘C,%. = 2((‘% -I-C%} and CyCA = C%-I-Cﬁ-

(o = 31§+ (k) + (4211 +cos 0) + 2cfchclick cos 0
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* Hence the complete expression for the unpolarized differential cross section is:
do 1

D M |?

_ b1 875 y
T s
{31(ct)*+ (c5)™(ch)> + (ch)?](1+ cos® @) + 2 ¢ el cos B
* Integrating over solid angle dQ2 = d¢d(cos8) = 2md(cos0)

J'_Jrll(] +cos” 0)d(cos ) = ffll(l +x%)dx = % and J'fll cosBd(cosB) =0

_ l g%s e\2 €2 N2 HA2

* Note: the total cross section is proportional to the sums of the squares of the
vector- and axial-vector couplings of the initial and final state fermions

(ch)? +(ch)?
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Connection to Breit-Wigner formula

* Can write the total cross section

. g7s eN2 | (N2 AHND (N2
Octe~—Zsutu— = 1997 (s—m%)erm%F% [(‘:V) + (i) l(ey) +(‘7A) ]]

in terms of the Z boson decay rates (partial widths)
2

— m e e m 2
N(Z—eter) = S22[()2 4 (4)7] and T(Z—ptu) = 58;' ()2 + (4)7]
127 s

= I'(Z I'Z
= 0 ms (s—m3)* +m5I% (7= " )Nz = phu”)

* Writing the partial widths as 1 .. = F(Z o e"‘e‘) etc., the total cross section
can be written

121 5

+ - 7\ _
G(E e —>Z—>ff)_ m%. (s—méjz—km%f%

reerff (2)

where f is the final state fermion flavour:
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Electroweak measurements at LEP

* The Large Electron Positron (LEP) Collider at CERN (1989-2000) was designed
to make precise measurements of the properties of the Z and W bosons.

+26 km circumference accelerator
straddling French/Swiss boarder
« Electrons and positrons collided at
4 interaction points
4 large detector collaborations (each
with 300-400 physicists):
ALEPH,
DELPHI,
L3,
OPAL

Basically a large Z and W factory:

* 1989-1995: Electron-Positron collisions at Vs = 91.2 GeV
= 17 Million Z bosons detected

* 1996-2000: Electron-Positron collisions at Vs = 161-208 GeV
= 30000 W*W- events detected
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e+e- annihilation in Feynman diagrams

||||||||||||||||||||||||||||||||||||

In general e*e- annihilation
involves both photon and
Z exchange : +interference

-----------------------------------------------------

ELLRTEEI LR P oS T L DA TR T 2 2

Well below Z: photon
exchange dominant
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At Z resonance: 2
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Cross-section measurements

* At Z resonance mainly observe four types of event:
ete- —=Z—cete ete =Z—utuy- ete —mzZ—1tt
ete” — Z — gg — hadrons

* Each has a distinct topology in the detectors, e.g.

ete” =Z—utu- ee” — Z — hadrons

-._.d“" S,

* To work out cross sections, first count events of each type
* Then need to know “integrated luminosity” of colliding beams, i.e. the
relation between cross-section and expected number of interactions

Nevents = Lo
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* To calculate the integrated luminosity need to know numbers of electrons and
positrons in the colliding beams and the exact beam profile
- very difficult to achieve with precision of better than 10%

* Instead “normalise” using another type of event:

€ € + Use the QED Bhabha scattering process
+ QED, so cross section can be calculated very precisely
y + Very large cross section — small statistical errors
+ Reaction is very forward peaked - i.e. the
et et electron tends not to get deflected much
do L 1 |do_ 1
et dQ  ¢*  sin6/2 do  6°

\

Photon propagator

+ Count events where the electron is scattered in the Very forward direction

------------------------------------

— O
Nbhabha = £ Ophabha = ¢ | OBhabha_known from QED calc.
* Hence all other cross sections can be expressed as
N; .
Cross section measurements
O, = —O
! Nphabha Bhabha| = Involve just event counting !
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Measurements of the Z line-shape

* Measurements of the Z resonance lineshape determine:
= Mz :peak of the resonance
= I'7 :FWHM of resonance
« I’y :Partial decay widths

= N, :Number of light neutrino generations
* Measure cross sections to different final states versus C.o.M. energy \/;

* Starting from 1971
4+ — — AY
ole e —7Z— =
( 71) ms (s—mz)* +m3

maximum cross section occurs at \/; = myz Wwith peak cross section equal to

Feerff (3)

0 o 12?: reerff

g - =
2 2
T mg 17
* Cross section falls to half peak value at , /¢ ~ E which can be seen
immediately from eqn. (3) )
Ji
* Hence |7 = — = FWHM of resonance

Tz
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* In practise, it is not that simple, QED corrections distort the measured line-shape
* One partleularly |mpertant correetlen initial state radlatlon (ISR)
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£ EZE /
EEE o - by
* Measured Cross seetlen can be written:

Omeas(E) = | O(E") (/E;f: )dE

Probability of e+e- colliding with C.o.M. energy
E'when C.0.M energy before radiation is E

* Fortunately can calculate f(E’ E)very
precisely, just QED, and can then obtain

Z line-shape from measured cross section

o(ete” — Z — hadrons) /nb

o
=

13
-

[y
=

[
=

Z

VY

f

F

39



* In principle the measurement of 7z and 17 is rather simple:

run accelerator at different energies, measure cross sections, account for ISR,
then find peak and FWHM

‘ mz, = 91.1875=0.0021 GeV

* 0.002 % measurement of m,!

* To achieve this level of precision — need to know energy of the colliding beams
to better than 0.002 % : sensitive to unusual systematic effects...

Moon:

+ As the moon orbits the Earth it distorts the rock in the Geneva

area very slightly !

