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Symmetries and Quark Model
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Symmetries and Conservation Laws

* Suppose physics is invariant under the transformation
Y — l;/" = nyf e.g. rotation of the coordinate axes

* To conserve probability normalisation require
(wly) = (y'ly) = (Oy|Uy) = (y|UU|y)

- | UTU =1 i.e. {/ has to be unitary

*For physical predictions to be unchanged by the symmetry transformation,
also require all QM matrix elements unchanged

(W[Ay) = (V'|Aly) = (y|OTAO |y)

i.e. require ﬁ*ﬁﬁ — H
xU JUTAU =UH = HU=UH
therefore [ﬁ {jf] =0 {jf commutes with the Hamiltonian

* Now consider the infinitesimal transformation (€ small)
U=1+ieG

( G is called the generator of the transformation)



* For C’ to be unitary
U0 = (1+ieG)(1—ieG") = 1+ie(G— G+ 0(e?)

neglecting terms in €2 UUT=1 = G =Gt

)

i.e. (G is Hermitian and therefore corresponds to an observable quantity G !
*Furthermore, [H,U|=0 = |H,1+ieG|=0 = |H,G|=0

d . A
But from QM E<G> =£([H;G}) —

i.e. (G is a conserved quantity.

Symmetry «== Conservation Law

* For each symmetry of nature have an observable conserved quantity
ExamQIE' Infinitesimal spatial translation x — x4 €

I.e. expect physics to be invariant under l,u —:~ IJ/’ l,l!(.erE.‘)

Vi =y e = v+ Gre = (14e5 ) vl

but  py=—iS = Y(x)=(1+iep,)y(x)

The generator of the symmetry transformation is Px = Py is conserved
*Translational invariance of physics implies momentum conservation !




* In general the symmetry operation may depend on more than one parameter

U=1+i¢.G
For example for an infinitesimal 3D linear translation : F—F+ €
—_— =1 Jrig.ﬁ p= (ﬁxﬁyﬁz)

» So far have only considered an infinitesimal transformation, however a finite
transformation can be expressed as a series of infinitesimal transformations

. a -\" .
U(¢) = lim (1 +.e—.(;) = %0

fil—oo n

Example: Finite spatial translationin1D: X — X+ Xo with ﬁ(xo) — 0P«

V() =yle+x) = Oylx) =exp (xo%) W(x) (f’-f B “%)

d 2 d2
= (l +X0— -E——F) lp'(x)

dr 2!y
= yx)+x dy | % dglﬂ%—
IR AT T

I.e. obtain the expected Taylor expansion



Symmetries in Particle Physics: Isospin

* The proton and neutron have very similar masses and the nuclear
force is found to be approximately charge-independent, i.e.

Vop = Vap =2 Vi

*To reflect this symmetry, Heisenberg (1932) proposed that if you could
“switch off” the electric charge of the proton

There would be no way to distinguish
between a proton and neutron

*Proposed that the neutron and proton should be considered as
two states of a single entity; the nucleon

r=(0)  n=(7)

* Analogous to the spin-up/spin-down states of a spin-'2 particle

ISOSPIN

* Expect physics to be invariant under rotations in this space

* The neutron and proton form an isospin doublet with total isospin I =2 and
third component I, =+ %



Flavour Symmetry of Strong Interaction

We can extend this idea to the quarks:
* Assume the strong interaction treats all quark flavours equally (it does)

*Because n, ~ my:

The strong interaction possesses an approximate flavour symmetry
i.e. from the point of view of the strong interaction nothing changes
if all up quarks are replaced by down quarks and vice versa.

* Choose the basis 1 0
=(0) =)

* Express the invariance of the strong interaction under U < d as
invariance under “rotations” in an abstract isospin space

() =0 (4)= (o) ()

The 2x2 unitary matrix depends on 4 complex numbers, i.e. 8 real parameters
But there are four constraints from U*U — ]

= 8 -4 =4 independent matrices

*In the language of group theory the four matrices form the U(2) group



* One of the matrices corresponds to multiplying by a phase factor

(40

not a flavour transformation and of no relevance here.

* The remaining three matrices form an SU(2) group (special unitary) with |det/ = 1]

 For an infinitesimal transformation, in terms of the Hermitian generators (G
) U=1+ieG
cdetU =1 = Tr(G)=0

* A linearly independent choice for G are the Pauli spin matrices

01 0 —i 1 0
m=(nﬂ ®=(fo) @=(04)

* The proposed flavour symmetry of the strong interaction has the same
transformation properties as SPIN !

* Define ISOSPIN: T =18  U=¢%T
* Check this works, for an infinitesimal transformation
o 1. . [ ]-f—lffig Li(S} —iEg)
U=14+=-if.0 = l4+=(go+80m+te30n)= 272 2
+2 +2( 101 + €20 + £03) (%I’(El—l—fﬁg) 1—%.!'83
Which is, as required, unitary and has unit determinant

UTU=1+0(g2)  detU =1+0(£?)



Properties of Isospin

* |sospin has the exactly the same properties as spin
7, =iTz |1, =iTy [T3,T| =il
7%, 1] =0 T? =T +T7 + T3

As in the case of spin, have three non-commuting operators, 11,715,713 and
even though all three correspond to observables, can’t know them simultaneously.

So label states in terms of total isospin [/ and the third component of isospin /3

NOTE: isospin has nothing to do with spin - just the same mathematics

* The eigenstates are exact analogues of the eigenstates of ordinary
angular momentum |s,m) — |[,13)

with — T2|1 L) =1(I+1)|1,13)  Ti|l,13) = B|1.13)

* In terms of isospin:

1 0
u=(0)=13+1)  a=(7)=14-b

|
(]|

+ @ =
[t | et

* Ingeneral [3 = %(Nu —Nyg)



* Can define isospin ladder operators - analogous to spin ladder operators

e (£
: -O— ® o> I3 : |
Uz T LB = \IT+1) =L+ 1)[L,E+1) paus

T |,B) =\/I(I+1) =LK —1)|I,l5—1)
Step up/down in I3 until reach end of multiplet 7' |I[,+1) =0 T_|I,—1) =0

Tru=0 Tyd=u T-u=d T_.d=0

» Ladder operators turn ¥ —d and d — u

T. =T +iT»

T = T1 —ing

* Combination of isospin: e.g. what is the isospin of a system of two d quarks,
is exactly analogous to combination of spin (i.e. angular momentum)

10,511, 17) = |1.1)
e I3 additive: [3= 13(1] +1§2)
+ [ ininteger steps from |I() —J(2)| to |I(1) 4 ()]

* Assumed symmetry of Strong Interaction under isospin transformations
implies the existence of conserved quantites

* In strong interactions /3 and [ are conserved, analogous to conservation of
J;and J for angular momentum

10



Combining Quarks

Goal: derive proton wave-function
* First combine two quarks, then combine the third
* Use requirement that fermion wave-functions are anti-symmetric

Isospin starts to become useful in defining states of more than one quark.
e.g. two quarks, here we have four possible combinations:

dd ud, du uu Note: (®) represents two
® (& o— I3 states with the same value
=/
—1 0 | of I3

-We can immediately identify the extremes ( /3 additive)

””—lzaz)hu)_ll +1> dd—‘z* >|2’_%>_|1 _1>

To obtain the |1 0) state use ladder eperaters

\1 -|—]) \f|1 0) (uu)—ud-l—du

| 1 (}) f (ud + du)
The final state, |0 0) can be found frem orthogonallty with |1,0)
= 10,0) = E(ud—du)é

11



* From four possible combinations of isospin doublets obtain a triplet of
isospin 1 states and a singlet isospin 0 state 2 X2 =3& 1

dd ﬁ(ua’nLdu) i %(ud —du)
—e o o— I3 O ® > I3
e O e O ;

 Can move around within multiplets using ladder operators

* note, as anticipated [3 = %(Nu —Ny)
» States with different total isospin are physically different - the isospin 1 triplet is
symmetric under interchange of quarks 1 and 2 whereas singlet is anti-symmetric

* Now add an additional up or down quark From each of the above 4 states
get two new |sosp|n states with 1'3 = 13 :I:

- ddu uud :

o S=(ud +du)d 1 I

ddd v,—(u + du). I(ud+du) i’ T(ud duyd z(ud—du)_;;__,g

—— oy ol > L @ —e o> I3

3 ;

—3 -3 0 4] +3 -3 0 +3
6 2

* Use ladder operators and orthogonality to group the 6 states into isospin multiplets,

e.g. to obtain the | = % states, step up from ddd

12



*Derive the [ =

3
2

states from Jddd = |23 E)

