Elementary Particle Physics: theory and experiments

Theory:

Symmetries and Quark Model
Quantum Chromodynamics
The weak interaction and V-A

Slides taken from M. A. Thomson lectures at Cambridge University in 2011

Symmetries and Quark Model

Symmetries and Conservation Laws

★Suppose physics is invariant under the transformation

$$\psi \rightarrow \psi' = \hat{U}\psi$$

e.g. rotation of the coordinate axes

To conserve probability normalisation require

 $\times \hat{U}$

therefore

$$\langle \psi | \psi \rangle = \langle \psi' | \psi' \rangle = \langle \hat{U} \psi | \hat{U} \psi \rangle = \langle \psi | \hat{U}^\dagger \hat{U} | \psi \rangle$$

$$\rightarrow \qquad \hat{U}^\dagger \hat{U} = 1 \qquad \text{i.e. } \hat{U} \text{ has to be unitary}$$

 For physical predictions to be unchanged by the symmetry transformation, also require all QM matrix elements unchanged

$$\begin{array}{ccc} \langle \psi | \hat{H} | \psi \rangle = \langle \psi' | \hat{H} | \psi' \rangle = \langle \psi | \hat{U}^\dagger \hat{H} \hat{U} | \psi \rangle \\ \text{i.e. require} & \hat{U}^\dagger \hat{H} \hat{U} = \hat{H} \\ \times \hat{U} & \hat{U} \hat{U}^\dagger \hat{H} \hat{U} = \hat{U} \hat{H} & \longrightarrow & \hat{H} \hat{U} = \hat{U} \hat{H} \\ \text{therefore} & & & & & & & & & \\ \hline [\hat{H}, \hat{U}] = 0 & & & & & & & & \\ \hline & \hat{U} & \text{commutes with the Hamiltonian} \end{array}$$

 \star Now consider the infinitesimal transformation (ε small)

$$\hat{U} = 1 + i\varepsilon \hat{G}$$

(\hat{G} is called the generator of the transformation)

ullet For \hat{U} to be unitary

$$\hat{U}\hat{U}^{\dagger} = (1 + i\varepsilon\hat{G})(1 - i\varepsilon\hat{G}^{\dagger}) = 1 + i\varepsilon(\hat{G} - \hat{G}^{\dagger}) + O(\varepsilon^2)$$
 neglecting terms in ε^2
$$UU^{\dagger} = 1 \quad \Longrightarrow \quad \hat{G} = \hat{G}^{\dagger}$$

i.e. \hat{G} is Hermitian and therefore corresponds to an observable quantity G !

• Furthermore,
$$[\hat{H},\hat{U}]=0 \Rightarrow [\hat{H},1+i\varepsilon\;\hat{G}]=0 \Rightarrow [\hat{H},\hat{G}]=0$$
 But from QM
$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{G}\rangle=i\langle[\hat{H},\hat{G}]\rangle=0$$

i.e. G is a conserved quantity.

Symmetry Conservation Law

***** For each symmetry of nature have an observable <u>conserved</u> quantity <u>Example</u>: Infinitesimal spatial translation $x \rightarrow x + \varepsilon$

i.e. expect physics to be invariant under
$$\ \psi(x)
ightarrow \psi' = \psi(x + arepsilon)$$

$$\psi'(x) = \psi(x + \varepsilon) = \psi(x) + \frac{\partial \psi}{\partial x} \varepsilon = \left(1 + \varepsilon \frac{\partial}{\partial x}\right) \psi(x)$$
but $\hat{p}_x = -i \frac{\partial}{\partial x} \rightarrow \psi'(x) = (1 + i\varepsilon \hat{p}_x) \psi(x)$

The generator of the symmetry transformation is $\hat{p}_x \rightarrow p_x$ is conserved

Translational invariance of physics implies momentum conservation!

In general the symmetry operation may depend on more than one parameter

$$\hat{U} = 1 + i\vec{\varepsilon}.\vec{G}$$

For example for an infinitesimal 3D linear translation : $\vec{r} \rightarrow \vec{r} + \vec{\varepsilon}$

 So far have only considered an infinitesimal transformation, however a finite transformation can be expressed as a series of infinitesimal transformations

$$\hat{U}(\vec{\alpha}) = \lim_{n \to \infty} \left(1 + i \frac{\vec{\alpha}}{n} . \vec{G} \right)^n = e^{i \vec{\alpha} . \vec{G}}$$

Example: Finite spatial translation in 1D: $x \to x + x_0$ with $\hat{U}(x_0) = e^{ix_0\hat{p}_x}$

$$\psi'(x) = \psi(x + x_0) = \hat{U}\psi(x) = \exp\left(x_0 \frac{d}{dx}\right)\psi(x) \qquad \left(p_x = -i\frac{\partial}{\partial x}\right)$$

$$= \left(1 + x_0 \frac{d}{dx} + \frac{x_0^2}{2!} \frac{d^2}{dx^2} + \dots\right)\psi(x)$$

$$= \psi(x) + x_0 \frac{d\psi}{dx} + \frac{x_0^2}{2!} \frac{d^2\psi}{dx^2} + \dots$$

i.e. obtain the expected Taylor expansion

Symmetries in Particle Physics: Isospin

 The proton and neutron have very similar masses and the nuclear force is found to be approximately charge-independent, i.e.

$$V_{pp} \approx V_{np} \approx V_{nn}$$

 To reflect this symmetry, Heisenberg (1932) proposed that if you could "switch off" the electric charge of the proton

There would be no way to distinguish between a proton and neutron

 Proposed that the neutron and proton should be considered as two states of a single entity; the nucleon

$$p = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad n = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

★ Analogous to the spin-up/spin-down states of a spin-1/2 particle

ISOSPIN

- **★** Expect physics to be invariant under rotations in this space
- •The neutron and proton form an isospin doublet with total isospin $I = \frac{1}{2}$ and third component $I_3 = \pm \frac{1}{2}$

Flavour Symmetry of Strong Interaction

We can extend this idea to the quarks:

- ★ Assume the strong interaction treats all quark flavours equally (it does)
 - Because $m_u \approx m_d$:

The strong interaction possesses an approximate flavour symmetry i.e. from the point of view of the strong interaction nothing changes if all up quarks are replaced by down quarks and *vice versa*.

• Choose the basis $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad d = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

• Express the invariance of the strong interaction under $u \leftrightarrow d$ as invariance under "rotations" in an abstract isospin space

$$\begin{pmatrix} u' \\ d' \end{pmatrix} = \hat{U} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix}$$

The 2x2 unitary matrix depends on 4 complex numbers, i.e. 8 real parameters But there are four constraints from $\hat{U}^\dagger \hat{U} = 1$

→ 8 - 4 = 4 independent matrices

•In the language of group theory the four matrices form the U(2) group

One of the matrices corresponds to multiplying by a phase factor

$$\hat{U}_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) e^{i\phi}$$

not a flavour transformation and of no relevance here.

- ullet The remaining three matrices form an SU(2) group (special unitary) with $\det U=1$
- ullet For an infinitesimal transformation, in terms of the Hermitian generators \hat{G}

•
$$\det U = 1$$
 \implies $Tr(\hat{G}) = 0$ $\hat{U} = 1 + i\varepsilon \hat{G}$

ullet A linearly independent choice for \hat{G} are the Pauli spin matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

- The proposed flavour symmetry of the strong interaction has the same transformation properties as SPIN!
- Define ISOSPIN: $\vec{T}=rac{1}{2}\vec{\sigma}$ $\hat{U}=e^{i\vec{\alpha}.\vec{T}}$
- · Check this works, for an infinitesimal transformation

$$\hat{U} = 1 + \frac{1}{2}i\vec{\epsilon}.\vec{\sigma} = 1 + \frac{i}{2}(\varepsilon_1\sigma_1 + \varepsilon_2\sigma_2 + \varepsilon_3\sigma_3) = \begin{pmatrix} 1 + \frac{1}{2}i\varepsilon_3 & \frac{1}{2}i(\varepsilon_1 - i\varepsilon_2) \\ \frac{1}{2}i(\varepsilon_1 + i\varepsilon_2) & 1 - \frac{1}{2}i\varepsilon_3 \end{pmatrix}$$

Which is, as required, unitary and has unit determinant

$$U^{\dagger}U = I + O(\varepsilon^2)$$
 $\det U = 1 + O(\varepsilon^2)$

Properties of Isospin

Isospin has the exactly the same properties as spin

$$[T_1, T_2] = iT_3$$
 $[T_2, T_3] = iT_1$ $[T_3, T_1] = iT_2$
 $[T^2, T_3] = 0$ $T^2 = T_1^2 + T_2^2 + T_3^2$

As in the case of spin, have three non-commuting operators, T_1, T_2, T_3 and even though all three correspond to observables, can't know them simultaneously. So label states in terms of total isospin I and the third component of isospin I_3

NOTE: isospin has nothing to do with spin – just the same mathematics

• The eigenstates are exact analogues of the eigenstates of ordinary angular momentum $|s,m
angle o |I,I_3
angle$

with
$$T^2|I,I_3\rangle = I(I+1)|I,I_3\rangle$$
 $T_3|I,I_3\rangle = I_3|I,I_3\rangle$

In terms of isospin:

$$u = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{vmatrix} \frac{1}{2}, +\frac{1}{2} \end{vmatrix} \qquad d = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \end{vmatrix}$$

$$U = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \end{vmatrix}$$

$$I_3 \qquad I = \frac{1}{2}, \quad I_3 = \pm \frac{1}{2}$$

$$I = \frac{1}{2}, \quad I_3 = \pm \frac{1}{2}$$

• In general $I_3 = \frac{1}{2}(N_u - N_d)$

Can define isospin ladder operators – analogous to spin ladder operators

$$T_{-} \equiv T_{1} - iT_{2}$$

$$U \rightarrow d$$

$$T_{+}|I,I_{3}\rangle = \sqrt{I(I+1) - I_{3}(I_{3}+1)}|I,I_{3}+1\rangle$$

$$T_{-}|I,I_{3}\rangle = \sqrt{I(I+1) - I_{3}(I_{3}-1)}|I,I_{3}-1\rangle$$

$$T_{+} \equiv T_{1} + iT_{2}$$

$$d \rightarrow u$$

Step up/down in I_3 until reach end of multiplet $T_+|I,+I\rangle=0$ $T_-|I,-I\rangle=0$

$$T_{+}u = 0$$
 $T_{+}d = u$ $T_{-}u = d$ $T_{-}d = 0$

- Ladder operators turn u o d and d o u
- ★ Combination of isospin: e.g. what is the isospin of a system of two d quarks, is exactly analogous to combination of spin (i.e. angular momentum)

$$|I^{(1)},I_3^{(1)}\rangle|I^{(2)},I_3^{(2)}\rangle \to |I,I_3\rangle$$

- I_3 additive : $I_3 = I_3^{(1)} + I_3^{(2)}$
- ullet I in integer steps from $|I^{(1)}-I^{(2)}|$ to $|I^{(1)}+I^{(2)}|$
- ★ Assumed symmetry of Strong Interaction under isospin transformations implies the existence of conserved quantites
- In strong interactions I_3 and I are conserved, analogous to conservation of J_z and J for angular momentum