+ The nominal radius of the accelerator of 4.3 km varies by #0.15 mm
+ Changes beam energy by ~10 MeV : need to correct for tidal effects !

Trains:

+ Leakage currents from the TGV
railway line return to Earth following
the path of least resistance.

+ Travelling via the Versoix river and
using the LEP ring as a conductor.

+ Each time a TGV train passed by, a small
current circulated LEP slightly changing
the magnetic field in the accelerator

+ LEP beam energy changes by ~10 MeV

CERM
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Number of generations

*Total decay width measured from Z line-shape: 17 =2.4952 +0.0023GeV

* |f there were an additional 4t generation would expect Z — V4V4 decays
even if the charged leptons and fermions were too heavy (i.e. > m;/2)

* Total decay width is the sum of the partial widths:

Iz =T+ Fpp + 'tz + hadrons + rv| V] + rv2v2 + rv3V3 +7?

* Although don’ t observe neutrinos, Z — VV decays
affect the Z resonance shape for all final states

* For all other final states can determine partial decay

widths from peak cross sections:

. =

I 2 2

N ARY

* Assuming lepton universality:

FZ — 3F€€ + Fhadrons +Nv FVV
/ N |

measured from measured from calculated
Z lineshape peak cross sections

=) | Ny = 2.9840 = 0.0082

0,4 1]

cte” — Z — hadrons

. ALEPH 2\
| DELPHI / \
L3 I/

. OPAL XV \%
R
I by factor 10

¥S¥-262 (9002) L2v 'spoday soisAyd

* ONLY 3 GENERATIONS  (unless a new 4th generation neutrino has very large mass)
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Forward-backward asymmetry

* (expression for the differential cross section:
(Ml o< [(e5 )+ (cg)?][(cr ) 4 (ck)*)(1 4 cos® @) +[(cf )* — ()] (e}, )* = (ck)*] cos @
* The differential cross sections is therefore of the form:
do — [(re)2 e\ 217( A2 12
a — K X [A(] +C0529)+BCDS B] { A= [(CL) +(CR) ][(CL) +(CR) ]
— 2 2 Hy2 HN2

B ={[(c])”— (cg)l(cr )™ — (cg)]

* Define the FORWARD and BACKWARD cross sections in terms of angle

incoming electron and out-going particle

| _do dcos @ Op = ) _do
o dcos@ 5= J_1dcos®

dcos @

OFr =

e.g. “backward hemisphere”

> F -
P W
N ) e ¥
e* '
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*The level of asymmetry about cos6=0 is expressed  } 4
in terms of the Forward-Backward Asymmetry B F /‘
OF —Cg \_ .
AR = ——— _
OF + Og : —
- Integrating equation (1): -1 cos6 +1
! ! ) 4 1
OF = Kf [A(14cos*0)+Bcos@]dcos = r:f A(14+x7)+Bx]dx =« (§A + EB)
0 0

0
Op = rc/ | [A(14-cos> @) +Bcos 0]dcos 0 = rc/{)] A(1+x%) +Bx]dx =k (%A - %B)

* Which gives: :
or—0g _ B 3 [[ci)z - (63)2] _ [(CL)E —(cﬁ)z}
ortop  (8/3)A 4 |(c)*+ (k)] Lic])?+(ck
* This can be written as
3 )2 — (c%)? 2c)el
App = ~AAy with Ap = ( ﬁ)z ( f)z = A
4 (cp)?+(cr)*  (c))2+(c))?
* Observe a non-zero asymmetry because the couplings of the Z to LH and RH

particles are different. Contrast with QED where the couplings to LH and RH
particles are the same (parity is conserved) and the interaction is FB symmetric

Arp =

(4)
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Measured Forward-Backward Asymmetries

* Forward-backward asymmetries can only be measured for final states where
the charge of the fermion can be determined, e.g. ete” —7Z — ‘u,ﬂu_

OPAL Collaboration, ) ~
Eur. Phys. J. C18 (2001) 587-651. Because sin“0, = 0.25, the value of

Agg for leptons is almost zero

5
i

1 ee—mu OPAL_Z

o
=

For data above and below the peak
of the Z resonance interference with

dcfdcosﬂp- (nb)
%

f ete” = Y— UTU™ leadstoa
:/ larger asymmetry

0.6
0.4 * LEP data combined:
02 | : [:> AFR—00145:|:0 0025
n.n_l----_[;.s;---[;----ﬂiﬁ--'9-1 Ayl = 0.0169+0.0013
€Oy App =0.0188+0.0017
*To relate these measurements to the couplings uses Apg = %AEA;[

* |n all cases asymmetries depend on A,
* To obtain A could use AEEE = %Az”
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Determination of the weak mixing angle

ﬂ'l
* From LEP : AF.{; = %AeAf Ay Ap,Aq, ...
* From SLC : ALR — Ae" |

Putting everything 4, =0.151440.0019 includes results from
together —) Ay = 0.1456 £ 0.0091 other measurements
A; =0.1449 £ 0.0040

26{,c£ _, cy /ca
Ay T+ ev/a)?