T, T, T,
—o . . o I3
3 3
—3 -3 0 43 +3
T.|3,—3) = T.(ddd)=(T.d)dd+d(T.d)d+dd(T.)d
V3[3,-1) = udd—l—dud+ddu
(3, -1y = (udd+dud+ddu)
Ti|3,—3) = v—rrl (udd+dud+dda}
2|13, +3) = V—,—(uud+udu+uud+duu+udu+duu)
|%+,],:) — %(uud—{—ud&-{—duu}
T+|%_,—|—%> = % " (wud + udu + duu)
Vst - ...ﬁ(“”“””“*“““j
|%+%> = uuu

* From the IE' states on previous page, use orthoganality to find \ 3

* The|2

states on the previous page give another | o

o‘

% ) states

5) doublet

13



*The eight states uuu, uud, udu, udd, duu, dud, ddu, ddd
are grouped into an isospin quadruplet and two isospin doublets

20202=200331)=2x3)e2x1)=4022

 Different multiplets have different symmetry properties

3 4+3) = uuu )

%,Jr%) = %ﬁ (uud + udu+ duu) A quadruplet of states which
3 1y 1 » | S | | are symmetric under the

2 T2) = NG (ddu+dud +udd) interchange of any two quarks
3 3y

5,—5) =ddd _,

1 ] 1

29 _§> T(zdd” —udd — d”d)} M Mixed symmetry.

%,—l—%) — VL’E(Z uud — udu — duu) S| [ Symmetric for 1 <= 2

1 Iy 1

20 §> 2 (”dd o d“d) M Mixed symmetry.

%,—l—%) — ﬁ(udu—duu) A Anti-symmetric for 1 «= 2

* Mixed symmetry states have no definite symmetry under interchange of
quarks ] < 3 etc.

14



Combining Spin

» Can apply exactly the same mathematics to determine the possible spin
wave-functions for a combination of 3 spin-half particles

3 3
if+§
3.
25
31
2 2
33
2:7 2
11
21 2
| |
7, T3
11
2
|
2:

)

“‘--#""“‘-..u"‘""‘--"""“-—-.-—-"""--—-—"'

2) =
3) =

1l L
S-sk 2

D
{_
{I_

al:w_

vr(Tll 110)
(11 = 111)

(1L 4+ 11T+ 1)
(LT LT+ 1L |

|

\

=211 =Tl - lTl)
211 =11 =111)

A quadruplet of states which
are symmetric under the
interchange of any two quarks

Mixed symmetry.
MS

Symmetric for 1 = 2

M,

Mixed symmetry.
Anti-symmetric for 1 «= 2

* Can now form total wave-functions for combination of three quarks

15



Baryon wave functions (ud)

* Quarks are fermions so require that the total wave-function is anti-symmetric under
the interchange of any two quarks

* the total wave-function can be expressed in terms of:

Y= ‘pﬂavourxspin Ig’cc}lourT.'S;pa-;:(:
* The colour wave-function for all bound qqq states is anti-symmetric (see handout 8)

* Here we will only consider the lowest mass, ground state, baryons where there
Is no internal orbital angular momentum.

* For L=0 the spatial wave-function is symmetric (-1)-.

=" ig’colour T)space anti-symmetric

Overall anti-symmetric

m)  Ofavour Xspin symmetric

* Two ways to form a totally symmetric wave-function from spin and isospin states:

© combine totally symmetric spin and isospin wave-functions ¢ (S)x(S)

ddd  J-(ddu+dud +udd) 5 (uud + udu+ duu)
- 0 + ot
A A A A Spin 3/2
_.,g .1 0 .1 .3 > 13 Isospin 3/2
—32 ~2 T2 T2

16



® combine mixed symmetry spin and mixed symmetry isospin states
* Both ¢ (Ms)x(Ms) and ¢(Ma)x(Ms) are sym. under inter-change of quarks] < 2
* Not sufficient, these combinations have no definite symmetry under 1 < 3, ...
* However, it is not difficult to show that the (normalised) linear combination:

Lo (Mg 2 (M) + o (M) (M)

V2 V2
is totally symmetric (i.e. symmetricunder 1 < 2; 1< 3; 23 )
n P :
® | o— I3 |Spin1/2
_1 0 +1 Isospin 1/2
2 2

* The spin-up proton wave-function is therefore:

p1)= 6f(2uud udu—duu)(2 770 =117 1[17)+ Qif(udu—duu)(TlT—lTT)
p1) = F( 2ululd| —ululd] —ululdl+
- utd|ut—uldlul —uldlul+
2d |uTul—dlulul—dTulul)

NOTE: not always necessary to use the fully symmetrised proton wave-function,
e.g. the first 3 terms are sufficient for calculating the proton magnetic moment

17



Anti-quarks and Mesons (u and d)

* The u, d quarks and u, d anti-quarks are represented as isospin doublets

0 ~(9 | =0
‘T = | A= ()

1 1
2 3 T3

*Subtle point: The ordering and the minus sign in the anti-quark doublet ensures
that anti-quarks and quarks transform in the same way (see Appendix ). This is
necessary if we want physical predictions to be invariant under 4 — d; U < d

* Consider the effect of ladder operators on the anti-quark isospin states

o ra=n(0)=(85) ()= ()7

*The effect of the ladder operators on anti-particle isospin states are:

T.i=—-d T.d=0 Tu=0 T.d=-u

Compare with T u=0 Ind=u T-u=d T-d=0

18



Light ud Mesons

* Can now construct meson states from combinations of up/down quarks

d u u —d
= —e—— L4 o ——e— I3
1 1 | 1
—32 T3 ~2 132
» Consider the gg combinations in terms of isospin ndicates
O o e e e,
|1:+1>_ ‘§v+§>‘§a+§>__”d : representation of |
i 111 1 _ : an anti-quark
‘ 13 — 1> p—y | i y §> E’ —_— §> — du L ——-
To obtain the /3 = () states use ladder operatfrs and orthogonality
T_|1,+1) = T_|—ud|
V2[1,0) = —T_[u]d—uT-[d]
= —dd+uli
= |1,0) = % (uti — dd)
- Orthogonality gives: 0,0) = % (MHera)

19



Light ud Mesons

*To summarise:

d u 7]
® i ® > I3 9 - : g > I3
1 1 1 1

2 T3 2 T2

D:> Triplet of /] = 1 states and a singlet /] = () state

i pua—dd) g =5 (uti+dd)

' ® o— I3 H ® » I3

-1 T 0 T+l 0

*You will see this written as 2R 2=3 P 1
R ;/' N ———
Anti-quark doublet

L

H
H
H
.

i Quark doublet |

*To show the state obtained from orthogonality with |'1 ,0) iIs a singlet use
ladder operators

7,10,0) = T+%(uﬁ—|—d3) = \/% (—ud+ud) =0
similarly 7-10,0) =0

* A singlet state is a “dead-end” from the point of view of ladder operators

20



SU(3) flavour

* Extend these ideas to include the strange quark. Since s =~ My ,M4 don't

have an exact symmetry. But /725 not so very different from My Md  and can

treat the strong interaction (and resulting hadron states) as if it were
symmetric under 4 «—d < §
* NOTE: any results obtained from this assumption are only approximate
as the symmetry is not exact.

* The assumed uds flavour symmetry can be expressed as
/

u fu Uy U Upz u
d1=U\{d]| =1 Uy Uy Uy d
s/ s Us1 Usy Uss s

* The 3x3 unitary matrix depends on 9 complex numbers, i.e. 18 real parameters
There are 9 constraints from U?U =3

mp Canform 18 -9 =9 linearly independent matrices

These 9 matrices form a U(3) group.