Combining Quarks

Goal: derive proton wave-function

- First combine two quarks, then combine the third
- Use requirement that fermion wave-functions are anti-symmetric

Isospin starts to become useful in defining states of more than one quark.

e.g. two quarks, here we have four possible combinations:

Note: () represents two Note: represents two states with the same value

•We can immediately identify the extremes (I_3 additive)

$$uu \equiv |\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle = |1, +1\rangle$$

$$uu \equiv |\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle = |1, +1\rangle$$
 $dd \equiv |\frac{1}{2}, -\frac{1}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle = |1, -1\rangle$

To obtain the $|1,0\rangle$ state use ladder operators

The final state, $|0,0\rangle$, can be found from orthogonality with $|1,0\rangle$

$$\rightarrow |0,0\rangle = \frac{1}{\sqrt{2}}(ud - du)$$

• From four possible combinations of isospin doublets obtain a triplet of isospin 1 states and a singlet isospin 0 state $2 \otimes 2 = 3 \oplus 1$

- Can move around within multiplets using ladder operators
- note, as anticipated $I_3 = \frac{1}{2}(N_u N_d)$
- States with different total isospin are physically different the isospin 1 triplet is symmetric under interchange of quarks 1 and 2 whereas singlet is anti-symmetric
- ***** Now add an additional up or down quark. From each of the above 4 states get two new isospin states with $I_3' = I_3 \pm \frac{1}{2}$

• Use ladder operators and orthogonality to group the 6 states into isospin multiplets, e.g. to obtain the $I=\frac{3}{2}$ states, step up from ddd

★Derive the
$$I = \frac{3}{2}$$
 states from $ddd \equiv |\frac{3}{2}, -\frac{3}{2}\rangle$

$$ddd \qquad T_{+} \qquad T_{+} \qquad T_{+} \qquad I_{3}$$

$$-\frac{3}{2} \qquad -\frac{1}{2} \qquad 0 \qquad +\frac{1}{2} \qquad +\frac{3}{2}$$

$$T_{+}|\frac{3}{2}, -\frac{3}{2}\rangle = T_{+}(ddd) = (T_{+}d)dd + d(T_{+}d)d + dd(T_{+})d$$

$$\sqrt{3}|\frac{3}{2}, -\frac{1}{2}\rangle = udd + dud + ddu$$

$$|\frac{3}{2}, -\frac{1}{2}\rangle = \frac{1}{\sqrt{3}}(udd + dud + ddu)$$

$$T_{+}|\frac{3}{2}, -\frac{1}{2}\rangle = \frac{1}{\sqrt{3}}(uud + udu + uud + duu + uud + duu)$$

$$2|\frac{3}{2}, +\frac{1}{2}\rangle = \frac{1}{\sqrt{3}}(uud + udu + duu)$$

$$T_{+}|\frac{3}{2}, +\frac{1}{2}\rangle = \frac{1}{\sqrt{3}}(uud + udu + duu)$$

$$\sqrt{3}|\frac{3}{2}, +\frac{3}{2}\rangle = \frac{1}{\sqrt{3}}(uuu + uuu + uuu)$$

$$|\frac{3}{2}, +\frac{3}{2}\rangle = uuu$$

- ***** From the $\boxed{\mathbf{6}}$ states on previous page, use orthogonality to find $|\frac{1}{2},\pm\frac{1}{2}\rangle$ states
- ***** The **2** states on the previous page give another $|\frac{1}{2}, \pm \frac{1}{2}\rangle$ doublet

★The eight states *uuu*, *uud*, *udu*, *udd*, *duu*, *dud*, *ddu*, *ddd* are grouped into an isospin quadruplet and two isospin doublets

$$2 \otimes 2 \otimes 2 = 2 \otimes (3 \oplus 1) = (2 \otimes 3) \oplus (2 \otimes 1) = 4 \oplus 2 \oplus 2$$

Different multiplets have different symmetry properties

$$|\frac{3}{2}, +\frac{3}{2}\rangle = uuu$$

$$|\frac{3}{2}, +\frac{1}{2}\rangle = \frac{1}{\sqrt{3}}(uud + udu + duu)$$

$$|\frac{3}{2}, -\frac{1}{2}\rangle = \frac{1}{\sqrt{3}}(ddu + dud + udd)$$

$$|\frac{3}{2}, -\frac{3}{2}\rangle = ddd$$

$$|\frac{1}{2}, -\frac{1}{2}\rangle = -\frac{1}{\sqrt{6}}(2ddu - udd - dud)$$

$$|\frac{1}{2}, +\frac{1}{2}\rangle = \frac{1}{\sqrt{6}}(2uud - udu - duu)$$

$$|\frac{1}{2}, -\frac{1}{2}\rangle = \frac{1}{\sqrt{6}}(2uud - udu - duu)$$

$$|\frac{1}{2}, -\frac{1}{2}\rangle = \frac{1}{\sqrt{2}}(udd - dud)$$

$$|\frac{1}{2}, +\frac{1}{2}\rangle = \frac{1}{\sqrt{2}}(udd - dud)$$

$$|\frac{1}{2}, +\frac{1}{2}\rangle = \frac{1}{\sqrt{2}}(udu - duu)$$
Mixed symmetry.
$$|\frac{1}{2}, +\frac{1}{2}\rangle = \frac{1}{\sqrt{2}}(udu - duu)$$
Mixed symmetry.
$$|\frac{1}{2}, +\frac{1}{2}\rangle = \frac{1}{\sqrt{2}}(udu - duu)$$
Anti-symmetric for $1 \leftrightarrow 2$

 Mixed symmetry states have no definite symmetry under interchange of quarks 1 ↔ 3 etc.

Combining Spin

 Can apply exactly the same mathematics to determine the possible spin wave-functions for a combination of 3 spin-half particles

$$\begin{vmatrix} \frac{3}{2}, +\frac{3}{2} \rangle = \uparrow \uparrow \uparrow$$

$$\begin{vmatrix} \frac{3}{2}, +\frac{1}{2} \rangle = \frac{1}{\sqrt{3}} (\uparrow \uparrow \downarrow + \uparrow \downarrow \uparrow \uparrow + \downarrow \uparrow \uparrow)$$

$$\begin{vmatrix} \frac{3}{2}, -\frac{1}{2} \rangle = \frac{1}{\sqrt{3}} (\downarrow \downarrow \uparrow + \downarrow \uparrow \downarrow \downarrow + \uparrow \downarrow \downarrow)$$

$$\begin{vmatrix} \frac{3}{2}, -\frac{3}{2} \rangle = \downarrow \downarrow \downarrow$$

$$\begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \rangle = -\frac{1}{2} (2 \downarrow \downarrow \uparrow - \uparrow \downarrow \downarrow - \downarrow \uparrow \downarrow)$$

$$\begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \rangle = -\frac{1}{2} (2 \downarrow \downarrow \uparrow - \uparrow \downarrow \downarrow - \downarrow \uparrow \downarrow)$$

$$|\frac{1}{2}, -\frac{1}{2}\rangle = -\frac{1}{\sqrt{6}}(2\downarrow\downarrow\uparrow -\uparrow\downarrow\downarrow -\downarrow\uparrow\downarrow)$$

$$|\frac{1}{2}, +\frac{1}{2}\rangle = \frac{1}{\sqrt{6}}(2\uparrow\uparrow\downarrow -\uparrow\downarrow\uparrow -\downarrow\uparrow\uparrow)$$

$$\mathbf{M_S}$$

$$\begin{vmatrix} \frac{1}{2}, -\frac{1}{2} \rangle = \frac{1}{\sqrt{2}} (\uparrow \downarrow \downarrow - \downarrow \uparrow \downarrow) \\ |\frac{1}{2}, +\frac{1}{2} \rangle = \frac{1}{\sqrt{2}} (\uparrow \downarrow \uparrow - \downarrow \uparrow \uparrow) \end{vmatrix} \mathbf{M_A}$$

Mixed symmetry. Anti-symmetric for 1

Can now form total wave-functions for combination of three quarks

Baryon wave functions (ud)

- ★Quarks are fermions so require that the total wave-function is <u>anti-symmetric</u> under the interchange of any two quarks
- ★ the total wave-function can be expressed in terms of:

$$\psi = \phi_{\mathrm{flavour}} \chi_{\mathrm{spin}} \xi_{\mathrm{colour}} \eta_{\mathrm{space}}$$

- **★** The colour wave-function for all bound qqq states is anti-symmetric (see handout 8)
- Here we will only consider the lowest mass, ground state, baryons where there
 is no internal orbital angular momentum.
- For L=0 the spatial wave-function is <u>symmetric</u> (-1)^L.