* Measured asymmetries give ratio of vector to axial-vector Z coupings.
* |In SM these are related to the weak mixing angle

I3, —2Qsin? 2
v _ 1w Qsin GW:l——Qsinzﬁwzl—ﬁllleian’w

ca 158 I
* Asymmetry measurements give precise determination of Sil'l2 Gw

with A.f =

sin® By = 0.231544+0.00016
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WW production

* From 1995-2000 LEP operated above the threshold for W-pair production
* Three diagrams “CC03” are involved

lli.‘-.i.ii.i..tidii‘i.‘ti LEARLIE LIRLIRLIELL R LI LL L LL LIl L LI LIl LI R I Ll LI LIy Lo LIl LRI LI LI LIl LIl LiL LI LIl E Ll IL YLl LI Il I L] i.iii‘-.i‘-it‘-ii..i.it..i‘h

wt Wt e ——— AN W+=
M >\l\l\l\{: Y Ve

* W bosons decay (p.459) either to leptons or hadrons with branching fractinns:
Br(W~ — hadrons) =~ 0.67 Br(W= —e V) ~0.11
Br(W= = u~v,)~0.11 Br(W~= —17v;)=0.11

* Gives rise tn three distinct tnnolnules

WIW —(¢tvlv W*W —>qq€V WTW~ — qgqqq
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e+e- -> WW cross-section

* Measure cross sections by counting events and normalising to low angle
Bhabha scattering events

| : : e, K Data consistent with SM expectation
LEP A "Il * Provides a direct test of ZW W~ vertex

PRELIMINARY

‘ & Wt \
| T - & W—

G o -
W A
Lk I/ l B A >
:__5:'- Y ESWW/RacoornWW e W—

30

Oy (Pb)

; no ZWW vertax (Gentle)
.-"* -.only v, exchange (Genila) E."+ E ANANANL W_|_
n - I I I
160 180 200 B Y Ve
Vs (GeV) e —>—hA AW

* Recall that without the Z diagram the cross section violates unitarity
* Presence of Z fixes this problem
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W-mass and W-width

*x Unlike ¢'¢” — Z , the process ete” — WTW™ is not a resonant process
—> Different method to measure W-boson Mass
Measure energy and momenta of particles produced in the W boson decays, e.g.

wWtw— — gge v Paq; * Neutrino four-momentum from energy-
momentum conservation !

pe pr-?] +pf-?2 +Pe‘|’Pv — (\/';:10)
. Reconzstruct 2massgs of two W bﬂscﬁns

- MIZEZ_PZZ(pm"‘pq%)

Y M- =E”— p° = (pe+ py)

* Peak of reconstructed mass distribution

gives
my = 80.376 £0.033GeV

B T l _I' L] Li 'I
3 (c) qqlv BW

g
I

events / GeV
s
=

g

* Width of reconstructed mass distribution

gives:
I'y =2.196 £ 0.083 GeV

Does not include measurements
from Tevatron at Fermilab

A3 (My +M-)
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The Higgs mechanism

* Propose a scalar (spin 0 ) field with a non-zero vacuum expectation value (VEV)

Massless Gauge Bosons propagating through the vacuum with
a non-zero Higgs VEV correspond to massive particles.

* The Higgs is electrically neutral but carries weak hypercharge of 1/2
* The photon does not couple to the Higgs field and remains massless
* The W bosons and the Z couple to weak hypercharge and become massive

More abous Higgs mechanism: next week lecture
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* The Higgs mechanism results in absolute predictions for masses of gauge bosons
* In the SM, fermion masses are also ascribed to interactions with the Higgs field
- however, here no prediction of the masses — just put in by hand

Feynman Vertex factors:

W <
‘iw 474:::
gw
me

igwmy g"” igzmzgh"

* Within the SM of Electroweak unification with the Higgs mechanism:

::> Relations between standard model parameters

1
v — e \ 2 | my — my
W V2Gr /) sinBy cos Oy

* Hence, if you know any three of : O, G,y ,mz,Sin By predict the other two.
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Precision tests of the Standard Model

* From LEP and elsewhere have precise measurements — can test predictions

of the Standard Model !
-e.g. predict: | my = mycos By measure |2 — 91.1875 +0.0021 GeV
sin? By = 0.23154+0.00016

*Therefore expect:

my = 79.946 +£0.008GeV|  PU my = 80.376 +0.033GeV

measure

* Close, but not quite right — but have only considered lowest order diagrams\

. . Year 2011
* Mass of W boson also includes terms from virtual loops HP

[ PR

f\mm:>fvvv\,-|—«/\©\m+fvx}vvv0\/\,
14 14

b

my = mﬂ, +am3 + bln (@)
nyy

* Above “discrepancy” due to these virtual loops, i.e. by making very high precision
measurements become sensitive to the masses of particles inside the virtual loops !
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The top quark

* From virtual loop corrections and precise LEP data can predict the top quark mass:

m P =173+ 11GeV

* |In 1994 top quark observed at the Tevatron proton anti-proton collider at Fermilab
— with the predicted mass !

* The top quark almost exclusively
decays to a bottom quark since

Vi|? > [Via* + [Vis|?
* Complicated final state topologies:
11 — bbgqqq — 6 jets
1T — bbqglv — 4 jets+( + v
1T — bblviv — 2 jets+ 26+ 2v

* Mass determined by direct reconstruction (see W boson mass)

m™e = 1742 £3.3GeV

\ Year 2011
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* But the W mass also depends on the Higgs mass (albeit only logarithmically)

{ A
AN +«/\©«/\. I AR mw:m?v—l—am?—l—b]n(:—ﬂ)
= W w

W
7

* Measurements are sufficiently precise
to have some sensitivity to the Higgs

mass

{ —LEP1 and SLD
80.5 1 —— LEP2 and Tevatron (prel.)
68% CL

* Direct and indirect values of the top
and W mass can be compared to
prediction for different Higgs mass

* Direct: W and top masses from
direct reconstruction

* Indirect: from SM interpretation

of Z mass, 6, etc. and

| oo * Data favour a light Higgs:
150 175 200
= |my <200GeV

\Year 2011
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Summary

* The Standard Model of Particle Physics is one of the great scientific triumphs
of the late 20 century

* Developed through close interplay of experiment and theory

Dirac Equation Experiment | [ Gauge Principle Higgs Mechanism

\\AB //

The Standard Model

I

Experimental Tests

* Modern experimental particle physics provides many precise measurements.
and the Standard Model successfully describes all current data !