* As before, one matrix is simply the identity multiplied by a complex phase and
is of no interest in the context of flavour symmetry

* The remaining 8 matrices have det/ = 1 and form an SU(3) group

* The eight matrices (the Hermitian generators) are: 7 — %i [ = Eiﬁ-f’

21



*In SU(3) flavour, the three quark states are represented by:

l 0 0
u= [0 d= |1 s=1{0
0 0 1

*In SU(3) uds flavour symmetry contains SU(2) ud flavour symmetry which allows
us to write the first three matrices:
0 0 0

M=% o] m=[%20] =930

000 000 000
010 0 —i0 1 00
i.e. ued| =100 =i 00] X3=[0-=10
000 0 00 0 00

= The third component of isospin is now written|/; = %.1,3
with Ku=+lu hd=-3d hLs=0
= [3 “counts the number of up quarks - number of down quarks in a state

= As before, ladder operators 7| = %(ll :I:ilz) de « Tj: » @ U

22



= Now consider the matrices correspondingtothe u+<sandd « s

00 =i 10 0\,
ues As= (00 0 00 0|,
00/ pNoo -1/
00 0O 00 0\
des Ar=100 —i 01 0|~
0: O 00 —1/,
1 00 b
* Hence in additionto A;=| 0 —1 0 have two other traceless diagonal matrices
0O 00
* However the three diagonal matrices are not be independent.
* Define the eighth matrix, }Lg , as the linear combination: Y = %13
00 0O 10 0O 10 0O d 4 u
— 1 1 — 1
As=7[01 O0)+-5[00 0)=-5101 0 O =
00 —1 00 —1 00 -2 >
which specifies the “vertical position” in the 2D plane = %13

“Only need two axes (quantum numbers)
to specify a state in the 2D plane”: (1,,Y)

Ts

23



*The other six matrices form six ladder operators which step between the states

d

AY
u

Jr% e —I — @

\\

/
with + | Vo
and the eight Gell-Mann matrices 2 .'/
3
1 00 S
u+<d A=10-10
0 00
ues 10 0
V3
00 -2

24



Quarks and anti-quarks in SU(3) flavour

-3 ¥

*The anti-quarks have opposite SU(3) flavour quantum numbers

AY Anti-Quarks

. - |Ba=-1a hd=+id

al
=~
=]
I
_|_
LS o]
bel

25



SU(3) ladder operators

* SU(3) uds flavour symmetry contains ud, us

and ds SU(2) symmetries
*Consider the i «— s symmetry “V-spin” which has

the associated § — u ladder operator

001\ /00 —i 001
Vi=2(Aa+ids)=31000 |+ 0 ={000
100) g

0
0 0
0 0
001\ /0 1
with Vis= 000 | [0 =(0]=+u
22)()-()

T.d=u, T-u=d;, | Tyu=—-d; T-d=—u
Vis=u, V_ou=s;, | Vi
Uis=d;, U.d=s;, (Ud=-—5, U.5=—d

all other combinations give zero

SU(3) LADDER
OPERATORS

Ty = %(:’L] +ilds)
Vi = 3(A4£ils)
Us = 5(A6 +il7)

d 4
o —I1 — g

N

U. | V.
\ |/

S

|
|

26



Light (uds) mesons

 Use ladder operators to construct uds mesons from the nine possible gg states

ds et T -!--! Uus
- : ) .
du. ~dduuss “ud
—> = ————@———>
.‘. k 2 +3
7 i R S

*The three central states, all of which have Y = (); /3 = (0 can be obtained using
the ladder operators and orthogonality. Starting from the outer states can reach

the centre in six ways

A
5 @t o Us
dii: T. _ d
—o—— @}ﬂfﬂb
SR . .......... Lo . S d

T, |dn) = |ui) — |dd)

Vo |st) = |um) — |s5)  V_|us) = |s5) — |um)

U, |sd) = |dd) —|ss) U-|ds) =|ss) —|dd)
*Only two of these six states are linearly independent.
Y = 0; [3 =0

* Therefore one state is not part of the same
multiplet, i.e. cannot be reached with ladder ops.

T_|ud) = |dd) — |uni)

* But there are three states with

27



* First form two linearly independent orthogonal states from:

jum) —|dd)|  |u) — |s5)  |dd)— |s5)
* If the SU(3) flavour symmetry were exact, the choice of states wouldn’t
matter. However, Mg > My, 4 and the symmetry is only approximate.

» Experimentally observe three light mesons with m~140 MeV: nt, 3'1'0 T

* Identify one state (the S’I ) with the isospin triplet (derived previously)
(uti — dd)

Vi = \[
* The second state can be obtained by taklng the linear combination of the other
two states which is orthogonal to the ;’i','(

Y2 = o(|um) —[s5)) + B(|dd) — |s5))
with orthonormality: (Y |y2) =0; (ya|yr) =1

— |y = ﬁ(wﬁ%—da—lﬁ)

* The final state (which is not part of the same multiplet) can be obtained by
requiring it to be orthogonal to Y1 and Y2

SINGLET

28



x|t is easy to check that Y3 is a singlet state using ladder operators
Lys=Ty=U,ys=U_-y3=V,y3=V_y3 =0

which confirms that y3 = % (it + dd + s5) is a “flavourless” singlet

* Therefore the combination of a quark and anti-quark yields nine states
which breakdown into an OCTET and a SINGLET

A
A taeddy e _ L+ dd + 55
da; ~ud B !
- — & — D —
ﬁ (it +dd — 255) <
SE.;" ------- $ """" '--ISE

* In the language of group theory: 3®3 =8@ 1
* Compare with combination of two spin-half particles 222 =3& 1
TRIPLET of spin-1 states: |1,—1), |1,0), |1,+1)
spin-0 SINGLET: |0,0)
*These spin triplet states are connected by ladder operators just as the meson
uds octet states are connected by SU(3) flavour ladder operators
*The singlet state carries no angular momentum - in this sense the
SU(3) flavour singlet is “flavourless”

29



PSEUDOSCALAR MESONS (L=0, S=0, J=0, P=-1)

KO(d5) e--%...e KT(u5) *Because SU(3) flavour is only approximate
the physical states with /5 =0, Y =0 can be
) ol il mixtures of the octet and singlet states.
s, & ’ . u Empirically find: [0 _ v,—(m,f—dd)
1 n~ v{,—(uu+dd 255)
K= (si) @19 K" (sd) n' ~ ﬁ(mt+dd+a.s) H singlet
VECTOR MESONS (L=0, S=1, J=1,P=-1)
K*(d5) @40 K*"(u5) *For the vector mesons the physical states
are found to be approximately “ideally mixed”:
~(du) - 0 ot (ud
0 O ~ T(zs:t+dd)
K*— (m}' ......... ".FU(S‘E) O ~= 55
MASSES
: 140MeV ;'rU 135MeV | | p*:770MeV _ng : 770MeV
Ki 494MeV K“ /K 1498 MeV | [K**:892MeV K*'/K* : 896 MeV
n : 549MeV " n’:958 MeV [- | ®:782MeV ¢ : 1020MeV

30



Combining uds Quarks to form Bayrons

* Have already seen that constructing Baryon states is a fairly tedious process
when we derived the proton wave-function. Concentrate on multiplet structure
rather than deriving all the wave-functions.

* Everything we do here is relevant to the treatment of colour
* First combine two quarks:

* Yields a symmetric sextet and anti-symmetric triplet: 3 X 3=6 P, 3

ud—l—du I
ﬁ ud du

Same “pattern” i
® as the anti-quark
representation

SYMMETRIC ANTI-SYMMETRIC

31



*Now add the third quark:

VeVev=|\ /o Llev

*Best considered in two parts, building on the sextet and triplet. Again concentrate
on the multiplet structure (for the wave-functions refer to the discussion of proton

wave-function).

© Building on the sextet: 306 =105 8

% uud_i_ udu_{_duu ')Hﬂd Hl‘jﬂ—dﬂu
Mixed
Symmetric Symmetry
Decuplet Octet

32



@® Building on the triplet:

*Just as in the case of uds mesons we are combining 3 X 3 and again
obtain an octet and a singlet

L (tud — du) udu—d.r.m

‘f_ L’E (uds — usd + dsu — dus + sud — sdu)

—
RN = (5 &2

following discussion

Mixed Totally o=
Symmetry Anti-symmetric
Octet Singlet

» Can verify the wave-function Vsinglet = ﬁ (uds — usd 4 dsu — dus + sud — sdu)
Is a singlet by using ladder operators, e.g.