- ★ Two ways to form a totally symmetric wave-function from spin and isospin states:
- lacktriangle combine totally symmetric spin and isospin wave-functions $\phi(S)\chi(S)$

- Combine mixed symmetry spin and mixed symmetry isospin states
 - Both $\phi(M_S)\chi(M_S)$ and $\phi(M_A)\chi(M_A)$ are sym. under inter-change of quarks $1\leftrightarrow 2$
 - Not sufficient, these combinations have no definite symmetry under $1 \leftrightarrow 3,...$
 - However, it is not difficult to show that the (normalised) linear combination:

$$\frac{1}{\sqrt{2}}\phi(M_S)\chi(M_S) + \frac{1}{\sqrt{2}}\phi(M_A)\chi(M_A)$$

is totally symmetric (i.e. symmetric under $1 \leftrightarrow 2; \ 1 \leftrightarrow 3; \ 2 \leftrightarrow 3$)

$$n p I_3$$
 Spin 1/2 | Isospin 1/2

The spin-up proton wave-function is therefore:

$$|p\uparrow\rangle = \frac{_1}{6\sqrt{2}}(2uud-udu-duu)(2\uparrow\uparrow\downarrow-\uparrow\downarrow\uparrow-\downarrow\uparrow\uparrow) + \frac{_1}{2\sqrt{2}}(udu-duu)(\uparrow\downarrow\uparrow-\downarrow\uparrow\uparrow)$$

$$|p\uparrow\rangle = \frac{1}{\sqrt{18}}(2u\uparrow u\uparrow d\downarrow - u\uparrow u\downarrow d\uparrow - u\downarrow u\uparrow d\uparrow + 2u\uparrow d\downarrow u\uparrow - u\uparrow d\uparrow u\downarrow - u\downarrow d\uparrow u\uparrow + 2d\downarrow u\uparrow u\uparrow - d\uparrow u\downarrow u\uparrow - d\uparrow u\uparrow u\uparrow)$$

NOTE: not always necessary to use the fully symmetrised proton wave-function, e.g. the first 3 terms are sufficient for calculating the proton magnetic moment

Anti-quarks and Mesons (u and d)

★The u, d quarks and u, d anti-quarks are represented as isospin doublets

$$\begin{array}{c|c}
q = \begin{pmatrix} u \\ d \end{pmatrix} \\
\hline
d & u \\
-\frac{1}{2} & +\frac{1}{2}
\end{array}$$

$$I_3$$

$$\overline{q} = \begin{pmatrix} -\overline{d} \\ \overline{u} \end{pmatrix} \qquad \overline{u} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\overline{d} = -\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\overline{d} = -\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- <u>Subtle point:</u> The ordering and the minus sign in the anti-quark doublet ensures that anti-quarks and quarks transform in the same way (see Appendix I). This <u>is</u> necessary if we want physical predictions to be invariant under $u \leftrightarrow d$; $\overline{u} \leftrightarrow d$
- Consider the effect of ladder operators on the anti-quark isospin states

e.g
$$T_+\overline{u}=T_+\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}0&1\\0&0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}1\\0\end{pmatrix}=-\overline{d}$$

The effect of the ladder operators on anti-particle isospin states are:

$$T_{+}\overline{u} = -\overline{d}$$
 $T_{+}\overline{d} = 0$ $T_{-}\overline{u} = 0$ $T_{-}\overline{d} = -\overline{u}$

$$T_{+}u = 0$$
 $T_{+}d = u$ $T_{-}u = d$ $T_{-}d = 0$

Compare with $T_{+}u = 0$ $T_{+}d = 0$

Light ud Mesons

★ Can now construct meson states from combinations of up/down quarks

• Consider the $q\overline{q}$ combinations in terms of isospin

$$|1,+1\rangle = |\frac{1}{2},+\frac{1}{2}\rangle |\frac{1}{2},+\frac{1}{2}\rangle = -u\overline{d}$$

$$|1,-1\rangle = |\frac{1}{2},-\frac{1}{2}\rangle |\frac{1}{2},-\frac{1}{2}\rangle = d\overline{u}$$

The bar indicates this is the isospin representation of an anti-quark

To obtain the $I_3=0$ states use ladder operators and orthogonality

$$T_{-}|1,+1\rangle = T_{-}\left[-u\overline{d}\right]$$

$$\sqrt{2}|1,0\rangle = -T_{-}\left[u\right]\overline{d} - uT_{-}\left[\overline{d}\right]$$

$$= -d\overline{d} + u\overline{u}$$

$$\Rightarrow |1,0\rangle = \frac{1}{\sqrt{2}}\left(u\overline{u} - d\overline{d}\right)$$

• Orthogonality gives:
$$|0,0\rangle=rac{1}{\sqrt{2}}\left(u\overline{u}+d\overline{d}
ight)$$

Light ud Mesons

★To summarise:

Triplet of I = 1 states and a singlet I = 0 state

$$\frac{d\overline{u} \qquad \frac{1}{\sqrt{2}}(u\overline{u} - d\overline{d}) \qquad -u\overline{d}}{-1 \qquad T_{\pm} \qquad 0 \qquad T_{\pm} \qquad +1} \qquad I_{3} \qquad \bigoplus \qquad \frac{\frac{1}{\sqrt{2}}(u\overline{u} + d\overline{d})}{0} \qquad \qquad I_{3}$$

- You will see this written as $2\otimes \overline{2} = 3\oplus 1$

$$2 \otimes \overline{2} = 3 \oplus 1$$

•To show the state obtained from orthogonality with |1,0
angle is a singlet use ladder operators

$$T_+|0,0\rangle=T_+\tfrac{1}{\sqrt{2}}(u\overline{u}+d\overline{d})=\tfrac{1}{\sqrt{2}}\left(-u\overline{d}+u\overline{d}\right)=0$$
 similarly
$$T_-|0,0\rangle=0$$

★ A singlet state is a "dead-end" from the point of view of ladder operators

SU(3) flavour

- ***** Extend these ideas to include the strange quark. Since $m_s > m_u$, m_d don't have an <u>exact symmetry</u>. But m_s not so very different from m_u , m_d and can treat the strong interaction (and resulting hadron states) as if it were symmetric under $u \leftrightarrow d \leftrightarrow s$
 - NOTE: any results obtained from this assumption are only approximate as the symmetry is not exact.
 - The assumed uds flavour symmetry can be expressed as

$$\begin{pmatrix} u' \\ d' \\ s' \end{pmatrix} = \hat{U} \begin{pmatrix} u \\ d \\ s \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33} \end{pmatrix} \begin{pmatrix} u \\ d \\ s \end{pmatrix}$$

• The 3x3 unitary matrix depends on 9 complex numbers, i.e. 18 real parameters. There are 9 constraints from $\hat{U}^\dagger\hat{U}=1$

Can form 18 – 9 = 9 linearly independent matrices

These 9 matrices form a U(3) group.

- As before, one matrix is simply the identity multiplied by a complex phase and is of no interest in the context of flavour symmetry
- The remaining 8 matrices have $\det U = 1$ and form an SU(3) group
- The eight matrices (the Hermitian generators) are: $ec{T}=rac{1}{2}ec{\lambda}$ $\hat{U}=e^{iec{lpha}.ec{T}}$

★In SU(3) flavour, the three quark states are represented by:

$$u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad s = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

★In SU(3) uds flavour symmetry contains SU(2) ud flavour symmetry which allows us to write the first three matrices:

$$\lambda_1 = \begin{pmatrix} \sigma_1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_2 = \begin{pmatrix} \sigma_2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} \sigma_3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• The third component of isospin is now written $I_3=rac{1}{2}\lambda_3$

with
$$I_3 u = +\frac{1}{2}u$$
 $I_3 d = -\frac{1}{2}d$ $I_3 s = 0$

- I_3 "counts the number of up quarks number of down quarks in a state
- As before, ladder operators $T_{\pm}=rac{1}{2}(\lambda_1\pm i\lambda_2)$ $dlacktriangledown T_+ \longrightarrow lacktriangledown u$

Now consider the matrices corresponding to the u ↔ s and d ↔ s

- Hence in addition to $\ \lambda_3=\begin{pmatrix}1&0&0\\0&-1&0\\0&0&0\end{pmatrix}$ have two other traceless diagonal matrices
- However the three diagonal matrices are not be independent.
- Define the eighth matrix, λ_8 , as the linear combination:

$$\lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} + \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

which specifies the "vertical position" in the 2D plane

"Only need two axes (quantum numbers) to specify a state in the 2D plane": (I₃,Y)

★The other six matrices form six ladder operators which step between the states

$$T_{\pm}=rac{1}{2}(\lambda_1\pm i\lambda_2) \ V_{\pm}=rac{1}{2}(\lambda_4\pm i\lambda_5) \ U_{\pm}=rac{1}{2}(\lambda_6\pm i\lambda_7) \ T_{3}=rac{1}{2}\lambda_3 \quad Y=rac{1}{\sqrt{2}}\lambda_8$$

with

and the eight Gell-Mann matrices

$$\mathbf{u} \leftrightarrow \mathbf{d} \quad \lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \ \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{array}{c|c} \textbf{u} \leftrightarrow \textbf{s} & \lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$$

$$\begin{array}{ccc}
\mathbf{d} \leftrightarrow \mathbf{s} & \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} & \lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

$$\lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Quarks and anti-quarks in SU(3) flavour

Quarks

$$I_3u = +\frac{1}{2}u; \quad I_3d = -\frac{1}{2}d; \quad I_3s = 0$$

$$Yu = +\frac{1}{3}u; \quad Yd = +\frac{1}{3}d; \quad Ys = -\frac{2}{3}s$$

The anti-quarks have opposite SU(3) flavour quantum numbers

Anti-Quarks

$$I_3\overline{u} = -\frac{1}{2}\overline{u}; \quad I_3\overline{d} = +\frac{1}{2}\overline{d}; \quad I_3\overline{s} = 0$$

$$Y\overline{u} = -\frac{1}{3}\overline{u}; \quad Y\overline{d} = -\frac{1}{3}\overline{d}; \quad Y\overline{s} = +\frac{2}{3}\overline{s}$$

SU(3) ladder operators

- SU(3) uds flavour symmetry contains ud, us and ds SU(2) symmetries
- •Consider the $u \leftrightarrow s$ symmetry "V-spin" which has the associated $s \rightarrow u$ ladder operator

$$V_{+} = \frac{1}{2}(\lambda_{4} + i\lambda_{5}) = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \frac{i}{2} \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
with
$$V_{+}s = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = +u$$

$$U_{\pm} = \frac{1}{2}(\lambda_{6} \pm i\lambda_{7})$$

★The effects of the six ladder operators are:

$$T_{+}d = u;$$
 $T_{-}u = d;$ $T_{+}\overline{u} = -\overline{d};$ $T_{-}\overline{d} = -\overline{u}$
 $V_{+}s = u;$ $V_{-}u = s;$ $V_{+}\overline{u} = -\overline{s};$ $V_{-}\overline{s} = -\overline{u}$
 $U_{+}s = d;$ $U_{-}d = s;$ $U_{+}\overline{d} = -\overline{s};$ $U_{-}\overline{s} = -\overline{d}$

all other combinations give zero

Light (uds) mesons

ullet Use ladder operators to construct uds mesons from the nine possible $q\overline{q}$ states

•The three central states, all of which have $Y=0;\ I_3=0$ can be obtained using the ladder operators and orthogonality. Starting from the outer states can reach

$$T_{+}|d\overline{u}\rangle = |u\overline{u}\rangle - |d\overline{d}\rangle \qquad T_{-}|u\overline{d}\rangle = |d\overline{d}\rangle - |u\overline{u}\rangle$$

$$V_{+}|s\overline{u}\rangle = |u\overline{u}\rangle - |s\overline{s}\rangle \qquad V_{-}|u\overline{s}\rangle = |s\overline{s}\rangle - |u\overline{u}\rangle$$

$$U_{+}|s\overline{d}\rangle = |d\overline{d}\rangle - |s\overline{s}\rangle \qquad U_{-}|d\overline{s}\rangle = |s\overline{s}\rangle - |d\overline{d}\rangle$$

- Only two of these six states are linearly independent.
- •But there are three states with Y = 0; $I_3 = 0$
- Therefore one state is not part of the same multiplet, i.e. cannot be reached with ladder ops.