* Despite its great success, we should not forget that it is just a model;
a collection of beautiful theoretical ideas cobbled together to fit with
experimental data.

* There are many issues / open questions...
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The CKM matrix and CP violation




CP violation in the Early Universe

- Very early in the universe might expect equal numbers of baryons and anti-baryons
- However, today the universe is matter dominated (no evidence for anti-galaxies, etc.)
- From “Big Bang Nucleosynthesis” obtain the matter/anti-matter asymmetry
ngp —HNgp ng »
f=—"—Brn—x10"°
My Ry
i.e. for every baryon in the universe today there are 109 photons
+ How did this happen?

* Early in the universe need to create a very small asymmetry between baryons and
anti-baryons
e.g. for every 10° anti-baryons there were 10°+1 baryons
baryons/anti-baryons annihilate —)
1 baryon + ~10° photons + no anti-baryons

* To generate this initial asymmetry three conditions must be met (Sakharov, 1967):

@ “Baryon number violation”, i.e. 1B —Hp is not constant
® “C and CP violation”, if CP is conserved for a reaction which generates
a net number of baryons over anti-baryons there would be a CP
conjugate reaction generating a net number of anti-baryons
©® “Departure from thermal equilibrium”, in thermal equilibrium any baryon
number violating process will be balanced by the inverse reaction
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- CP Violation is an essential aspect of our understanding of the universe
« A natural question is whether the SM of particle physics can provide the
necessary CP violation?
- There are two places in the SM where CP violation enters: the PMNS matrix and
the CKM matrix
- To date CP violation has been observed only in the quark sector
- Because we are dealing with quarks, which are only observed as bound states,
this is a fairly complicated subject. Here we will approach it in two steps:
« i) Consider particle — anti-particle oscillations without CP violation
+ii) Then discuss the effects of CP violation

* Many features in common with neutrino oscillations — except that we will be
considering the oscillations of decaying particles (i.e. mesons) !
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Muon decay and lepton universality

*The leptonic charged current (W#) interaction vertices are:
Ve Vu Vi

14
* Consider muon decay:

«It is straight-forward to write down the matrix element

(¢) (u)
g = ’
My = W —[(p3)r* (1 — ¥ )u(p1)lguy [@(p2) Y (1 — ¥ )v(pa).
w
Note: for lepton decay q < mW so propagator is a constant | / mW
i.e. in limit of Fermi theory

«Its evaluation and subsequent treatment of a three-body decay is rather tricky
(and not particularly interesting). Here will simply quote the result

58



-The muon to electron rate G G'F m o1 2

['u —evv) = = with G = —2—
(u )= 19273 Ty 4/ 2mg,
Ge Gtmb
-Similarly for tau to electron [(T — evV) = —FF 7
( ) 19273
-However, the tau can decay to a number of final states:
Ve B Vv B —
T T S u
e ‘u_ d

Br(t—evv)=0.1784(5) Br(t— pvv)=0.1736(5)
-Recall total width (total transition rate) is the sum of the partial widths

r=Yr=-
[

-Can relate partial decay width to total decay width and therefore lifetime:
[(t—evv)=1:Br(t—evv)=Br(t—evv)/1;
-Therefore predict 19273 19273

H e M S d e T,
GGl GeGEm}
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All these quantities are precisely measured:
my = 0.1056583692(94) GeV 7, = 2.19703(4) x 10~%s
my = 1.77699(28) GeV 7 = 0.2906(10) x 1012

Br(t —evv)=0.1784(5)

Gt m T _
m | L — L LBr(t— evy)=1.0024£0.0033
G mT;
-Similarly by comparing Br(t — evv) and Br(t— uvv)
G—': = 1.000 £0.004
Gl
F
* Demonstrates the weak charged current is the same for all leptonic vertices
V‘, Vp VT
- W 14 — swW
e T
W W W

== | Charged Current Lepton Universality
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The weak interaction of quarks

* Slightly different values of G¢ measured in L decay and nuclear 3 decay:

< =

G = (1.16632+0.00002) x 10~ iGev— (1.136+0.003) x 1075 GeV 2

* |n addition, certain hadronic decay modes are nbsewed to be suppressed, e.g.
compare K~ — ‘u'?# and T — ,u._?# . Kaon decay rate suppressed factor 20

compared to the expectation assuming a universal weak interaction for quarks.
d Vu S Vu
D’V\/\f\< K- i)vvv\<
u n i n
- Both observations explained by Cabibbo hypothesis (1963): weak eigenstates are

different from mass eigenstates, i.e. weak interactions of quarks have same
strength as for leptons but a u-quark couples to a linear combination of s and d

d\ ([ cosB. sinB. \ [d
s')] 7\ —sinB, cos@, | \'s
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GIM mechanism

* |n the weak interaction have couplings between both #ud and ©§S which
implies that neutral mesons can decay via box diagrams, e.g.

cos@. W~
T 7 .
d M o< gy, cos 6,sin 6,
K’ u Vy
s *Historically, the observed branching
sinB. W+ ,|u+ was much smaller than predicted

* Led Glashow, llliopoulos and Maiani to postulate existence of an extra quark
- before dlscuvery of charm quark in 1974. Weak mteractmn cnupllngs become

cos l;;l}‘:,1< sin BL*::< SIK cos ;EE< $

[ Y.-'j
* Gives another box diagram for K — L )'.I
—sinB. W~ )
g T M, =< —gf, cos B, sin 6,
K 0 . C Vi «Same final state so sum amplitudes
S + M[* = [M + M| ~ 0

cosf. Wt -Cancellation not exact because m,, 75 me
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i.e. weak interaction couples different generations of quarks

u 7 u

= + 1""1<
% d cos 6, 5% d sin O, 8% s

V2

(The same is true for leptons e.g. e-v,, € v,, e v; couplings — connect different generations)