T Ysinglet = ﬁ (uus — usu~+ usu — uus + suu — suu) = 0

* In summary, the combination of three uds quarks decomposes into

3@33=3%(633)=100808¢1

33



Baryon decuplet

* The baryon states (L=0) are:
* the spin 3/2 decuplet of symmetric flavour and symmetric
spin wave-functions (p(S)x(S)

BARYON DECUPLET (L=0, S=3/2, J=3/2, P=+1) Mass in MeV
A~(ddd) A'(ddu) + A*(uud) AT (uuu)
e A(1232)
X (ddé-) 2 (uds) £ (uus)

* . > %(1318)
o 14 =(1384)

= (ssd )‘. =9 (ssu)
v 0(1672)

Q (ss5)
* If SU(3) flavour were an exact symmetry all masses would be the same
(broken symmetry)

34



Baryon octet

* The spin 1/2 octet is formed from mixed symmetry flavour and
mixed symmetry spin wave-functions

op(Ms)x (Ms) + B (Ma)x (Ma)

See previous discussion proton for how to obtain wave-functions

BARYON OCTET (L=0, S=1/2, J=1/2, P= +1)

n(ddi) p(uud) Mass in MeV
[ S - . 939
Y= (dds) 20 (uds) Z" (uus) ¥(1193)
& >~ A(1116)
A% (uds) :
P }f ........ i E(1318)

* NOTE: Cannot form a totally symmetric wave-function based on the
anti-symmetric flavour singlet as there no totally anti-symmetric
spin wave-function for 3 quarks
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Summary

* Considered SU(2) ud and SU(3) uds flavour symmetries

* Although these flavour symmetries are only approximate can still be
used to explain observed multiplet structure for mesons/baryons

* In case of SU(3) flavour symmetry results, e.g. predicted wave-functions
should be treated with a pinch of salt as m # my /q

* Introduced idea of singlet states being “spinless” or “flavourless”
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The local gauge principle

* All the interactions between fermions and spin-1 bosons in the SM are specified
by the principle of LOCAL GAUGE INVARIANCE

* To arrive at QED, require physics to be invariant under the local phase
transformation of particle wave-functions

v — ]J/" — wgfq}"f(x)
* Note that the change of phase depends on the space-time coordinate: X(ij)
* Under this transformation the Dirac Equation transforms as

oy —my=0| = |iy*(dy+iqdu)x)y —my =0

*To make “physics”, i.e. the Dirac equation, invariant under this local
phase transformation FORCED to introduce a massless gauge boson, A” :
+ The Dirac equation has to be modified to include this new field:

iy (dy — gAp) Yy —my =0

* The modified Dirac equation is invariant under local phase transformations if:

Ay — A=Ay —dux Gauge Invariance
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* For physics to remain unchanged - must have GAUGE INVARIANCE of the new
field, i.e. physical predictions unchanged for A, — AL =Ay —dux

*Hence the principle of invariance under local phase transformations completely
specifies the interaction between a fermion and the gauge boson (i.e. photon):

iy (duy — qA )Y —my =0

oooooooooo

— QED !

* The local phase transformation of QED is a unitary U(1) transformation

vV =0y ie Y-y =y with UTU=1I

Now extend this idea...

39



From QED to QCD

* Suppose there is another fundamental symmetry of the universe, say
“invariance under SU(3) local phase transformations”

* i.e. require invariance under Y — l,lf, — I,U'E'Ig’l‘ﬂ(x) where

1 are the eight 3x3 Gell-Mann matrices

@(x) are 8 functions taking different values at each point in space-time
” —»> 8 spin-1 gauge bosons

V= (qu) wave function is now a vector in COLOUR SPACE
L€ = |acD!

* QCD is fully specified by require invariance under SU(3) local phase
transformations

Corresponds to rotating states in colour space about an axis
whose direction is different at every space-time point

=) interaction vertex: —%fgjla}ﬂ

* Predicts 8 massless gauge bosons - the gluons (one foreach 4 )

* Also predicts exact form for interactions between gluons, i.e. the 3 and 4 gluon
vertices - the details are beyond the level of this course
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Colour in QCD

* The theory of the strong interaction, Quantum Chromodynamics (QCD),
is very similar to QED but with 3 conserved “colour” charges

In QED:
* the electron carries one unit of charge —€

x
* the anti-electron carries one unit of anti-charge —|—€ y
 the force is mediated by a massless “gauge

boson” - the photon
In QCD:

* quarks carry colour charge: f?g,b B s
* anti-quarks carry anti-charge: 7, g,b \ﬂg
* The force is mediated by massless gluons

* In QCD, the strong interaction is invariant under rotations in colour space
re—byre—g b—g
i.e. the same for all three colours

- SU(3) colour symmetry

*This is an exact symmetry, unlike the approximate uds flavour symmetry
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* Represent 1, g,b SU(3) colour states by:

1 0 0
0 0 1

* Colour states can be labelled by two quantum numbers:
+ I3 colour isospin

+ Y colour hypercharge
Exactly analogous to labelling u,d,s flavour states by /3and Y

* Each quark (anti-quark) can have the following colour quantum numbers

quarks Y§ anti-quarks Yf B
+38 b
8 41 r
1 +4
I T 13 3
Fo 3 8
2
3 ? b
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Colour Confinement

* It is believed (although not yet proven) that all observed free particles are
“colourless”

*i.e. never observe a free quark (which would carry colour charge)
*consequently quarks are always found in bound states colourless hadrons

* Colour Confinement Hypothesis:

only colour singlet states can
exist as free particles

* All hadrons must be “colourless” i.e. colour singlets

* To construct colour wave-functions for
hadrons can apply results for SU(3) flavour
symmetry to SU(3) colour with replacement

u—r
d—g
s— b

* just as for uds flavour symmetry can /

define colour ladder operators
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Colour Singlets

* |t is important to understand what is meant by a singlet state
* Consider spin states obtained from two spin 1/2 particles.

* Four spin combinations: TTﬁ Tl; lT:. J,l

* Gives four eigenstates of 5'2: S’z
L+1) =11 —

i spin-
1,—1) =11

202=3®1)

® 10,0) = (11— 11)

spin-0
singlet

* The singlet state is “spinless”: it has zero angular momentum, is invariant
under SU(2) spin transformations and spin ladder operators yield zero

§.10,0) =

0

* In the same way COLOUR SINGLETS are “colourless”

combinations:

+ they have zero colour quantum numbers I3 =0, Y =0

+ invariant under SU(3) colour transformations
+ ladder operators 71, Uy, VL allyield zero

* NOT sufficient to have [g — ()5 Y¢ = () : does not mean that state is a singlet
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Meson Colour Wave-function

* Consider colour wave-functions for ¢
* The combination of colour with anti-colour is mathematically identical
to construction of meson wave-functions with uds flavour symmetry

Ye¢
ye . _ ye

ye¢ g b _.,. """" T """" er b *
@ T}; Tb o7 —5(r7—g3) g # (rF+gg+bb)
T ® =, = — f: > D >
I:; ! | ! 3 J_{r,-_|_ Qq_ﬂbb} f,; 13

. b - 2
prefoa b

- Coloured octet and a colourless singlet

* Colour confinement implies that hadrons only exist in colour singlet
states so the colour wave-function for mesons is:

a9 __
c vﬁ(rr—kgg—l—bb)

* Can we have a qq@ state 7 i.e. by adding a quark to the above octet can we form
a state with Y = (); ]3 — (). The answer is clear no.

— qqq bound states do not exist in nature.
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Baryon Colour Wave-function

* Do qq bound states exist ? This is equivalent to asking whether it possible to
form a colour singlet from two colour triplets ?
* Following the discussion of construction of baryon wave-functions in

SU(3) flavour symmetry obtain
VL,— rg + gr)

V@V v

* No qq colour smglet state

% rg —gr)

M

* Colour confinement == bound states of qq do not exist

* BUT combination of three quarks (three colour triplets) gives a colour
singlet state

wvv\-/@@
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*The singlet colour wave-function is:

AT — \}6 (rgb — rbg + gbr — grb+ brg — bgr)

: Check this is a colour singlet...
«lthas I{ =0, Y° =0 :a necessary but not sufficient condition

e Apply ladder operators eg. 1t (recall T.|.g =r)
T,y = \/_ (rrb — rbr+ rbr — rrb+ brr — brr) =

eSimilarly 7T_ wqqq 0; V:I:lygqq:(); Uy wgqq_ :

-
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

% Colourless singlet - therefore qqq bound states exist !
=> | Anti-symmetric colour wave-function

Allowed Hadrons i.e. the possible colour singlet states

® 99, 999 Mesons and Baryons
O q@q@, qqqqq Exotic states, e.g. pentaquarks

To date all confirmed hadrons are either mesons or baryons. However, some
recent (but not entirely convincing) “evidence” for pentaquark states
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Gluons

* In QCD quarks interact by exchanging virtual massless gluons, e.g.

dp 9

qr qb

* Gluons carry colour and anti-colour, e.g.

T W

* Gluon colour wave-functions _ ¢ _ c
(colour + anti-colour) are the same gbo """"__*"b T Y
as those obtained for mesons S (7 — g7) %(r?+g§+b5)
(also colour + anti-colour) gri I8 ‘
_‘ $ — Hc e} > C
:> OCTET + ?la(ﬁ%— g8 — ZE:-'EJEI_:.-' I 3 I 3

“COLOURLESS” SINGLET . Jr ....... bz
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* So we might expect 9 physical gluons:
OCTET:  rg, rb, g¥, gb, bF, bg. %(r?— %),

SINGLET: % (r7+ gg + bb)

* BUT, colour confinement hypothesis:

(rF+ gg — 2bb)

Si-

Colour singlet gluon would be unconfined.
It would behave like a strongly interacting
photon = infinite range Strong force.

only colour singlet states =
can exist as free particles

* Empirically, the strong force is short range and therefore know that the physical
gluons are confined. The colour singlet state does not exist in nature !