First form two linearly independent orthogonal states from:

$$|u\overline{u}\rangle - |d\overline{d}\rangle$$
 $|u\overline{u}\rangle - |s\overline{s}\rangle$ $|d\overline{d}\rangle - |s\overline{s}\rangle$

- ★ If the SU(3) flavour symmetry were exact, the choice of states wouldn't matter. However, $m_s > m_{u,d}$ and the symmetry is only approximate.
- Experimentally observe three light mesons with m~140 MeV: $\pi^+,~\pi^0,~\pi^-$
- Identify one state (the π^0) with the isospin triplet (derived previously)

$$\psi_1 = \frac{1}{\sqrt{2}} (u\overline{u} - d\overline{d})$$

• The second state can be obtained by taking the linear combination of the other two states which is orthogonal to the π^0

$$\psi_2 = \alpha(|u\overline{u}\rangle - |s\overline{s}\rangle) + \beta(|d\overline{d}\rangle - |s\overline{s}\rangle)$$

with orthonormality: $\langle \psi_1 | \psi_2 \rangle = 0$; $\langle \psi_2 | \psi_2 \rangle = 1$

• The final state (which is not part of the same multiplet) can be obtained by requiring it to be orthogonal to ψ_1 and ψ_2

$$\psi_3 = \frac{1}{\sqrt{3}} (u\overline{u} + d\overline{d} + s\overline{s})$$

SINGLET

- ★It is easy to check that Ψ_3 is a singlet state using ladder operators $T_{+}\psi_{3} = T_{-}\psi_{3} = U_{+}\psi_{3} = U_{-}\psi_{3} = V_{+}\psi_{3} = V_{-}\psi_{3} = 0$ which confirms that $\psi_3 = \frac{1}{\sqrt{3}}(u\overline{u} + d\overline{d} + s\overline{s})$ is a "flavourless" singlet
- Therefore the combination of a quark and anti-quark yields nine states which breakdown into an OCTET and a SINGLET

- In the language of group theory: $3 \otimes \overline{3} = 8 \oplus 1$
- ***** Compare with combination of two spin-half particles $2 \otimes 2 = 3 \oplus 1$

TRIPLET of spin-1 states:
$$|1,-1\rangle,\ |1,0\rangle,\ |1,+1\rangle$$
 spin-0 SINGLET: $|0,0\rangle$

- These spin triplet states are connected by ladder operators just as the meson uds octet states are connected by SU(3) flavour ladder operators
- The singlet state carries no angular momentum in this sense the SU(3) flavour singlet is "flavourless"

PSEUDOSCALAR MESONS (L=0, S=0, J=0, P= -1)

•Because SU(3) flavour is only approximate the physical states with $I_3 = 0$, Y = 0 can be mixtures of the octet and singlet states.

Empirically find:

$$\pi^0 = \frac{1}{\sqrt{2}}(u\overline{u} - d\overline{d})$$
 $\eta \approx \frac{1}{\sqrt{6}}(u\overline{u} + d\overline{d} - 2s\overline{s})$
 $\eta' \approx \frac{1}{\sqrt{3}}(u\overline{u} + d\overline{d} + s\overline{s})$ singlet

<u>VECTOR MESONS</u> (L=0, S=1, J=1, P= -1)

•For the vector mesons the physical states are found to be approximately "ideally mixed":

$$\rho^{0} = \frac{1}{\sqrt{2}} (u\overline{u} - d\overline{d})$$

$$\omega \approx \frac{1}{\sqrt{2}} (u\overline{u} + d\overline{d})$$

$$\phi \approx s\overline{s}$$

MASSES

 $\pi^{\pm}: 140 \,\mathrm{MeV}$ $\pi^{0}: 135 \,\mathrm{MeV}$ $K^{\pm}: 494 \,\mathrm{MeV}$ $K^{0}/\overline{K}^{0}: 498 \,\mathrm{MeV}$ $\eta: 549 \,\mathrm{MeV}$ $\eta': 958 \,\mathrm{MeV}$

 $ho^{\pm}: 770 \, \text{MeV}$ $ho^{0}: 770 \, \text{MeV}$ $ho^{*\pm}: 892 \, \text{MeV}$ $ho^{*\pm}: 896 \, \text{MeV}$ $ho: 782 \, \text{MeV}$ $ho: 1020 \, \text{MeV}$

Combining uds Quarks to form Bayrons

- ★ Have already seen that constructing Baryon states is a fairly tedious process when we derived the proton wave-function. Concentrate on multiplet structure rather than deriving all the wave-functions.
- ★ Everything we do here is relevant to the treatment of colour

*Yields a symmetric sextet and anti-symmetric triplet: $3 \otimes 3 = 6 \oplus \overline{3}$ $\otimes 3 = 6 \oplus \overline{3}$ Same "pattern" as the anti-quark representation

•Now add the third quark:

- Best considered in two parts, building on the sextet and triplet. Again concentrate on the multiplet structure (for the wave-functions refer to the discussion of proton wave-function).
- **①** Building on the sextet: $3 \otimes 6 = 10 \oplus 8$

- 2 Building on the triplet:
 - •Just as in the case of uds mesons we are combining $\ \overline{3} \times 3$ and again obtain an octet and a singlet

• Can verify the wave-function $\Psi_{\text{singlet}} = \frac{1}{\sqrt{6}}(uds - usd + dsu - dus + sud - sdu)$ is a singlet by using ladder operators, e.g.

$$T_+\psi_{\text{singlet}} = \frac{1}{\sqrt{6}}(uus - usu + usu - uus + suu - suu) = 0$$

★ In summary, the combination of three uds quarks decomposes into

$$3 \otimes 3 \otimes 3 = 3 \otimes (6 \oplus \overline{3}) = 10 \oplus 8 \oplus 8 \oplus 1$$

Baryon decuplet

- **★** The baryon states (L=0) are:
 - the spin 3/2 decuplet of symmetric flavour and symmetric spin wave-functions $\phi(S)\chi(S)$

★ If SU(3) flavour were an exact symmetry all masses would be the same (broken symmetry)

Baryon octet

★ The spin 1/2 octet is formed from mixed symmetry flavour and mixed symmetry spin wave-functions

$$\alpha \phi(M_S) \chi(M_S) + \beta \phi(M_A) \chi(M_A)$$

See previous discussion proton for how to obtain wave-functions

★ NOTE: Cannot form a totally symmetric wave-function based on the anti-symmetric flavour singlet as there no totally anti-symmetric spin wave-function for 3 quarks

Summary

- ★ Considered SU(2) ud and SU(3) uds flavour symmetries
- ★ Although these flavour symmetries are only approximate can still be used to explain observed multiplet structure for mesons/baryons
- ***** In case of SU(3) flavour symmetry results, e.g. predicted wave-functions should be treated with a pinch of salt as $m_s \neq m_{u/d}$
- ★ Introduced idea of singlet states being "spinless" or "flavourless"

Quantum Chromodynamics

The local gauge principle

- ★ All the interactions between fermions and spin-1 bosons in the SM are specified by the principle of LOCAL GAUGE INVARIANCE
- ★ To arrive at QED, require physics to be invariant under the local phase transformation of particle wave-functions

$$\psi \rightarrow \psi' = \psi e^{iq\chi(x)}$$

- **\star** Note that the change of phase depends on the space-time coordinate: $\chi(t,\vec{x})$
 - Under this transformation the Dirac Equation transforms as

$$i\gamma^{\mu}\partial_{\mu}\psi - m\psi = 0$$
 \Longrightarrow $i\gamma^{\mu}(\partial_{\mu} + iq\partial_{\mu}\chi)\psi - m\psi = 0$

- •To make "physics", i.e. the Dirac equation, invariant under this local phase transformation FORCED to introduce a massless gauge boson, A_μ .
- + The Dirac equation has to be modified to include this new field:

$$i\gamma^{\mu}(\partial_{\mu}-qA_{\mu})\psi-m\psi=0$$

The modified Dirac equation is invariant under local phase transformations if:

$$A_{\mu}
ightharpoonup A'_{\mu} = A_{\mu} - \partial_{\mu} \chi$$

Gauge Invariance

- ***** For physics to remain unchanged must have GAUGE INVARIANCE of the new field, i.e. physical predictions unchanged for $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} \partial_{\mu} \chi$
- ★Hence the principle of invariance under local phase transformations completely specifies the interaction between a fermion and the gauge boson (i.e. photon):

$$i\gamma^{\mu}(\partial_{\mu}\psi - qA_{\mu})\psi - m\psi = 0$$

 \implies interaction vertex: $i\gamma^{\mu}qA_{\mu}$

★ The local phase transformation of QED is a unitary U(1) transformation

$$\psi
ightarrow \psi' = \hat{U} \psi$$
 i.e. $\psi
ightarrow \psi' = \psi e^{iq\chi(x)}$ with $U^\dagger U = 1$

Now extend this idea...

From QED to QCD

- ★ Suppose there is another fundamental symmetry of the universe, say "invariance under SU(3) local phase transformations"
 - i.e. require invariance under $\psi o \psi' = \psi e^{ig ec{\lambda}.ec{ heta}(x)}$ where
 - $\vec{\lambda}$ are the eight 3x3 Gell-Mann matrices
 - $ec{ heta}(x)$ are 8 functions taking different values at each point in space-time
 - → 8 spin-1 gauge bosons

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$$
 wave function is now a vector in COLOUR SPACE QCD!