* Can explain the observations on the previous pages with Bc = 13.1°
+Kaon decay suppressed by a factor of tzm2 Elc ~ (J.05 relative to pion decay

1]
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CKM matrix

* Extend ideas to three quark flavours (analogue of three flavour neutrino treatment)

d’ Vid Vs Ve d By convention CKM matrix
s | = Vg Vs Vi 5 : defined as acting on '
ks with charge —ze
b' Vie Vis Vip b ; anar 37
Weak eigenstates CKM Matrix Mass Eigenstates

-~ ] " ] N
( Cabibbo, Kobayashi, Maskawa )

* e.g. Weak eigenstate d is produced in weak decay of an up quark:

s vas
+ Uu —)—‘q
+ W+

SW. d; V8w VI* aw

ﬁ i
u —)—q:

el N d
u + U
wt wt

i5 E
W

* The CKM matrix elements V,;j are complex constants
« The CKM matrix is unitary
« The V,;j are not predicted by the SM - have to determined from experiment
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Feynman rules

- Depending on the order of the interaction, #* —d or d — i ,the CKM
matrix enters as either V,,; or V',

‘Writing the interaction in terms of the WEAK eigenstates

8w U NOTE: U is the
V2 ) _ BW adjoint spinor not
Cf—)—‘q: Jdu =4 [_EEYM%(] _TS):| dr the anti-up quark
W

-Giving the |d — | weak current: Jdu =1 [—ITTH%U - 7’5)] Viad

‘For u — d’ the weak current is:

i

—/
u—_.,,,:: i =d | —i==y"3(1—-
- Jud I\@ ?’S)]

*In terms of the mass eigenstates 3" = d"T’}ﬂ — (Vudd )T}’U = mj }})

-Giving the |1t — d| weak current:

juﬂ' :E :d

—177”2(1— )]
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Hence, when the charge —% quark enters as the adjoint spinor, the complex
conjugate of the CKM matrix is used

* The vertex factor the following diagrams:

u d ! - + d
v s 4 o
W= W= d u

is

—iE V' (1= 1)

V2

* Whereas, the vertex factor for:

o g d>vl‘ii &<
wt wt U d

is

\/— udru ( }’5)
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* Experimentally determine

Vaa| [Vas| Vol 0.974 0.226 0.004
Vea| |Ves| [Veo| | & | 023 0.96 0.04
Via| [Vis| |Visl ? 9 y)

* Currently little direct experimental information on Vrd; V}s, Vfb
* Assuming unitarity of CKM matrix, e.qg. |Vm5.,|2 4 ‘Vcb‘z + |Vrb‘2 — |

gives:
Cabibbo matrix
Vad| [Vis| Vo] 0.974 0.226 0.004 ) e
|Vcd| |VL‘S| |Vcb| ~ | :0.23 096 0.04 different from PMNS
Vil [Vis| [Visl 0.01 0.04 0.999

* NOTE: within the SM, the charged current, Wi , weak interaction:

@ Provides the only way to change flavour !
@ only way to change from one generation of quarks or leptons to another!

* However, the off-diagonal elements of the CKM matrix are relatively small.
- Weak interaction largest between quarks of the same generation.
« Coupling between first and third generation quarks is very small !

* Just as for the PMNS matrix — the CKM matrix allows CP violation in the SM
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The neutral Kaon system

*Neutral Kaons are produced copiously in
strong interactions, e.g.

7~ (di) + p(uud) — A(uds) + K°(d5)
" (ud) + p(uud) — K (us) + Eﬂ(sﬁ) + p(uud)

- Neutral Kaons decay via the weak interaction
- The Weak Interaction also allows mixing of neutral kaons via “box diagrams”

i.c.t
ine = —~
K §w+ w-  _ K
S << d
u,c,t

-0

- This allows transitions between the strong eigenstates states K”, K

- Consequently, the neutral kaons propagate as eigenstates of the ovgr(iall strong
+ weak interaction ' i.e. as linear combinations of K”, K

-These neutral kaon states are called the “K-short” Ky and the “K-long” K[,
-These states have approximately the same mass m(K s) ~m(K) ~ 498 MeV

-But very different lifetimes: |7(Ks) = 0.9 x 107105 | [7(K;) =0.5 x 1075

68



CP eigenstates

*The K and K; are closely related to eigenstates of the combined charge
conjugation and parity operators: CF'

-The strong mgenstates K%(ds) and K (sd) have JP =0

*The charge conjugation operator changes particle into anti-particle and vice versa
-~ ~ . — _0
C|KY) = C|ds) = +|sd) = |K")
A

_ ~ )
similarly C| K ) — |K0> | The + sign is purely conventional, could
have used a - with no physical consequences

-Consequently

CP\KO} = —IK > CP\K } —|K0>
i.e. neither K U or K are eigenstates of CP
Form CP eigenstates from linear combinations:

Ki) = LK)~ [K)| | CPlK) = +]K)
) = LK) +K)| | CPIK2) = —|K2)
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Decays of CP eigenstates

*Neutral kaons otten decay to pions (the lightest hadrons)
*The kaon masses are approximately 498 MeV and the pion masses are
approximately 140 MeV. Hence neutral kaons can decay to either 2 or 3 pions

Decays to Two Pions: n

T
WK =z JP 0 -0 +0 o Lﬁo
-Conservation of angular momentum = [ =() ﬁ.