NOTE: this is not entirely ad hoc. In the context of gauge field theory (see minor
option) the strong interaction arises from a fundamental SU(3) symmetry.
The gluons arise from the generators of the symmetry group (the
Gell-Mann A matrices). There are 8 such matrices = 8 gluons.
Had nature “chosen” a U(3) symmetry, would have 9 gluons, the additional

gluon would be the colour singlet state and QCD would be an unconfined
long-range force.

NOTE: the “gauge symmetry” determines the exact nature of the interaction
= FEYNMAN RULES
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Gluon-Gluon interactions

* In QED the photon does not carry the charge of the EM interaction (photons are
electrically neutral)

* In contrast, in QCD the gluons do carry colour charge

==> | Gluon Self-Interactions

* Two new vertices (no QED analogues)

triple-gluon uartic-gluon
vertex }m K 9 vertegx

* |n addition to quark-quark scattering, therefore can have gluon-gluon scattering

-
it

way of arranging
the colour flow

e.g. possible —— >\ ;i<
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Gluon self-interactions and Confinement

* Gluon self-interactions are believed to give e’ q
rise to colour confinement

* Qualitative picture:
«Compare QED with QCD

*In QCD “gluon self-interactions squeeze

lines of force into a flux tube” a- q

* What happens when try to separate two coloured objects e.g. qQ

*Form a flux tube of interacting gluons of approximately constant
energy density ~ 1GeV/fm

= V(r)~Ar

*Require infinite energy to separate coloured objects to infinity

* Coloured quarks and gluons are always confined within colourless states
*In this way QCD provides a plausible explanation of confinement - but

not yet proven (although there has been recent progress with Lattice QCD)
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Hadronisation and jets

* Consider a quark and anti-quark produced in electron positron annihilation

i) Initially Quarks separate at q4q
high velocity —0 00—

ii) Colour flux tube forms G G
between quarks — 0

iii) Energy stored in the g q 9 qd
flux tube sufficient to ———0 —0—

produce qq pairs

iv) Process continues
until quarks pair
up into jets of
colourless hadrons

* This process is called hadronisation. It is not (yet) calculable.

* The main consequence is that at collider experiments quarks and gluons
observed as jets of particles
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QCD and Colour in e+e- collisions

*e*e” colliders are an excellent place to study QCD

et Q | * Well defined production of quarks
b * QED process well-understood
* no need to know parton structure functions
e- q * + experimentally very clean - no proton remnants
* |expressions for the €+€__ — u+j.i_ cross-section
2
4o do o 2
{F: — —_ _(]—l_EDS 9) F—Fl—'—rl—'—'—'—!—-'i'ﬁ--r':-'—'—'—_
35 dQ ds . CELLO -
* In e*e~ collisions produce all quark flavours [ 388:Ecm468Gey [

for which /s > qu

* In general, i.e. unless producing a §¢ bound state,
produce jets of hadrons

» Usually can’t tell which jet /
came from the quark and /
came from anti-quark

* Angular distribution of jets o« (1+cos®0) -~ -

Number of events

1
00F (L8610 ) BERL HaT sAyd “|e 1@ puaiyag H

== | Quarks are spin % |cos |
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* Colour is conserved and quarks are produced as r7, gg, bb
* For a single quark flavour and single colour

4o . Amot
cle e — qiq;) = 3—'§Qq
* Experimentally observe jets of hadrons: )
L B dra” 5
o(eTe” — hadrons) =3 ) 3 Q,
s

Factor 3 comes from colours

u.d.s,..

* Usual to express as ratio compared to U(€+€_ — 'u+,u_]

ole'e —>hadrﬂn5)_3 y o
- q

... ..

R, =
7 oleter —ptu)
i — :
b R ™r =y -
[ I oane
y E:; i
G . .
1) T R R R

| ud.s.c.b: R;u = 3

uds: R, =3x(5+5-+4)=2
10

L ud.s.c: Rp: 3
11

| *Data consistent with expectation
with factor 3 from colour
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Jets production in e+e- collisions

*e*e” colliders are also a good place to study gluons
+ +

ete” — gq — 2jets e

OPAL at LEP (1989-2000)

Experimentally:

*Three jet rate == measurement of O
* Angular distributionsss gluons are spin-1
* Four-jet rate and distributions = QCD has an underlying SU(3) symmetry
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Quark-gluon interaction

* Representing the colour part of the fermion wave-functions by:

] 0 0
F=C) = U g:ﬂgz _l b:ﬂjz U
0 0 1

*Particle wave-functions .u(p) — EEH(P)
*The QCD qqg vertex is written: q u,a g
— Tr_l:;, 4 : ' -
u(p:;)ﬂj{ 3133 ’}’#}E;H(pl)

* Only difference w.r.t. QED is the insertion of the 3x3 Gluon a
SU(3) Gell-Mann matrices

colouri —j

*|solating the colour part: a
li
Faa,. T a |l _ qa
3i

* Hence the fundamental quark - gluon QCD interaction can be written

u(p3)ci{—5igA“Y bea(pr) = u(p3){—igsAsy* u(pr)

56



Feynman rules for QCD

& External Lines [ incoming quark

u(p) —>—
. J outgoing quark u(p) —
spin 1/2 incoming anti-quark v(p) ——
. outgoing anti-quark v(p) r——
[ incoming gluon e*(p) RQ00,
spin1 < *
outgoing gluon et (p) o000
@ Internal Lines (propagators)
—1 %
spin 1 gluon Szw Sab J{;[_Q_Q_Q_Q_.
q a b
a, b=1,2,....8 are gluon colour indices
& Vertex Factors - a
spin 1/2 quark —fgséiﬁ}'“ l J

i, j=1,2,3 are quark colours,
A% a=1,2,.8 arethe Gell-Mann SU(3) matrices
&+ 3 gluon and 4 gluon interaction vertices
® Matrix Element -iM = product of all factors
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Matrix element for quark-quark scattering

* Consider QCD scattering of an up and a down quark
u Pl P3 *The incoming and out-going quark colours are

Mya u labelled by I',j,k,f:{lgz«j} (Dl‘{?‘,g,b})

J * In terms of colour this scattering is
q ik — jl
* The 8 different gluons are accounted for by
P> P4 the colour indices a,b=1,2,...,8

v. b d * NOTE: the 3-function in the propagator ensures
k ] a = b, i.e. the gluon “emitted” at a is the

same as that “absorbed” at b

* Applying the Feynman rules:
. — M {1 I i
=M = [7(ps){ = Sigo A 1)) — 18 [a(pa){ = bigs ARy bea(p2)

where summation over @ and b (and p and v) is implied.

* Summing over a and b using the 6-function gives:

|
M= — 8 A“ﬂ.mnggv[uu(m)}’“u;;(m )7 (pa) Y ua(p2)]

47!

Sum over all 8 gluons (repeated indices)
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QCD vs QED

QED —jg e~ Pl u P3 e
= [a(p3)iey"u(p1)] qg’w @(pa)iey u(p2)

M:_ezéguv[ﬁ(m)r‘*u(m)][ (pa)?’ u(p2)] P -

QCD

5 il 1
M = ‘z ASAL zgw[uu(m Yt (p1)][a(pa) Y ua(p2)]

* QCD Matrix Element = QED Matrix Element with:

2 2
[
.| er— EE or equivalently |0 = ir — O = 43—;;

+ QCD Matrix Element includes an additional “colour factor”

C(ik — jl) = ): AL
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Evaluation of QCD colour factors

* QCD colour factors reflect the gluon states that are involved

/010 {001 /000
Al=1100 A=1000 A=1001 13 =
\ 000 \100 \ 010
[0 —i0 [00 —i 00 0
A= i 00 A=100 0 AT=100 =i 13::—.E
\0 00 \i0 0 \0 i 0 N
Gluons:  rg.gr 1h, bF gb.bg .