★ QCD is fully specified by require invariance under SU(3) local phase transformations

Corresponds to rotating states in colour space about an axis whose direction is different at every space-time point

- \implies interaction vertex: $-\frac{1}{2}ig_s\lambda^a\gamma^\mu$
- \star Predicts 8 massless gauge bosons the gluons (one for each λ)
- ★ Also predicts exact form for interactions between gluons, i.e. the 3 and 4 gluon vertices the details are beyond the level of this course

Colour in QCD

★The theory of the strong interaction, Quantum Chromodynamics (QCD), is very similar to QED but with 3 conserved "colour" charges

In QED:

- ullet the electron carries one unit of charge -e
- ullet the anti-electron carries one unit of anti-charge +e
- the force is mediated by a massless "gauge boson" – the photon

In QCD:

- quarks carry colour charge: r,g,b
- anti-quarks carry anti-charge: $\overline{r}, \overline{g}, \overline{b}$
- The force is mediated by massless gluons

- **★** In QCD, the strong interaction is invariant under rotations in colour space $r \leftrightarrow b; \ r \leftrightarrow g; \ b \leftrightarrow g$
 - i.e. the same for all three colours

SU(3) colour symmetry

• This is an exact symmetry, unlike the approximate uds flavour symmetry

***** Represent r, g, b SU(3) colour states by:

$$r = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \quad g = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \quad b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

- **★** Colour states can be labelled by two quantum numbers:
 - I_3^c colour isospin
 - Y^c colour hypercharge

Exactly analogous to labelling u,d,s flavour states by I_3 and Y

★ Each quark (anti-quark) can have the following colour quantum numbers:

Colour Confinement

- ★ It is believed (although not yet proven) that all observed free particles are "colourless"
 - •i.e. never observe a free quark (which would carry colour charge)
 - consequently quarks are always found in bound states colourless hadrons
- ★Colour Confinement Hypothesis:

only <u>colour singlet</u> states can exist as free particles

- ★ All hadrons must be "colourless" i.e. colour singlets
- ★ To construct colour wave-functions for hadrons can apply results for SU(3) flavour symmetry to SU(3) colour with replacement

$$\begin{array}{c}
u \to r \\
d \to g \\
s \to b
\end{array}$$

★ just as for uds flavour symmetry can define colour ladder operators

Colour Singlets

- ★ It is important to understand what is meant by a singlet state
- ★ Consider spin states obtained from two spin 1/2 particles.
 - Four spin combinations: $\uparrow\uparrow$, $\uparrow\downarrow$, $\downarrow\uparrow$, $\downarrow\downarrow$
 - Gives four eigenstates of \hat{S}^2 , \hat{S}_z

$$(2\otimes 2=3\oplus 1)$$

$$\begin{array}{c} |1,+1\rangle = \uparrow \uparrow \\ |1,0\rangle = \frac{1}{\sqrt{2}}(\uparrow \downarrow + \downarrow \uparrow) \\ |1,-1\rangle = \downarrow \downarrow \end{array} \oplus |0,0\rangle = \frac{1}{\sqrt{2}}(\uparrow \downarrow - \downarrow \uparrow) \begin{array}{c} \text{spin-0} \\ \text{singlet} \end{array}$$

$$\oplus |0,0\rangle = \frac{1}{\sqrt{2}}(\uparrow\downarrow -\downarrow\uparrow)$$

★ The singlet state is "spinless": it has zero angular momentum, is invariant under SU(2) spin transformations and spin ladder operators yield zero

$$S_{\pm}|0,0\rangle=0$$

★ In the same way COLOUR SINGLETS are "colourless" combinations:

- ombinations: they have zero colour quantum numbers $I_3^c = 0, Y^c = 0$
- invariant under SU(3) colour transformations
- ladder operators $T_{\pm},~U_{\pm},~V_{\pm}$ all yield zero

\star NOT sufficient to have $I_3^c=0,\ Y^c=0:$ does not mean that state is a singlet

Meson Colour Wave-function

- **\star** Consider colour wave-functions for $q\overline{q}$
- ★ The combination of colour with anti-colour is mathematically identical to construction of meson wave-functions with uds flavour symmetry

 Colour confinement implies that hadrons only exist in colour singlet states so the colour wave-function for mesons is:

$$\psi_c^{q\overline{q}} = \frac{1}{\sqrt{3}}(r\overline{r} + g\overline{g} + b\overline{b})$$

- ***** Can we have a $qq\overline{q}$ state? i.e. by adding a quark to the above octet can we form a state with $Y^c=0;\ I^c_3=0$. The answer is clear no.
 - \longrightarrow $qq\overline{q}$ bound states do not exist in nature.

Baryon Colour Wave-function

★ Do qq bound states exist? This is equivalent to asking whether it possible to form a colour singlet from two colour triplets?

 Following the discussion of construction of baryon wave-functions in SU(3) flavour symmetry obtain

- No qq colour singlet state
- Colour confinement → bound states of qq do not exist

BUT combination of three quarks (three colour triplets) gives a colour singlet state

★The singlet colour wave-function is:

$$\psi_c^{qqq} = \frac{1}{\sqrt{6}}(rgb - rbg + gbr - grb + brg - bgr)$$

Check this is a colour singlet...

- It has $I_3^c=0,\ Y^c=0$: a necessary but not sufficient condition
- Apply ladder operators, e.g. T_+ (recall $T_+g=r$)

$$T_{+}\psi_{c}^{qqq} = \frac{1}{\sqrt{6}}(rrb - rbr + rbr - rrb + brr - brr) = 0$$

- •Similarly $T_-\psi_c^{qqq}=0; V_\pm\psi_c^{qqq}=0; U_\pm\psi_c^{qqq}=0;$
- ★ Colourless singlet therefore qqq bound states exist!
 - **→** Anti-symmetric colour wave-function

Allowed Hadrons i.e. the possible colour singlet states

- $lacktriangleq q\overline{q}, qqq$ Mesons and Baryons
- $lacktriangleq q\overline{q}q,\ qqqq\overline{q}$ Exotic states, e.g. pentaquarks

To date all confirmed hadrons are either mesons or baryons. However, some recent (but not entirely convincing) "evidence" for pentaquark states

Gluons

★ In QCD quarks interact by exchanging virtual massless gluons, e.g.

★ Gluons carry colour and anti-colour, e.g.

★ Gluon colour wave-functions (colour + anti-colour) are the same as those obtained for mesons (also colour + anti-colour)

OCTET +
"COLOURLESS" SINGLET

★ So we might expect 9 physical gluons:

OCTET:
$$r\overline{g},\ r\overline{b},\ g\overline{r},\ g\overline{b},\ b\overline{r},\ b\overline{g},\ \frac{1}{\sqrt{2}}(r\overline{r}-g\overline{g}),\ \frac{1}{\sqrt{6}}(r\overline{r}+g\overline{g}-2b\overline{b})$$
 SINGLET: $\frac{1}{\sqrt{3}}(r\overline{r}+g\overline{g}+b\overline{b})$

★ BUT, colour confinement hypothesis:

only colour singlet states can exist as free particles

Colour singlet gluon would be unconfined. It would behave like a strongly interacting photon ⇒ infinite range Strong force.

★ Empirically, the strong force is short range and therefore know that the physical gluons are confined. The colour singlet state does not exist in nature!

NOTE: this is not entirely ad hoc. In the context of gauge field theory (see minor option) the strong interaction arises from a fundamental SU(3) symmetry. The gluons arise from the generators of the symmetry group (the Gell-Mann λ matrices). There are 8 such matrices \rightarrow 8 gluons. Had nature "chosen" a U(3) symmetry, would have 9 gluons, the additional gluon would be the colour singlet state and QCD would be an unconfined long-range force.

NOTE: the "gauge symmetry" determines the exact nature of the interaction FEYNMAN RULES

Gluon-Gluon interactions

- ★ In QED the photon does not carry the charge of the EM interaction (photons are electrically neutral)
- **★** In contrast, in QCD the gluons do carry colour charge

★ Two new vertices (no QED analogues)

triple-gluon vertex

quartic-gluon vertex

★ In addition to quark-quark scattering, therefore can have gluon-gluon scattering

Gluon self-interactions and Confinement

- ★ Gluon self-interactions are believed to give rise to colour confinement
- **★** Qualitative picture:
 - Compare QED with QCD
 - In QCD "gluon self-interactions squeeze lines of force into a flux tube"

★ What happens when try to separate two coloured objects e.g. qq

•Form a flux tube of interacting gluons of approximately constant energy density $\sim 1\, GeV/fm$

$$\rightarrow$$
 $V(r) \sim \lambda r$

- Require infinite energy to separate coloured objects to infinity
- Coloured quarks and gluons are always confined within colourless states
- In this way QCD provides a plausible explanation of confinement but not yet proven (although there has been recent progress with Lattice QCD)

Hadronisation and jets

★Consider a quark and anti-quark produced in electron positron annihilation

i) Initially Quarks separate at high velocity

- ii) Colour flux tube forms between quarks
- iii) Energy stored in the flux tube sufficient to produce qq pairs
- iv) Process continues until quarks pair up into jets of colourless hadrons

- **★** This process is called hadronisation. It is not (yet) calculable.
- ★ The main consequence is that at collider experiments quarks and gluons observed as jets of particles

QCD and Colour in e+e- collisions

★e⁺e⁻ colliders are an excellent place to study QCD

- ★ Well defined production of quarks
 - QED process well-understood
 - no need to know parton structure functions
 - + experimentally very clean no proton remnants
- \star expressions for the $e^+e^- \to \mu^+\mu^-$ cross-section

$$\sigma = \frac{4\pi\alpha^2}{3s}$$
 $\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s}(1+\cos^2\theta)$

- In e⁺e⁻ collisions produce all quark flavours for which $\sqrt{s}>2m_q$
- In general, i.e. unless producing a $q\overline{q}\,$ bound state, produce jets of hadrons
- Usually can't tell which jet came from the quark and came from anti-quark

- ***** Colour is conserved and quarks are produced as $r\overline{r}, \ g\overline{g}, \ b\overline{b}$
- ★ For a single quark flavour and single colour

$$\sigma(e^+e^- \to q_i \overline{q}_i) = \frac{4\pi\alpha^2}{3s} Q_q^2$$

Experimentally observe jets of hadrons:

$$\sigma(e^+e^- \to \text{hadrons}) = 3 \sum_{u,d,s,..} \frac{4\pi\alpha^2}{3s} Q_q^2$$
es from colours

Factor 3 comes from colours

• Usual to express as ratio compared to $~\sigma(e^+e^ightarrow\mu^+\mu^-)$

$$R_{\mu} = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 3\sum_{u,d,s,..} Q_q^2$$

u,d,s:
$$R_{\mu} = 3 \times (\frac{1}{9} + \frac{4}{9} + \frac{1}{9}) = 2$$

u,d,s,c: $R_{\mu} = \frac{10}{3}$

u,d,s,c,b:
$$R_{\mu} = \frac{11}{3}$$

★ Data consistent with expectation with factor 3 from colour

Jets production in e+e- collisions

★e⁺e⁻ colliders are also a good place to study gluons

Quark-gluon interaction

Representing the colour part of the fermion wave-functions by:

$$r = c_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 $g = c_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $b = c_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

- •Particle wave-functions $u(p) \longrightarrow c_i u(p)$
- •The QCD qqg vertex is written:

$$\overline{u}(p_3)c_j^{\dagger}\{-\frac{1}{2}ig_s\lambda^a\gamma^{\mu}\}c_iu(p_1)$$

- Only difference w.r.t. QED is the insertion of the 3x3 SU(3) Gell-Mann matrices
- •Isolating the colour part: $c^\dagger_j \lambda^a c_i = c^\dagger_j \begin{pmatrix} \lambda^a_{1i} \\ \lambda^a_{2i} \\ \lambda^a \end{pmatrix} = \lambda^a_{ji}$