= P(n'7) = —1. - L.(=1)F = +1

The 7° = 7|§ (Lfﬁ - dE) is an eigenstate of C

= CP(n'7%) = +1

¥ KY = ztn  asbefore F’(:r+:r_)=+]
*Here the C and P operations have the identical effect

Tt P T Hence the combined effect of CP
o — O is to leave the system unchanged
:'T_ s + g )

Neutral kaon decays to two pions occur in CP even (i.e. +1) eigenstates
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Decays to Three Pions:

ﬁ K — ?EDEU:I JP . 0_ 5' O_ + 0_ + O_ Remember L is
gevsmsanmsnannes naneaen L T . . magnitude of angular
?L'D Conservation of angular momentum: 1 momentum vector

LV L1®L2=0 = L1:L2
?FD. \Lz D P(nﬁnﬂxﬂ)z_]__]‘_1‘(_])1,[‘(_])_{,2:_'

tttttttttttttttt

= CP(z'707%) = —1.

“‘:{ Kj"z":} ﬂ:-l—j'E“_“fE? T AR SR P -
;,1;+. ‘Again L1 =1,
L Pt Al =—1.— .- L(=Db (=1 =]
T e\ tme 0y tr—Y — Pt — Ly
& ° Crn n’)=+1.C(n'n )=P(x'n )= (—1)
""""""""""""""""""" A . at Lol
Hence gCP(TﬁR_?rO): l.(—l)LLE .‘\.H <. -"‘\.;ﬁ

-The small amount of energy available in the decay, m(K) —3m(m) ~ 70MeV
means that the L>0 decays are strongly suppressed by the angular momentum
barrier effects (recall QM tunnelling in alpha decay)

Neutral kaon decays to three pions occur in CP odd (i.e. -1) eigenstates
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* |If CP were conserved in the Weak decays of neutral kaons, would expect decays
to pions to occur from states of definite CP (i.e. the CP eigenstates K , K»)

K1) = (K% — [K))| CPIKy) =+[Ki) | [Ki — nm | [cPEVEN
K2) = f(|KO>+|K )) éﬁ|K2}:—|Kg> K> — | |CPODD

* Expect lifetimes of CP eigenstates to be very different
- For two pion decay energy available: myg —2m, ~ 220MeV
- For three pion decay energy available: myg — 3m; ~ 80MeV

* Expect decays to two pions to be more rapid than decays to three pions due to
increased phase space

* This is exactly what is observed: a short-lived state “K-short” which decays to
(mainly) to two piﬂns and a Iong lived state “K-long” which decays to three pions

|K5}:|K1}E%(|Ko}—|fﬂ)) with decays:  Kg — 7T
_ﬂ

)) with decays: K; — nnrw
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Neutral Kaon decays to pions

-Consider the decays of a beam of KD
*The decays to pions occur in states of definite CP

- IfCPis consewed in the decay, need to
express KV in terms of Kg and Kj,

|Ko) = 75 (IKs) +|K¢))

*Hence from the point of view of decays to pions, a KY beamis alinear
combination of CP eigenstates:
a rapidly decaying CP-even component and a long-lived CP-odd component
*Therefore, expect to see predominantly two-pion decays near start of beam
and predominantly three pion decays further downstream

>4

@ Ky —rrm

ij At large distance left
E’ with pure K, beam
-

K, — nnm /

>
Distance from K’ production
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* To see how this works algebraically:

-Suppose at time t=0 make a beam of pure KD

[t =0)) = L5 (Ks) +|Kz))

*Put in the time dependence of wave-function Ks mass: ms i
Ks(t)) = |Kg)eimst—Tst/2 | Ks decay rate: I'g = 1/1:5

NOTE the term e‘rff/~ ensures the Kg probability density decays exponentlally
i.e. |1][f_5|2 = <K5(f)|K3(t)> — ¢ Tt :g_-r/TS
*Hence wave-function evolves as

. I ) I
|W(f)) — ﬁ |K5)€_{”“5+"_1£}3_|_‘KL>E—{1mg+ﬂf}t

-Writing 95(;) =€—(fm.a'+£}]r and BL(I‘) :e_(me+£f),
w(n) = 5(6s(1)|Ks) + 6.(t)|K))
*The decay rate to two pions for a state which was produced as KV:
[(KO, — 1) o |(Ks| (1)) |2 o< |05(t)|2 = e 75" = e/

which is as anticipated, i.e. decays of the short lifetime component Kg
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Neutral Kaon decays to leptons

*Neutral kaons can also decay to leptons _ at
K —n'e v, K —m U vy 0
. K S -
K'—rmetv, K —muty, Ve
‘Note: the final states are not CP eigenstates —0
which is why we express these decays in terms of KO , K &

- Neutral kaons propagate as combined eigenstates of weak + strong
interaction i.e. the Ky, K|, . The main decay modes/branching fractions are:

Ks — 7n°m BR = 69.2% K, — #ntn a® BR=12.6%
— 7Y BR =30.7% — 72%2°%2° BR=19.6%
— T e'Ve BR=0.03% — @ ev, BR=202%
— TeV, BR=0.03% — ate vV, BR=202%
— T p'vy BR=0.02% — T u'vy BR=13.5%
— TUVy BR=0.02% — TV, BR=13.5%

-Leptonic decays are more likely for the K-long because the three pion decay
modes have a lower decay rate than the two pion modes of the K-short
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Strangeness Oscillations (neglecting CP violation)

‘The “semi-leptonic” decay rateto T et V. occurs from the K 0 state. Hence
to calculate the expected decay rate, need to know the K cumpunent of the
wave-function. For example, for a beam which was initially K we have (1)

() = 5(6s(t)|Ks)+6L(t)|KL))

‘Writing Ky, K; interms of Kﬁ}f“
() = 3[es((K%) —[K*) + 0 (K} + K))]

565+ 61)|K°) + 36— 65) K"

-Because Os(t) # O.(t) a state that was initiallya KV evolves
with time into a mixture of XV and K~ - “strangeness oscillations”

.The KV intensity (i.e. K" fraction):
LKy — K®) = [(K°|w(1))* = §|65+ 6, (2)
(3)