(1] Configurations involving a single colour

Similarly find

1 8

1 00
0—-10
0 00

(

|

(7 —88) = (r7+ g8 — 2bb)

0
1
0 —

=o o =
M’:'C."

|

*Only matrices with non-zero entries in 11 position are involved

i ARAL)

C(rr—rr) = 42 1A = [;'L]I:'L
a=1
1 1 1
— {1aei)=C
4( +3> 3
C(rr—rr) =C(gg — gg) = C(bb — bb) = -
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@® Other configurations where quarks don’t change colour eg. rb—rb

' +Only matrices with non-zero entries in 11 and 33 position

j=1 are involved 1.8 wna ]
Clrb—rb) = - ¥ AfiA% = 2 (AHiAd)
a=I1

11 2N
=3 =3P - a(ﬁ'ﬁ)—‘a |
Similarly C[rb—}rb}:C{rg—rrg}:C(gr—}gr):C{gb—}gbj:C(br—}br}:C{E}g—.ngj:—E
© Configurations where guarks swap colours €.9. rg — gr

Y9  «Only matrices with non-zero entries in12 and 21 position

=2 are involved i
Clrg—gr) = - E AG AL = = A,z AL 2222
Gluons rg, gr 4 4= .
’ ! 1 (i) (kT
“ - —(il—i = — T T_
97"/ =7° 4(1( i)+1) > I

C(rb— br)=C(rg —gr)=C(gr—rg)=C(gh —bg)=C{br—rb)=C(bg — gb) = %

® configurations involving 3 colours e.g. rb — bg

* But none of the A matrices have non-zero entries in the
13 and 32 positions. Hence the colour factor is zero

* colour is conserved

*Only matrices with non-zero entries in the 13 and 32 position
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Colour factors: quark vs anti-quark

1 0 0
* Recall the colour part of wave-function: r—=¢, = (U) g=c1= (1) b=c3= ([})

. 0 0 |
* The QCD vertex was written:
MR — Pl P3

u(ps)c{—3igsA "y beu(pr) d

* Now consider the anti-quark vertex
» The QCD Qg vertex is:

W(p1)e {—LigA P Yev(ps)

I Note that the incoming anti-particle now enters on the LHS of the expression I

O

* For which the colour part is ijj . ..
¥ra - E ; i.e indices ij are
C; A Cj=c; ;ng = :‘L,-j swapped with respect
‘li?j to the quark case

« Hence | V(p1)c; {—3igsd P }ejv(p3) = ¥(p1){—ig A" }v(p3)
* c.f. the quark - gluon QCD interaction
u(p3)c{—3igsA Y beu(pr) = u(ps){—ig Ay bu(pr)
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* Finally we can consider the quark - anti-quark annihilation
q P1 QCD vertex: ?(pg)ﬂl{—%igﬁla}#}c‘gu(p])

with ¢ A% = A

Ol

?(Pz)cl{—%igslﬂ?’p}cz’“(ﬁl ) =(pa){—5igAGy* tu(pr)
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g t J q
q-t J q

* Consequently the colour factors for the different diagrams are:

. - 1 : e o
a=]1

3 =7 1 : ana
a=1

.7 =7 1 5 aga
a=1

Colour index of adjoint spinor comes first I

e.d.

C(rr—rr)= %

C(rg —rg) =

C(rr—rr) =
C(rg — rg) =
C(rr — gg) =

C(FF — rF) =
C(rg — 1) =
C(rr— gg) =

].
—

2

1
3
1
6

1
2

1
6
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Quark-quark scattering

jet
*Consider the process i +d — u+d which can occurinthe .
high energy proton-proton scattering

* There are nine possible colour configurations
of the colliding quarks which are all equally D
likely.

* Need to determine the average matrix element which
is the sum over all possible colours divided by the

number of possible initial colour states jet
11 y
(IMp|*y==-5 Y IMpu(ij— k)|
3 3 i, jkd=1
* The colour average matrix element contains the average colour factor
] 3
2 - 2
(cPy=5 X ICGij— ki)l
ijki=1
*For 44 — 494 Fr—1T,.. rb-rb,.. rb—br,..

(ICF) = é [3:?: (%)zﬂjx (—é)2+6x (%)1 =§
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*Previously derived the Lorentz Invariant cross section foreu~ —> e~
elastic scattering in the ultra-relativistic limit (handout 6).

do 2ma? g ’
= P+ 14—
*Forud — ud in QCD replace & — (s and multiply by (|C|2)
- 2 2 Never see colour, but
QCD d_ﬂ'z — EQEIEES 1+ 1+ QT Enfers thmughl:::nlnl:u factors.
dg? 9 ¢ § Can tell QCD is SU(3)

*Here § is the centre-of-mass energy of the quark-quark collision
* The calculation of hadron-hadron scattering is very involved, need to
include parton structure functions and include all possible interactions

e.g. two jet production in proton-antiproton collisions

99 — 99 48 — 48
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Proton-antiproton collisions at Tevatron

* Tevatron collider at Fermi National Laboratory (FNAL)
* located ~40 miles from Chigaco, US
» started operation in 1987 (will run until 2009/2010)

[P 0 ¢ — ¢ — 8 8 8 T — — —

%* PP collisions at Vs = 1.8 TeV | 'c.f. 14 TeV at the LHC

Two main accelerators:

S AT o : * Main Injector
B Tevatron "= « Accelerates 8 GeV P
,&g R ) to 120 GeV
T N\ e —— * also p to 120 GeV
o e S | * Protons sent to
7 4 S SN Tevatron & MINOS
) / Main Injector *p allgoto Tevatron
120 GeV p * Tevatron
NN * 4 mile circumference
e * accelerates p/p from

120 GeV to 900 GeV
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* Test QCD predictions by looking at production of pairs of high energy jets

pp —* jetjet+ X
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(fb/GeV)

d2a
dErdn

* Measure cross-section in terms of

D A0 o) * “transverse energy” FE, = Eif:tSiH 69
. M = el o T - o)
pseudorapidity n= In [CD’[ (2 )]
...don’t worry too much about the details here,
what matters is that...
107
— QCD Prediction *QCD predictions provide an

JETRAD Program excellent description of the data

*NOTE:

- at low E; cross-section is
dominated by low x partons

i.e. gluon-gluon scattering

» at high E; cross-section is
dominated by high x partons

(1L00Z) 98 "we7 Aoy ‘sAud ‘uoneloqe|od 0Q

i.e. quark-antiquark scattering

50 100
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Running coupling constants

QED | ¢ “bare” charge of electron screened -Q Q U

by virtual e*e- pairs ° +Ql

* behaves like a polarizable dielectric @
* |In terms of Feynman diagrams: ﬁ @

* Same final state so add matrix element amplitudes: M =M; + M> + M5+ ...

* Giving an infinite series which can be summed and is equivalent to 5
a single diagram with “running” coupling constant - \/E[‘?L )

x(Q%) = a(Qf) / [1 = a:ﬁn) (Qﬂ)]

2 2
Note sign Q" > QD
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* Might worry that coupling becomes

infinite at - Q" B 31
Q) 1/137

i.e. at O ~ 10*°GeV

* But quantum gravity effects would come

In Qz in way below this energy and it is
OPAL Collaboration, Eur. Phys. J. caa[zumz highly unllkEIy that QED “as is” would
TOPAZ pyesyus: & qq: © , be valid in this regime

— i ]
T 150 F  Pits to leptonic data from: E
[ #DORIS, FEF, OPETRA, ¢TRISTAN |

* In QED, running coupling increases

| very slowly
o ] «Atomic physics: Q% ~ 0
OPAL _ /oo =137.03599976(50)

*High energy physics:
1/0t(193GeV) = 127.4+2.1

0 25 50 75 100 125 150 175 200
Q/GeV
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Running of o

‘ QCD \ Similar to QED but also have gluon loops
v U5

q2|::> F+F F+$ +

Fermion Loop Boson Loops

* Remembering adding amplitudes, so can get negative interference and the sum
can be smaller than the original diagram alone
* Bosonic loops “interfere negatively”

as(Q%) = as Qn)/ll +Bas(Qg)In (Q2>]

0
with B— 11IN: — 2Ny N¢ =no. of colours
127 Ny = no. of quark flavours

N.=3Ny=6 == B>0(
— |£I5 decreases with Q2|

Nobel Prize for Physics, 2004
(Gross, Politzer, Wilczek)
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* Measure Ol in many ways:
* jet rates
* DIS
* tau decays

* bottomonium decays
.+,

* As predicted by QCD,
OL; decreases with Q2

0.4

0.3

g |

0.2

0.1

0.0
1

T — hadrons

DIS
<

Y(bb) Decay

QcCD

Prediction

L.

o

ete” — 3 jets]

"

2 3 10 20

u (GeV)

a0

* At low Q°: OLs is large, e.g. at 0 = 1 GeV? find Olg~ 1
*Can’t use perturbation theory ! This is the reason why QCD calculations at
low energies are so difficult, e.g. properties hadrons, hadronisation of

quarks to jets,...