• Hence the fundamental quark - gluon QCD interaction can be written

$$\overline{u}(p_3)c_j^{\dagger}\{-\frac{1}{2}ig_s\lambda^a\gamma^{\mu}\}c_iu(p_1)\equiv\overline{u}(p_3)\{-\frac{1}{2}ig_s\lambda^a_{ji}\gamma^{\mu}\}u(p_1)$$

Feynman rules for QCD

Internal Lines (propagators)

spin 1 gluon
$$\frac{-3\mu}{q^2}\delta^2$$

a, b = 1,2,...,8 are gluon colour indices

$$-ig_s \frac{1}{2} \lambda^a_{ji} \gamma^\mu$$

i, j = 1,2,3 are quark colours,

$$\lambda^a$$
 a = 1,2,..8 are the Gell-Mann SU(3) matrices

- + 3 gluon and 4 gluon interaction vertices
- **Matrix Element** -iM = product of all factors

Matrix element for quark-quark scattering

★ Consider QCD scattering of an up and a down quark

- The incoming and out-going quark colours are labelled by $i, j, k, l = \{1, 2, 3\}$ (or $\{r, g, b\}$)

- •NOTE: the δ-function in the propagator ensures a = b, i.e. the gluon "emitted" at a is the
- ★ Applying the Feynman rules:

$$-iM = \left[\overline{u}_u(p_3)\left\{-\frac{1}{2}ig_s\lambda_{ji}^a\gamma^{\mu}\right\}u_u(p_1)\right]\frac{-ig_{\mu\nu}}{q^2}\delta^{ab}\left[\overline{u}_d(p_4)\left\{-\frac{1}{2}ig_s\lambda_{lk}^b\gamma^{\nu}\right\}u_d(p_2)\right]$$
 where summation over a and b (and μ and ν) is implied.

\star Summing over **a** and **b** using the δ -function gives:

$$M = -\frac{g_s^2}{4} \lambda_{ji}^a \lambda_{lk}^a \frac{1}{q^2} g_{\mu\nu} [\overline{u}_u(p_3) \gamma^{\mu} u_u(p_1)] [\overline{u}_d(p_4) \gamma^{\nu} u_d(p_2)]$$

Sum over all 8 gluons (repeated indices)

QCD vs QED

QED

$$-iM = \left[\overline{u}(p_3)ie\gamma^{\mu}u(p_1)\right] \frac{-ig_{\mu\nu}}{q^2} \left[\overline{u}(p_4)ie\gamma^{\nu}u(p_2)\right]$$

$$M = -e^2 \frac{1}{q^2} g_{\mu\nu} [\overline{u}(p_3) \gamma^{\mu} u(p_1)] [\overline{u}(p_4) \gamma^{\nu} u(p_2)]$$

QCD

$$M = -\frac{g_s^2}{4} \lambda_{ji}^a \lambda_{lk}^a \frac{1}{q^2} g_{\mu\nu} [\overline{u}_u(p_3) \gamma^{\mu} u_u(p_1)] [\overline{u}_d(p_4) \gamma^{\nu} u_d(p_2)]$$

- ★ QCD Matrix Element = QED Matrix Element with:

$$oldsymbol{e} e^2 o g_s^2$$
 or equivalently $oldsymbol{lpha} = rac{e^2}{4\pi} o lpha_s = rac{g_s^2}{4\pi}$

+ QCD Matrix Element includes an additional "colour factor"

$$C(ik \to jl) \equiv \frac{1}{4} \sum_{a=1}^{8} \lambda_{ji}^{a} \lambda_{lk}^{a}$$

Evaluation of QCD colour factors

QCD colour factors reflect the gluon states that are involved

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
 Gluons: $r\overline{g}, g\overline{r}$
$$r\overline{b}, b\overline{r} \qquad g\overline{b}, b\overline{g} \qquad \frac{1}{\sqrt{2}} (r\overline{r} - g\overline{g}) \quad \frac{1}{\sqrt{6}} (r\overline{r} + g\overline{g} - 2b\overline{b})$$

Configurations involving a single colour

Only matrices with non-zero entries in 11 position are involved

Only matrices with non-zero entries in 11 position are involved in
$$i=1$$
 $i=1$ $i=1$

Similarly find

$$C(rr \rightarrow rr) = C(gg \rightarrow gg) = C(bb \rightarrow bb) = \frac{1}{3}$$

2 Other configurations where quarks don't change colour e.g. $rb \rightarrow rb$

Only matrices with non-zero entries in 11 and 33 position

$$C(rb \to rb) = \frac{1}{4} \sum_{a=1}^{8} \lambda_{11}^{a} \lambda_{33}^{a} = \frac{1}{4} (\lambda_{11}^{8} \lambda_{33}^{8})$$
$$= \frac{1}{4} \left(\frac{1}{\sqrt{3}} \cdot \frac{-2}{\sqrt{3}} \right) = -\frac{1}{6}$$

Similarly
$$C(rb \rightarrow rb) = C(rg \rightarrow rg) = C(gr \rightarrow gr) = C(gb \rightarrow gb) = C(br \rightarrow br) = C(bg \rightarrow bg) = -\frac{1}{6}$$

Somilarly $C(rb \rightarrow rb) = C(rg \rightarrow rg) = C(gr \rightarrow gr) = C(gb \rightarrow gb) = C(br \rightarrow br) = C(bg \rightarrow bg) = -\frac{1}{6}$

Similarly $C(rb \rightarrow rb) = C(rg \rightarrow rg) = C(gr \rightarrow gr) = C(gb \rightarrow gb) = C(br \rightarrow br) = C(bg \rightarrow bg) = -\frac{1}{6}$

Similarly $C(rb \rightarrow rb) = C(rg \rightarrow rg) = C(gr \rightarrow gr) = C(gb \rightarrow gb) = C(br \rightarrow br) = C(bg \rightarrow bg) = -\frac{1}{6}$

Similarly $C(rb \rightarrow rb) = C(rg \rightarrow rg) = C(gb \rightarrow gb) = C(br \rightarrow br) = C(bg \rightarrow bg) = -\frac{1}{6}$

Similarly $C(rb \rightarrow rb) = C(rg \rightarrow rg) = C(gb \rightarrow gb) = C(br \rightarrow br) = C(bg \rightarrow bg) = -\frac{1}{6}$

Only matrices with non-zero entries in 12 and 21 position are involved
$$C(rg \to gr) = \frac{1}{4} \sum_{a=1}^{8} \lambda_{21}^a \lambda_{12}^a = \frac{1}{4} (\lambda_{21}^1 \lambda_{12}^1 + \lambda_{21}^2 \lambda_{12}^2)$$

$$= \frac{1}{4} (i(-i) + 1) = \frac{1}{2}$$

$$\hat{T}_{+}^{(ij)} \hat{T}_{-}^{(kl)}$$

$$C(rb \to br) = C(rg \to gr) = C(gr \to rg) = C(gb \to bg) = C(br \to rb) = C(bg \to gb) = \frac{1}{2}$$

4 Configurations involving 3 colours e.g. $rb \rightarrow bg$

- Only matrices with non-zero entries in the 13 and 32 position
- But none of the λ matrices have non-zero entries in the 13 and 32 positions. Hence the colour factor is zero

★ colour is conserved

Colour factors: quark vs anti-quark

- Recall the colour part of wave-function:
- $r = c_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $g = c_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $b = c_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

The QCD qqg vertex was written:

$$\overline{u}(p_3)c_j^{\dagger}\{-\frac{1}{2}ig_s\lambda^a\gamma^{\mu}\}c_iu(p_1)$$

- ★Now consider the anti-quark vertex
 - The QCD qqg vertex is:

$$\overline{v}(p_1)c_i^{\dagger}\{-\frac{1}{2}ig_s\lambda^a\gamma^{\mu}\}c_jv(p_3)$$

Note that the incoming anti-particle now enters on the LHS of the expression

For which the colour part is

$$c_i^\dagger \lambda^a c_j = c_i^\dagger egin{pmatrix} \lambda^a_{1j} \ \lambda^a_{2j} \ \lambda^a_{3j} \end{pmatrix} = \lambda^a_{ij}$$
 i.e indices ij are swapped with respect to the quark case

Hence

$$\overline{v}(p_1)c_i^{\dagger}\{-\frac{1}{2}ig_s\lambda^a\gamma^{\mu}\}c_jv(p_3)\equiv\overline{v}(p_1)\{-\frac{1}{2}ig_s\lambda^a_{ij}\gamma^{\mu}\}v(p_3)$$

c.f. the quark - gluon QCD interaction

$$\overline{u}(p_3)c_j^{\dagger}\{-\frac{1}{2}ig_s\lambda^a\gamma^{\mu}\}c_iu(p_1)\equiv\overline{u}(p_3)\{-\frac{1}{2}ig_s\lambda^a_{ji}\gamma^{\mu}\}u(p_1)$$

★Finally we can consider the quark – anti-quark annihilation

Consequently the colour factors for the different diagrams are:

$$C(ik \to jl) \equiv \frac{1}{4} \sum_{a=1}^{8} \lambda_{ji}^{a} \lambda_{lk}^{a}$$

e.g.

$$C(rr \rightarrow rr) = \frac{1}{3}$$

 $C(rg \rightarrow rg) = -\frac{1}{6}$
 $C(rg \rightarrow gr) = \frac{1}{2}$

$$\overline{q}$$
 \overline{k} \overline{l}

$$C(i\overline{k} \to j\overline{l}) \equiv \frac{1}{4} \sum_{a=1}^{8} \lambda_{ji}^{a} \lambda_{kl}^{a}$$

$$C(rr \to rr) = \frac{1}{3}$$

$$C(r\overline{g} \to r\overline{g}) = -\frac{1}{6}$$

$$C(r\overline{g} \to r\overline{g}) = 1$$

$$C(r\overline{r} \to r\overline{r}) = \frac{1}{3}$$

 $C(r\overline{g} \to r\overline{g}) = -\frac{1}{6}$
 $C(r\overline{r} \to g\overline{g}) = \frac{1}{2}$

$$\frac{q}{a}$$
 $\frac{i}{k}$ $\frac{j}{q}$

$$C(i\bar{k} \to j\bar{l}) \equiv \frac{1}{4} \sum_{a=1}^{8} \lambda_{ki}^a \lambda_{jl}^a$$

$$C(r\overline{r} \rightarrow r\overline{r}) = \frac{1}{3}$$

 $C(r\overline{g} \rightarrow r\overline{g}) = \frac{1}{2}$
 $C(r\overline{r} \rightarrow g\overline{g}) = -\frac{1}{6}$

Colour index of adjoint spinor comes first

Quark-quark scattering

- •Consider the process $u+d \rightarrow u+d$ which can occur in the high energy proton-proton scattering
- There are nine possible colour configurations of the colliding quarks which are all equally likely.
- Need to determine the average matrix element which is the sum over all possible colours divided by the number of possible initial colour states

$$\langle |M_{fi}|^2 \rangle = \frac{1}{3} \cdot \frac{1}{3} \sum_{i,j,k,l=1}^{3} |M_{fi}(ij \to kl)|^2$$

The colour average matrix element contains the average colour factor

$$\langle |C|^2 \rangle = \frac{1}{9} \sum_{i,j,k,l=1}^{3} |C(ij \to kl)|^2$$

•For
$$qq \rightarrow qq$$

$$\langle |C|^2 \rangle = \frac{1}{9} \left[3 \times \left(\frac{1}{3} \right)^2 + 6 \times \left(-\frac{1}{6} \right)^2 + 6 \times \left(\frac{1}{2} \right)^2 \right] = \frac{2}{9}$$

 Previously derived the Lorentz Invariant cross section for e⁻μ⁻ → e⁻μ⁻ elastic scattering in the ultra-relativistic limit (handout 6).