Similarly ~ T'(KY_, — £ = \(Eolw(f)) 2= 16s— 6.
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Using the identity |z| ﬂ:Zz|2 = |Z| ‘2 =l \Zzlzifﬁ(zwﬁ}

05+ 0,17 =

e~

e

e

e

e

g+ %rg}f :|: e (I'J'HL—}— % [ )t ‘2

Te _ _Z _ : _1
I'st + e It 1 29{ {E H?‘Isf‘g zl_‘gr_e—l—zrn;;e 21_}}}

T+l .
—I'gr -|—€_FLIj:ZE_J:Qr_Lr%{E_E(mS_mL)I}
T . _Lstly
Ust e tet 12072 cos (mg — my )t

_ _ _ Tg+ly
Ust L o1 4 207 cosAmt

-Oscillations between neutral kaon states with frequency given by the

mass splitting

Am =m(K) — m(Ks)

‘Reminiscent of neutrino oscillations ! Only this time we have decaying states.

-Using equations (2) and (3):

DKy — K%)=

MKy —K') =

B = B =

e 15! o Tt 4 0o s HTL2 o5 At (4)

o Tst Lo Tet _ 0 (L4012 o6 At ()
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- Experimentally we find:  [7(Kg) =0.9 x 107195 || 7(K;) = 0.5 x 10~ 7s

and  |Am = (3.506 +0.006) x 1015 GeV

i.e. the K-long mass is greater than the K-short by 1 part in 1016
* The mass difference corresponds to an oscillation period of

2mh

Tos::' - ~

12%x10 ?s

- The oscillation period is relatively long compared to the K¢ lifetime and
consequently, do not observe very pronounced oscillations

Intensiy

0.4

k), — K% = % [e st p o Tt 4 2¢ (T r")'fzcosmm]

(K y— K’"] = i [e st 4 ¢ T _ 2 (I r‘-J’ﬁcosﬁml]

After a few Kg lifetimes, left with a pure K
beam which is half K® and half K°

0.2

0 2 4 =] & 0 12

14
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* Strangeness oscillations can be studied by looking at semi-leptonic decays

- ) 4y
d u d u
K| )< 72 . B
) €-|-. K S v,
Ve e

* The charge of the observed pion (or lepton) tags the decay as from either a fﬂ
or ¥V because

0 - -0 _
K'—n e v, but K 4T e"V,| NOTALLOWED
_{} o .
K —nte v, KV nte v,
.So for an initial K" beam, observe the decays to both charge combinations:
0 0 =\
L netv, L re v,

which provides a way of measuring strangeness oscillations
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The CPLEAR experiement

*CERN : 1990-1996
*Used a low energy anti-proton beam
*Neutral kaons produced in reactions
pp— K~ ntK°
.y =)
pp — K n K

- Low energy, so particles produced
almost at rest

* Observe production process and
decay in the same detector

« Charge of Kiﬂ?q: in the production
process tags the iﬂ})tial neutral kaon
as either KU or K

- Charge of decay products tags the decay as either as being either K O or EO
* Provides a direct probe of strangeness oscillations
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An example of a CPLEAR event K~ (Sﬁ)

nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Production:
pp —|K_ KO

*For each event know initial wave-function,

e.g. here: |y(r =0)) = ‘KO)
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«Can measure decay rates as a function of time for all combinations:
eg. RT=DK’,—ne"Vv,)=I'(K",— K"
‘From equations (4), (5) and similar relatmns

Ry
R_ =
R_

Ry =

_F(K_U—}ﬂ.' etv,) =

= r( P — H+€_?€) = Nj'.l:ev
= F(K:—o — e Vo) = Npevy [e718 +e7 1 +2e~TsH12 cos Amt

=Ky — metv,) = Nzev [ Tt 4 o=Tut _ 2= (UsHTL)1/2 cog Amt

= N:rev4 e Ist o7 TLt 4 D™ (Fﬁ"'n)“/gco%ﬁmt

e Tst o= Tt _ o= (Is+I)t)2 cos.&mf

|'—= P =

where Nnev is some overall normalisation factor

-Express measurements as an “asymmetry” to remove dependence on Ny

Am —

(Ry+R-)—(R_+R.)

(Ry +R_)+(R_+R.)
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*Using the above expressions for R+ etc., obtain

2~ TsHTL)2 cog Amt

Ar. =
A. Angelopoulos et al., Eur. Phys. J. C22 (2001) 55
i..é 0.7 y
0.6 i—#ll
05 -1 * Points show the data
04 || * The line shows the theoretical
03 [ ‘i prediction for the value of Am
b ! most consistent with the CPLEAR
data:
01 |
Am = 3.485 x 102 GeV
-0.1

s 10 15 20
Neutral—kaon decay time [t]

*The sign of Am is not determined here but is known from other experiments
« When the CPLEAR results are combined with experiments at FermiLab obtain:

Am =m(Ky) —m(Ks) = (3.506+0.006) x 10~ GeV
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CP violation in the Kaon system

* So far we have ignored CP violation in the neutral kaon system
* |dentified the K-short as the CP-even state and the K-long as the CP-odd state

Ks) = |Ky) = %UKU} — |Eﬂ)) with decays: Kg— 7T CP = +1

Kp) = |K2) = %(\KU) + |Eﬂ}} with decays: K; — AT CP=-1

* At a long distance from the production point a beam of neutral kaons will
be 100% K-long (the K-short component will have decayed away). Hence,
if CP is conserved, would expect to see only three-pion decays.