* At high Q7 : 0. is rather small, e.g. at Q> =M> find O~ 0.12

— I Asymptotic Freedom

100

200

* Can use perturbation theory and this is the reason that in DIS at high Q2
quarks behave as if they are quasi-free (i.e. only weakly bound within hadrons)
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Summary

* Superficially QCD very similar to QED
* But gluon self-interactions are believed to result in colour confinement
* All hadrons are colour singlets which explains why only observe

Mesons

I Baryons I

* A low energies s ~ |

=% Can’t use perturbation theory !

Non-Perturbative regime I

* Coupling constant runs, smaller coupling at higher energy scales
os(100GeV) ~ 0.1

=+ Can use perturbation theory

I Asymptotic Freedom I

* Where calculations can be performed, QCD provides a good description

of relevant experimental data
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The weak interaction and V-A




Parity

*The parity operator performs spatial inversion through the origin:

7= A — —
y'(X,1) = Py(X,1) = y(—%,1)
*applying P twice: PPy (X,t) = Py(—X.t) = y(X,1)
SO ﬁﬁ — I w— ﬁ_] — ﬁ
*To preserve the normalisation of the wave-function
— ud lud\ AT D
(Wlw) = (W'|y) = (y|P"Ply)
ﬁ'fﬁ — ] — P Unitary
* But since pp —7] p—=p" = P Hermitian
which implies Parity is an observable quantity. If the interaction Hamiltonian
commutes with P , parity is an observable conserved quantity

o If u/(,?c':r) is an eigenfunction of the parity operator with eigenvalue P
Py (i) =Py(X1) = PPy(X1)=PPy(X,1) =P y(ir)
since PP =1 P? =1
= Parity has eigenvalues P = +]

* QED and QCD are invariant under parity
* Experimentally observe that Weak Interactions do not conserve parity
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Intrinsic Parities of fundamental particles:

Spin-1 Bosons

*From Gauge Field Theory can show that the gauge bosons have P — —1

P?:Pg:PW—rzpw—:PZ:_l

Spin-'2 Fermions

*From the Dirac equation showed (handout 2):
Spin "2 particles have opposite parity to spin %z anti-particles
- Conventional choice: spin 12 particles have P = +1
P =P, =P =P, =P =+1
and anti-particles have opposite parity, i.e.
ot =Py =P =Py =F;=—1

* For Dirac spinors it was shown (handout 2) that the parity operator is:

000

1 00
0-1 0
0 0-1

|
- 0
P=9" = 0
0
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Parity conservation in QED and QCD

*Consider the QED process € — €°( e P 1 p3 e-
*The Feynman rules for QED give:

: _ : —i8uv _ .

iM = [T.(ps)ie Y ue(p1)] qg’“ iy (pa)iey uy(p2)]

*Which can be expressed in terms of the electron and P2 p4

quark 4-vector currents: 2 2 g 4 q

M = —ggungj; = _?je'jq
with Je =TUe(p3) Y ue(p1) and  Jjg = tg(pa) Y ug(p2)

* Consider the what happen to the matrix element under the parity transformation

+ Spinors transform as P A
P u— Pu=u

¢+ Adjoint spinors transform as

i=u"P = (Pu)'y = uf PP = ut PP =y

Y

i — )’

¢+ Hence Je = Ee(PS)'}’“He(Pl) i?' Ee(PS)'}}}Y‘HYOHE(PI)
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* Consider the components of the four-vector current

0: ;2 %} H‘yoyoyou — EYDM = jg since }’ﬂ}’ﬂ =1
k=123: | 7 5 0% = —ap* Y2 y0u = —mipfu = —j*  since PO¥ = —pkyY

* The time-like component remains unchanged and the space-like components
change sign

Similarly Jg — Jg Jg — —Jg k=1,2,3 or i»j#
* Consequently the four-vector scalar product w o P
“ b T Ju-dv

Je-dg = Jodg — Jedy — Jodg — (—JE)(—J8) = je-jg k=13 P

QED Matrix Elements are Parity Invariant

mm)p | Parity Conserved in QED

* The QCD vertex has the same form and, thus,

Parity Conserved in QCD
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Parity violation in [3-decay

*The parity operator P corresponds to a discrete transformation x — —Xx, elc.

*Under the parity transformation:

Vectors
change sign

Axial-Vectors
unchanged

¥,

¥,

P
— —r
— ﬁ — a El"h-ll----t- ----- E n- .............. E
pP———P (P_r:§7€IC ote Bisan :
- P - = Eaxial vector :
L—L  (L=FAP)  dBe]pid7
L P 2 R
L H A (fio< L)

*1957: C.S.Wu et al. studied beta decay of polarized cobalt-60 nuclei:
0Co -V Ni* +e= +V,

* Observed electrons emitted

—

il

(E,P)

wuf]

A

-
)

P

*
-
&

more e-in.~ c.f. ~

preferentially in direction opposite to applied field

—*

il

If parity were conserved:
expect equal rate for
producing e~ in directions
along and opposite to the
nuclear spin.

(E,—D)

* Conclude parity is violated in WEAK INTERACTION B
= that the WEAK interaction vertex is NOT of the form ue}ﬂ”

Uy

80



Bilinear covariance

* The requirement of Lorentz invariance of the matrix element severely restricts
the form of the interaction vertex. QED and QCD are “VECTOR"” interactions:

JF=yve
*This combination transforms as a 4-vector (Handout 2 appendix V)
* In general, there are only 5 possible combinations of two spinors and the gamma

matrices that form Lorentz invariant currents, called “bilinear covariants”:

Type Form Components “Boson Spin”
¢ SCALAR Yo 1 0
* PSEUDOSCALAR V7°¢ 1 0
* VECTOR vyY'e 4 1
¢ AXIAL VECTOR YUYy ¢ 4 1
* TENSOR vy =v'v)e 6 2

* Note that in total the sixteen components correspond to the 16 elements of
a general 4x4 matrix: “decomposition into Lorentz invariant combinations”

* In QED the factor Suv arose from the sum over polarization states of the virtual
photon (2 transverse + 1 longitudinal, 1 scalar) = (2J+1) + 1

* Associate SCALAR and PSEUDOSCALAR interactions with the exchange of a
SPIN-0 boson, etc. — no spin degrees of freedom
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V-A structure of weak interaction

*The most general form for the interaction between a fermion and a boson is a

linear combination of bilinear covariants

* For an interaction corresponding to the exchange of a spin-1 particle the most

general form is a linear combination of VECTOR and AXIAL-VECTOR

*The form for WEAK interaction is determined from experiment to be
VECTOR - AXIAL-VECTOR (V -A)

_ D P3
e . ' .
o T, (= 77 e

M v
w V - A

* Can this account for parity violation?
* First consider parity transformation of a pure AXIAL-VECTOR current

A=YYe  with P =iyl P =

km—wa¢—ﬁwWWfW¢——wﬁWWf¢
= -7 = - ro =

Py

K==Y==+ o=+ k=123 [or s 2

_.fA i)
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* The space-like components remain unchanged and the time-like components
change sign (the opposite to the parity properties of a vector-current)

A A Y ay

. P ; ; P . . P ) P ;
e R R B R LT 1 ey 1

* Now consider the matrix elements
k ok
Mo guvit iy =R — Y i
k=13
* For the combination of a two axial-vector currents
. . P ) .0 Jis ook . .
Jardar — (=) (=j2) = Y (1) (J3) = jar-jaz
k=13

* Consequently parity is conserved for both a pure vector and pure axial-vector
interactions

* However the combination of a vector current and an axial vector current

Jvi-jaz —> (11 (— Jz Z (— h)(iz = —Jvi-JA2
k=13

changes sign under parity - can give parity violation !
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* Now consider a general linear combination of VECTOR and AXIAL-VECTOR
(note this is relevant for the Z-boson vertex)

(4 u o (= O (gvy* +2aY" V) w1 = gvi +8af
Suv
< P — 2
7. % 02 L o= 0(gv ¥ +ea¥ V)2 = gviy +8als

Myio< ji.jo = gvjV .y + g3t j5 +evea(iy - jo + it Jy)

* Consider the parity transformation of this scalar product
. P oy oy 2a A VoA A SV
J1g2 — &yl -Jp +&xJi - —gvealiy -J5 +ii-Js)
* If either g, or g, is zero, Parity is conserved, i.e. parity conserved in a
pure VECTOR or pure AXIAL-VECTOR interaction

8VEA

2 2
8y T8
Maximal Parity Violation for V-A (or V+A)

* Relative strength of parity violating part ©<
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Chiral structure of QED (reminder)

* Recall introduced CHIRAL projections operators

_ 1 . _ 1 5
PR=5(14+7); P=5(1-7)
project out chiral right- and left- handed states

* In the ultra-relativistic limit, chiral states correspond to helicity states
* Any spinor can be expressed as:

=31+ P+ 3(1-Y)y =Ry + Py = yr+ L

*The QED vertex YY"¢ interms of chiral states: ¢ H v
YO = YV Or + WV O, + W YO+ W Y 01

conserves chirality, e.g.