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q^2} = \frac{2\pi\alpha^2}{q^4} \left[1 + \left(1 + \frac{q^2}{s} \right)^2 \right]$$

ullet For ud ullet ud ullet in QCD replace $lpha o lpha_{\!\scriptscriptstyle S}$ and multiply by $\langle |C|^2
angle$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q^2} = \frac{2}{9} \frac{2\pi\alpha_S^2}{q^4} \left[1 + \left(1 + \frac{q^2}{\hat{s}}\right)^2 \right] \qquad \text{Never see colour, but enters through colour factors.} \\ \text{Can tell QCD is SU(3)}$$

- •Here \hat{s} is the centre-of-mass energy of the quark-quark collision
- The calculation of hadron-hadron scattering is very involved, need to include parton structure functions and include all possible interactions e.g. two jet production in proton-antiproton collisions

Proton-antiproton collisions at Tevatron

- ★ Tevatron collider at Fermi National Laboratory (FNAL)
 - located ~40 miles from Chigaco, US
 - started operation in 1987 (will run until 2009/2010)
 - ★ $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV

c.f. 14 TeV at the LHC

Two main accelerators:

- ★ Main Injector
 - Accelerates 8 GeV p to 120 GeV
 - ullet also \overline{p} to 120 GeV
 - Protons sent to Tevatron & MINOS
 - $ullet{p}$ all go to Tevatron
- *Tevatron
 - 4 mile circumference
 - accelerates p/\overline{p} from 120 GeV to 900 GeV

★ Test QCD predictions by looking at production of pairs of high energy jets

pp → jet jet + X

- ★ Measure cross-section in terms of
 - "transverse energy" $E_T = E_{\text{jet}} \sin \theta$
 - "pseudorapidity" $\eta = \ln \left[\cot \left(\frac{\theta}{2}\right)\right]$
 - ...don't worry too much about the details here, what matters is that...
 - **★QCD** predictions provide an excellent description of the data

★NOTE:

- at low E_T cross-section is dominated by low x partons
 i.e. gluon-gluon scattering
- at high E_T cross-section is dominated by high x partons
 i.e. quark-antiquark scattering

Running coupling constants

- "bare" charge of electron screened by virtual e⁺e⁻ pairs
- · behaves like a polarizable dielectric
- ★ In terms of Feynman diagrams:

- ★ Same final state so add matrix element amplitudes: $M = M_1 + M_2 + M_3 + ...$
- **★** Giving an infinite series which can be summed and is equivalent to a single diagram with "running" coupling constant $\sqrt{\alpha}(q^2)$

$$\alpha(Q^2) = \alpha(Q_0^2) \left/ \left[1 - \frac{\alpha(Q_0^2)}{3\pi} \ln\left(\frac{Q^2}{Q_0^2}\right) \right] \right.$$
 Note sign
$$Q^2 \gg Q_0^2$$

$$\sqrt{\alpha(q^2)}$$

★ Might worry that coupling becomes infinite at

$$\ln\left(\frac{Q^2}{Q_0^2}\right) = \frac{3\pi}{1/137}$$

$$Q \sim 10^{26} \,\text{GeV}$$

- But quantum gravity effects would come in way below this energy and it is highly unlikely that QED "as is" would be valid in this regime
- ★ In QED, running coupling increases very slowly

•Atomic physics:
$$Q^2 \sim 0$$

 $1/\alpha = 137.03599976(50)$

High energy physics:

i.e. at

$$1/\alpha(193\,\text{GeV}) = 127.4 \pm 2.1$$

Running of α_s

QCD

Similar to QED but also have gluon loops

- ★ Remembering adding amplitudes, so can get negative interference and the sum can be smaller than the original diagram alone
- ★ Bosonic loops "interfere negatively"

$$\alpha_S(Q^2) = \alpha_S(Q_0^2) \left/ \left[1 + B\alpha_S(Q_0^2) \ln \left(\frac{Q^2}{Q_0^2} \right) \right] \right.$$
 with
$$B = \frac{11N_c - 2N_f}{12\pi} \qquad \left\{ \begin{array}{l} N_c = \text{no. of colours} \\ N_f = \text{no. of quark flavours} \end{array} \right.$$

$$N_c = 3; \ N_f = 6 \qquad \Longrightarrow \ B > 0$$

 $lpha_{S}$ decreases with Q^{2}

Nobel Prize for Physics, 2004 (Gross, Politzer, Wilczek)

- ★ Measure α_s in many ways:
 - jet rates
 - DIS
 - tau decays
 - bottomonium decays
 - +...
 - As predicted by QCD,
 α_s decreases with Q²

- ★ At low Q^2 : α_s is large, e.g. at $Q^2 = 1 \, \text{GeV}^2$ find $\alpha_s \sim 1$
 - Can't use perturbation theory! This is the reason why QCD calculations at low energies are so difficult, e.g. properties hadrons, hadronisation of quarks to jets,...
- ***** At high Q^2 : α_s is rather small, e.g. at $Q^2 = M_Z^2$ find $\alpha_s \sim 0.12$
 - → Asymptotic Freedom
 - Can use perturbation theory and this is the reason that in DIS at high Q^2 quarks behave as if they are quasi-free (i.e. only weakly bound within hadrons)

Summary

- ★ Superficially QCD very similar to QED
- ★ But gluon self-interactions are believed to result in colour confinement
- ★ All hadrons are colour singlets which explains why only observe

Mesons

Baryons

 \star A low energies $~lpha_{S}\sim 1$

Can't use perturbation theory!

Non-Perturbative regime

***** Coupling constant runs, smaller coupling at higher energy scales $lpha_S(100\,{
m GeV})\sim 0.1$

Can use perturbation theory

Asymptotic Freedom

★ Where calculations can be performed, QCD provides a good description of relevant experimental data

The weak interaction and V-A

Parity

★The parity operator performs spatial inversion through the origin:

$$\psi'(\vec{x},t) = \hat{P}\psi(\vec{x},t) = \psi(-\vec{x},t)$$

•applying \hat{P} twice: $\hat{P}\hat{P}\psi(\vec{x},t) = \hat{P}\psi(-\vec{x},t) = \psi(\vec{x},t)$

so
$$\hat{P}\hat{P} = I$$
 \rightarrow $\hat{P}^{-1} = \hat{P}$

To preserve the normalisation of the wave-function

$$\langle \psi | \psi \rangle = \langle \psi' | \psi' \rangle = \langle \psi | \hat{P}^{\dagger} \hat{P} | \psi \rangle$$

$$\hat{P}^{\dagger}\hat{P} = I$$
 $ightharpoonup \hat{P}$ Unitary

- $\hat{P}^\dagger \hat{P} = I \qquad \qquad \hat{P} \qquad \text{Unitary}$ But since $\ \hat{P}\hat{P} = I \qquad \qquad \hat{P} = \hat{P}^\dagger \qquad \qquad \hat{P} \qquad \text{Hermitian}$
 - which implies Parity is an observable quantity. If the interaction Hamiltonian commutes with \hat{P} , parity is an observable conserved quantity

• If $\psi(ec{x},t)$ is an eigenfunction of the parity operator with eigenvalue P

$$\hat{P}\psi(\vec{x},t) = P\psi(\vec{x},t) \qquad \rightarrow \qquad \hat{P}\hat{P}\psi(\vec{x},t) = P\hat{P}\psi(\vec{x},t) = P^2\psi(\vec{x},t)$$
 since $\hat{P}\hat{P} = I$
$$P^2 = 1$$

$$\rightarrow$$
 Parity has eigenvalues $P=\pm 1$

- ★ QED and QCD are invariant under parity
- ★ Experimentally observe that Weak Interactions do not conserve parity

Intrinsic Parities of fundamental particles:

Spin-1 Bosons

•From Gauge Field Theory can show that the gauge bosons have P=-1

$$P_{\gamma} = P_g = P_{W^+} = P_{W^-} = P_Z = -1$$

Spin-1/2 Fermions

From the Dirac equation showed (handout 2):

Spin ½ particles have opposite parity to spin ½ anti-particles

•Conventional choice: spin $\frac{1}{2}$ particles have P=+1

$$P_{e^{-}} = P_{\mu^{-}} = P_{\tau^{-}} = P_{\nu} = P_{q} = +1$$

and anti-particles have opposite parity, i.e.

$$P_{e^+} = P_{\mu^+} = P_{\tau^+} = P_{\overline{\nu}} = P_{\overline{q}} = -1$$

★ For Dirac spinors it was shown (handout 2) that the parity operator is:

$$\hat{P} = \gamma^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Parity conservation in QED and QCD

- Consider the QED process e[¬]q → e[¬]q
- The Feynman rules for QED give:

$$iM = \left[\overline{u}_e(p_3)ie\gamma^{\mu}u_e(p_1)\right]^{-ig_{\mu\nu}} \left[\overline{u}_q(p_4)ie\gamma^{\nu}u_q(p_2)\right]$$

Which can be expressed in terms of the electron and

quark 4-vector currents:
$$M=-\frac{e^2}{q^2}g_{\mu\nu}j_e^{\mu}j_q^{\nu}=-\frac{e^2}{q^2}j_e.j_q$$

with

$$j_e = \overline{u}_e(p_3) \gamma^\mu u_e(p_1)$$
 and $j_q = \overline{u}_q(p_4) \gamma^\mu u_q(p_2)$