* In 1964 Fitch & Cronin (joint Nobel prize) observed 45 K; — A decays
in a sample of 22700 kaon decays a long distance from the production point

— Weak interactions violate CP

-CP is violated in hadronic weak interactions, but only at the level of 2 parts in 1000

K, — atma® BR=126% CP=-—I
0.0_0 _ _
K, to pion BRs: — AR BR = 19.6% CP—=—1
— T BR=020% |CP=+I
- a'n’ BR=0.08% |CP=11
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* Two possible explanations of CP violation in the kaon system:
i) The Kg and K, do not correspond exactly to the CP eigenstates K, and K,

Ks) = ———— 1K) +elKo) | |1KL) = ———— (1K) +£[K0)]

1+ g]? 1+ g
with €] ~2x 1073
*In this case the observation of K; — 77T is accounted for by:

1
Kp) = K>)+ €K
Ku) = s [ o) elK)]
ii) and/or CP is violated in the decay

Ly 77 [cP=+1
arxw [cp= -1
IKL> = |K2> CP=-1 |

‘ TAT|CP=-1 | Parameterised by &S'r

LT CP=+1

* Experimentally both known to contribute to the mechanism for CP violation in the

kaon system but i) dominates: g"/g = (1.74£0.3) x 103 -[ E?:,f {Ejﬁ’;‘ﬂab]
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CP violation in semileptonic decays

* |f observe a neutral kaon beam a long time after production (i.e. a large distances)
it will consist of a pure K, component

(1+€)|Ko) +(1 - ) [K)]
I—m:"'e v Lo ety

* Decays to T et V., must come from the K component, and decays to
te~V, mustcome from the KY component

T(K, — mte V) o< (K KLY o< [1— €2~ 1 —2R{e)}
(K, — netv,) o [(KO|KL)|? o |1 +€)* ~ 14+ 2R{e}

* Results in a small difference in decay rates: the decayto T e*Vv, s
0.7 % more likely than the decay to 17 ¢~ V.,

-This difference has been observed and thus provides the first direct
evidence for an absolute difference between matter and anti-matter.

KL) = —

I+|e

* |t also provides an unambiguous definition of matter which could, for example,
be transmitted to aliens in a distant galaxy

“The electrons in our atoms have the same charge as those emitted
least often in the decays of the long-lived neutral kaon”
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CP violation and the CKM matrix

* How can we explain I“(flu —+ K") #T(K) , — fﬂ) in terms of the CKM matrix ?

* Consider the box diagrams responsible for mixing, i.e.

q
4> > —
K wt SW- || g°
S —¢ € d
qf

where ¢ = {u,c,r}, q = {Hafl’af}

* Have to sum over all possible quark exchanges in the box. For simplicity
consider just one diagram

: V‘f'd ::
d = * e
KO = cY t i EO Mfi oc Ay Vcd Vcsv}d Vf_s:
S — d ™ A constant related
V. Via to integrating over
virtual momenta
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* Compare the equivalent box diagrams for KU — fﬂ and fﬂ — K”

— ‘/::d I: > s —_ VCS fi}
d S d
S —e—hrrnl—ed d —— S
Vs Vid cd Vis
Mﬁ' o< Acr Vc:d V.:;%d V;E }i o Aﬂf CBVC’"V&"ES - ;f

* Therefore difference in rates
I(K” — K’) — (K’ — K°) o< My — M7, = 23{My;}
* Hence the rates can only be different if the CKM matrix has imaginary component

€] o< S{Myi}

* |In the kaon system we can show
€] o« A 3{ViaVisViaVis } +Act S{VeaViViaVis } + Au S{Via Vi ViaVis }

Shows that CP violation is related to the imaginary parts of the CKM matrix
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Summary

* The weak interactions of quarks are described by the CKM matrix

* Similar structure to the lepton sector, although unlike the PMNS matrix,
the CKM matrix is nearly diagonal

* CP violation enters through via a complex phase in the CKM matrix

* A great deal of experimental evidence for CP violation in the weak
interactions of quarks

* CP violation is needed to explain matter — anti-matter asymmetry in the
Universe

* HOWEVER, CP violation in the SM is not sufficient to explain
the matter — anti-matter asymmetry. There is probably another mechanism.
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Appendix: determination of CKM matrix

*The experimental determination of the CKM matrix elements comes mainly from
measurements of leptonic decays (the leptonic part is well understood).
- It is easy to produce/observe meson decays, however theoretical uncertainties
associated with the decays of bound states often limits the precision
- Contrast this with the measurements of the PMNS matrix, where there are few
theoretical uncertainties and the experimental difficulties in dealing with neutrinos
limits the precision.

© |[|V,4l| |from nuclear beta decay ( . :)
Vv B Super-allowed 0*—0* beta decays are
J ud Ve relatively free from theoretical uncertainties
I |Vud‘2
e

Via| = 0.97377 £0.00027 (~c0s6,)
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® ||V,.|| |from semi-leptonic kaon decays ( X }

u
- ‘/H 0 I ox |V |2 S
K- s Vis v,
|Vis| = 0.2257 +0.0021 (= sin6,)
-
© | |V.l from neutrino scattering | v, +N — utu X ( x . )

Look for opposite charge di-muon events in Vﬁi scattering from production and

decay ofa D" (cd) meson
(cd) Rate o< [Vo4|*Br(Dt — Xutvy)

il

opposite sign
up pair

Measured in various
collider experiments

—«—\ = ||V =0.230+0.011
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9 |Vcs| from semi-leptonic charmed meson decays ( x )

ed. 4 o T oc |V,[2
D v p -Precision limited by theoretical uncertainties
{ ¥
- [Ves| = 0.957+0.017 £0.093
—— Y
e" experimental error theory uncertainty
© ||V.,| | |from semi-leptonic B hadron decays ( - )
e X
i .
BT, Vg Lo |Vep|>
Ci —
Ve
\Vep| = 0.0416 £ 0.0006
=
® ||V,,| | |from semi-leptonic B hadron decays X
e.g. 7 ) c.
“ " T | |V ‘2
B~y Vs . ub

V.| = 0.0043 +0.0003
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