VrY'or = sy (1+7)Pr5(1-7)¢
AN
— 4]1“}/# 1"‘]’5 1_ -

*In the ultra-relativistic limit only d Vr Y < Yy
two helicity combinations are
non-zero
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Helicity structure of weak interactions

*The charged current (W*) weak vertex is: e. u Vg
—igy 1
(1=

*Since |§(1 — }’5) projects out left-handed chiral particle states:
Yt (1=7)0 =yrie
*Writing Y = Y, + ; and from discussion of QED, Ve oL =0 gives
_] J—
Y3t (1=-7r)o =v. 7" o
Only the left-handed chiral components of particle spinors

- and right-handed chiral components of anti-particle spinors
participate in charged current weak interactions

* At very high energy (E =>> m) , the left-handed chiral components are
helicity eigenstates :

— LEFT-HANDED PARTICLES
(1= = - Helicity = -1
(1 — RIGHT-HANDED ANTI-PARTICLES
s(1—=9")v
(=7 = g Helicity = +1
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In the ultra-relativistic limit only left-handed
particles and right-handed antiparticles
participate in charged current weak interactions

—

e.g. In the relativistic limit, the only possible electron - neutrino interactions are:

C- &~ &&= v, €'y 2V, Ge\w

714
y 'l

* The helicity dependence of the weak interaction <=  parity violation

eg. V,+e — W~ f_‘)
RH anti-particle LH particle RH particle LH anti-particle
Ve - o - € i€ = > = Ve
Pv, Pe —Pe —Pv,

Valid weak interaction Does not occur
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Helicity in pion decay

* The decays of charged pions provide a good demonstration of the role of
helicity in the weak interaction

7, 1% Ve ) 11% Vi
T - /[ .
\'7 e \7 H_

EXPERIMENTALLY: I'(77~ — e V)
[(n~ —uvy)

*Might expect the decay to electrons to dominate - due to increased phase
space.... The opposite happens, the electron decay is helicity suppressed

—=1.23x107%

* Consider decay in pion rest frame.
* Pion is spin zero: so the spins of theV and u are opposite
* Weak interaction only couples to RH chiral anti-particle states. Since
neutrinos are (almost) massless, must be in RH Helicity state
* Therefore, to conserve angular mom. muon is emitted in a RH HELICITY state

— — —

Vu < 9 » U
* But only left-handed CHIRAL particle states participate in weak interaction
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* The general right-handed helicity solution to the Dirac equation is

c
eitﬁrs
B , . _ 0 wn B
up =N |gf—|mc with ¢ =C0S5 and §=SIn3
Pl ig
ers
- E+m - 1 0 _-l 0
* project out the Ieft-hapded c_hlral p—1l(1-y)=1 0 1 0 —1
part of the wave-function using L—12 21 -1 0 1 0
0-1 0 1
¢
ivi _ LY [ €¥s ) i
—e9s
In the limit m << E this tends to zero
imilarl 4
 similarly | 7] eif : 7
PRHTzﬁN(l—I_E—HH) C :ﬁN(l+E+m) UR
¢

Inthe limit m << E , Prup — ug
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wence = P + g = § (14 g Y (1= g5 )

¥
RH Helicity RH Chiral LH Chiral

*In the limit £ > m , as expected, the RH chiral and helicity states are identical
* Although only LH chiral particles participate in the weak interaction
the contribution from RH Helicity states is not necessarily zero !
e s —
© » 1
m, = 0: RH Helicity = RH Chiral m, # 0: RH Helicity has
LH Chiral Component

V'u 4

* Expect matrix element to be proportional to LH chiral component of RH Helicity
electron/muon spinor

— m - E""““““"""'""""“"""""“ 3

M p: o< 1 1 — ‘i — Y et from the kinematics
Ji 2 E-+m { of pion d i
My + m,u : of pion decay at rest i

AR A R A P A A AN R R

* Hence because the electron mass is much smaller than the pion mass the decay
T~ — eV, isheavily suppressed.
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Evidence for V-A

*The V-A nature of the charged current weak interaction vertex fits with experiment

EXAMPLE charged pion decay

I(r~ —e Vv,
[(m= —u-vy)
* Theoretical predictions (depend on Lorentz Structure of the interaction)

v 5 " 5 T = e Vel 3510+
V-A (W (1=7)¢) or V+A (WY (1+7)9) == = — 5,

Scalar (W) or Pseudo-Scalar (VY ¢) - (7 _}e_f‘*’) —~55
M — o vy)

* Experimentally measure: = (1.230£0.004) x 10 4

EXAMPLE muon decay

Vu Measure electron energy and angular
_ v distributions relative to muon spin
H ¢ direction. Results expressed in terms
of general S+P+V+A+T form in
e~ “Michel Parameters”™
. 9
Pivs. Rev. Lot 95 2008 101305 P = 0.75080£0.00105

V-A Prediction: p =0.75
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Weak charged current propagator

*The charged-current Weak interaction is different from QED and QCD
in that it is mediated by massive W-bosons (80.3 GeV)

* This results in a more complicated form for the propagator:
* in handout 4 showed that for the exchange of a massive particle:

massless massive
1 |
q2 q2 — m2

*In addition the sum over W boson polarization states modifies the numerator
@ W-boson propagator

. q
spin 1 W* “law —auav/miv] I\ AANS
q* — miy

* However in the limit where g2 is small compared with ny = 80.3 GeV
the interaction takes a simpler form.

®W-boson propagator ( ﬂi'z <« m%if)

fg;uv P’ Vv
m%, «@

*The interaction appears point-like (i.e no g2 dependence)
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Connection to Fermi theory

*In 1934, before the discovery of parity violation, Fermi proposed, in analogy
with QED, that the invariant matrix element for §-decay was of the form:

My = Grguv (WY  V|[WY V]
where Gg =1.166 x 107> GeV
*Note the absence of a propagator : i.e. this represents an interaction at a point

* After the discovery of parity violation in 1957 this was modified to
Gr _ _
Mpi= 5 suv[W(1 - IV (1-7)y]

(the factor of V2 was included so the numerical value of GF did not need to be changed)

* Compare to the prediction for W-boson exchange

_ 8uv — qudv/Miy oy —
Myi = (Va7 (1= PWIS 5 s = [Ty (1-7)v
W

which for q2 <K m%,r becomes:

2
My = gfn—‘%gmwm — P (1 -7y

GF g%; Still usually use GF to express strength
‘ = 3 of weak interaction as the is the quantity
\/j SI’HW ‘ that is precisely determined in muon decayi
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Strength of Weak Interaction

* Strength of weak interaction most precisely measured in muon decay

2
vy * Here g~ <my (0.106GeV)
- 2 — * To a very good approximation the W-boson
M q Ve propagator can be written
3 —i [3#1’ - ‘I#‘?V/m%V] _i8uv
e s
T
2 2 b}
* In muon decay measure gW/mW Gr 8w
- Muon decay ==  Gp = 1.16639(1) x 105 GeV 2 V2 8my,

* To obtain the intrinsic strength of weak interaction need to know mass of

W-boson: my = 80.403 +0.029 GeV (see handout 14)

2 2
gy 8myGep 1
- Ow = = = —
" an o 42r 30

The intrinsic strength of the weak interaction is similar to, but greater than,
* the EM interaction! It |5 the massive W-boson in the propagator which makes
it appear weak. For q > m%v weak interactions are more likely than EM.
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Summary

* Weak interaction is of form Vector - Axial-vector (V-A)

—igy 1
BT

* Consequently only left-handed chiral particle states and right-handed
chiral anti-particle states participate in the weak interaction

— MAXIMAL PARITY VIOLATION

* Weak interaction also violates Charge Conjugation symmetry

*x At low q2 weak interaction is only weak because of the large W-boson
mass

Gr _ gy
V2 8mj,

* Intrinsic strength of weak interaction is similar to that of QED
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