- **★** Consider the what happen to the matrix element under the parity transformation
 - Spinors transform as

$$u \stackrel{\hat{P}}{\longrightarrow} \hat{P}u = \gamma^0 u$$

Adjoint spinors transform as

$$\overline{u} = u^{\dagger} \gamma^{0} \xrightarrow{\hat{P}} (\hat{P}u)^{\dagger} \gamma^{0} = u^{\dagger} \gamma^{0\dagger} \gamma^{0} = u^{\dagger} \gamma^{0} \gamma^{0} = \overline{u} \gamma^{0}$$

$$\overline{u} \xrightarrow{\hat{P}} \overline{u} \gamma^{0}$$

• Hence
$$j_e = \overline{u}_e(p_3) \gamma^\mu u_e(p_1) \stackrel{\hat{P}}{\longrightarrow} \overline{u}_e(p_3) \gamma^0 \gamma^\mu \gamma^0 u_e(p_1)$$

★ Consider the components of the four-vector current

$$0: j_e^0 \xrightarrow{\hat{P}} \overline{u} \gamma^0 \gamma^0 \gamma^0 u = \overline{u} \gamma^0 u = j_e^0$$

since
$$\gamma^0 \gamma^0 = 1$$

$$j_e^k \stackrel{\hat{P}}{\longrightarrow} \overline{u} \gamma^0 \gamma^k \gamma^0 u = -\overline{u} \gamma^k \gamma^0 \gamma^0 u = -\overline{u} \gamma^k u = -j_e^k \quad \text{since} \quad \gamma^0 \gamma^k = -\gamma^k \gamma^0$$

since
$$\gamma^0 \gamma^k = -\gamma^k \gamma^0$$

 The time-like component remains unchanged and the space-like components change sign

$$j_a^0 \xrightarrow{\hat{P}} j_a^0$$

$$j_q^k \xrightarrow{\bar{P}} -j_q^k \quad k=1,2,3$$

★ Consequently the four-vector scalar product

•Similarly
$$j_q^0 \stackrel{\hat{P}}{\longrightarrow} j_q^0$$
 $j_q^k \stackrel{\hat{P}}{\longrightarrow} -j_q^k$ $k=1,2,3$ or $j^\mu \stackrel{\hat{P}}{\longrightarrow} j_\mu$ Consequently the four-vector scalar product $j_e.j_q=j_e^0j_q^0-j_e^kj_q^k \stackrel{\hat{P}}{\longrightarrow} j_e^0j_q^0-(-j_e^k)(-j_q^k)=j_e.j_q$ $k=1,3$

or
$$j^{\mu} \stackrel{\hat{P}}{\longrightarrow} j_{\mu}$$

$$j^{\mu}.j^{\nu} \stackrel{\hat{P}}{\longrightarrow} j_{\mu}.j_{\nu}$$

$$\stackrel{\hat{P}}{\longrightarrow} j^{\mu}.j^{\nu}$$

QED Matrix Elements are Parity Invariant

Parity Conserved in QED

★ The QCD vertex has the same form and, thus,

Parity Conserved in QCD

Parity violation in β -decay

- **\star**The parity operator \hat{P} corresponds to a discrete transformation $x \to -x, etc.$
- **★**Under the parity transformation:

Vectors
$$\vec{r} \xrightarrow{\hat{P}} -\vec{r}$$
 change sign $\vec{p} \xrightarrow{\hat{P}} -\vec{p}$ $(p_x = \frac{\partial}{\partial x}, \, etc.)$ Note B is an axial vector $\vec{L} = \vec{r} \wedge \vec{p}$ $(\vec{L} = \vec{r} \wedge \vec{p})$ $(\vec{R} = \vec{R} \times \vec{R} \times$

★1957: C.S.Wu et al. studied beta decay of polarized cobalt-60 nuclei:

60
Co \rightarrow 60 $Ni^* + e^- + \overline{\nu}_e$

★Observed electrons emitted preferentially in direction opposite to applied field

If parity were conserved: expect equal rate for producing e in directions along and opposite to the nuclear spin.

- **★**Conclude parity is violated in WEAK INTERACTION
- that the WEAK interaction vertex is NOT of the form $\overline{u}_e \gamma^\mu u_\nu$

Bilinear covariance

★The requirement of Lorentz invariance of the matrix element severely restricts the form of the interaction vertex. QED and QCD are "VECTOR" interactions:

$$j^{\mu} = \overline{\psi} \gamma^{\mu} \phi$$

- **★This combination transforms as a 4-vector (Handout 2 appendix V)**
- ★ In general, there are only 5 possible combinations of two spinors and the gamma matrices that form Lorentz invariant currents, called "bilinear covariants":

Туре	Form	Components	"Boson Spin"
* SCALAR	$\overline{\psi}\phi_{oldsymbol{\perp}}$	1	0
PSEUDOSCALAR	$\overline{\psi}\gamma^5\phi$	1	0
VECTOR	$\overline{\psi}\gamma^{\mu}\phi$	4	1
AXIAL VECTOR	$\overline{\psi} \gamma^{\mu} \gamma^{5} \phi$	4	1
+ TENSOR	$\overline{\psi}(\gamma^{\mu}\gamma^{\nu}-\gamma^{\nu}\gamma^{\mu}$	$^{\iota})\phi$ 6	2

- ★ Note that in total the sixteen components correspond to the 16 elements of a general 4x4 matrix: "decomposition into Lorentz invariant combinations"
- ★ In QED the factor $g\mu\nu$ arose from the sum over polarization states of the virtual photon (2 transverse + 1 longitudinal, 1 scalar) = (2J+1) + 1
- ★ Associate SCALAR and PSEUDOSCALAR interactions with the exchange of a SPIN-0 boson, etc. – no spin degrees of freedom

V-A structure of weak interaction

- **★The most general form for the interaction between a fermion and a boson is a** linear combination of bilinear covariants
- ★ For an interaction corresponding to the exchange of a spin-1 particle the most general form is a linear combination of VECTOR and AXIAL-VECTOR
- **★The form for WEAK interaction is determined from experiment to be** VECTOR - AXIAL-VECTOR (V - A)

$$e^{-p_1}$$
 μ
 ν_e
 $j^{\mu} \propto \overline{u}_{\nu_e} (\gamma^{\mu} - \gamma^{\mu} \gamma^5) u_e$
 $V - A$

- **★** Can this account for parity violation?
- ★ First consider parity transformation of a pure AXIAL-VECTOR current

$$j_{A} = \overline{\psi}\gamma^{\mu}\gamma^{5}\phi \qquad \text{with} \qquad \gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}; \quad \gamma^{5}\gamma^{0} = -\gamma^{0}\gamma^{5}$$

$$j_{A} = \overline{\psi}\gamma^{\mu}\gamma^{5}\phi \xrightarrow{\hat{P}} \overline{\psi}\gamma^{0}\gamma^{\mu}\gamma^{5}\gamma^{0}\phi = -\overline{\psi}\gamma^{0}\gamma^{\mu}\gamma^{0}\gamma^{5}\phi$$

$$j_{A}^{0} = \xrightarrow{\hat{P}} -\overline{\psi}\gamma^{0}\gamma^{0}\gamma^{0}\gamma^{5}\phi = -\overline{\psi}\gamma^{0}\gamma^{5}\phi = -j_{A}^{0}$$

$$j_{A}^{k} = \xrightarrow{\hat{P}} -\overline{\psi}\gamma^{0}\gamma^{k}\gamma^{0}\gamma^{5}\phi = +\overline{\psi}\gamma^{k}\gamma^{5}\phi = +j_{A}^{k} \qquad k = 1,2,3$$
or
$$j_{A}^{\mu} \xrightarrow{\hat{P}} -j_{A\mu}$$

 The space-like components remain unchanged and the time-like components change sign (the opposite to the parity properties of a vector-current)

$$j_A^0 \stackrel{\hat{P}}{\longrightarrow} -j_A^0; \quad j_A^k \stackrel{\hat{P}}{\longrightarrow} +j_A^k; \qquad j_V^0 \stackrel{\hat{P}}{\longrightarrow} +j_V^0; \quad j_V^k \stackrel{\hat{P}}{\longrightarrow} -j_V^k$$

Now consider the matrix elements

$$M \propto g_{\mu\nu} j_1^{\mu} j_2^{\nu} = j_1^0 j_2^0 - \sum_{k=1,3} j_1^k j_2^k$$

For the combination of a two axial-vector currents

$$j_{A1}.j_{A2} \xrightarrow{\hat{P}} (-j_1^0)(-j_2^0) - \sum_{k=1,3} (j_1^k)(j_2^k) = j_{A1}.j_{A2}$$

- Consequently parity is conserved for both a pure vector and pure axial-vector interactions
- However the combination of a vector current and an axial vector current

$$j_{V1}.j_{A2} \xrightarrow{\hat{P}} (j_1^0)(-j_2^0) - \sum_{k=1,3} (-j_1^k)(j_2^k) = -j_{V1}.j_{A2}$$

changes sign under parity - can give parity violation!

★ Now consider a general linear combination of VECTOR and AXIAL-VECTOR (note this is relevant for the Z-boson vertex)

$$\psi_{1} \qquad \qquad \phi_{1} \qquad \int_{1}^{\mu} \int_{1}^{\mu} \left[g_{V}\gamma^{\mu} + g_{A}\gamma^{\mu}\gamma^{5}\right]\psi_{1} = g_{V}j_{1}^{V} + g_{A}j_{1}^{A}$$

$$\frac{g_{\mu\nu}}{q^{2} - m^{2}}$$

$$\psi_{2} \qquad \qquad \phi_{2} \qquad \qquad j_{2} = \overline{\phi}_{2}(g_{V}\gamma^{\mu} + g_{A}\gamma^{\mu}\gamma^{5})\psi_{2} = g_{V}j_{2}^{V} + g_{A}j_{2}^{A}$$

$$M_{fi} \propto j_{1}.j_{2} = g_{V}^{2}j_{1}^{V}.j_{2}^{V} + g_{A}^{2}j_{1}^{A}.j_{2}^{A} + g_{V}g_{A}(j_{1}^{V}.j_{2}^{A} + j_{1}^{A}.j_{2}^{V})$$

Consider the parity transformation of this scalar product

$$j_1.j_2 \xrightarrow{\hat{P}} g_V^2 j_1^V.j_2^V + g_A^2 j_1^A.j_2^A - g_V g_A(j_1^V.j_2^A + j_1^A.j_2^V)$$

- If either g_A or g_V is zero, Parity is conserved, i.e. parity conserved in a pure VECTOR or pure AXIAL-VECTOR interaction
- Relative strength of parity violating part $\propto \frac{g_V g_A}{g_V^2 + g_A^2}$

Maximal Parity Violation for V-A (or V+A)

Chiral structure of QED (reminder)

★ Recall introduced CHIRAL projections operators

$$P_R = \frac{1}{2}(1 + \gamma^5); \qquad P_L = \frac{1}{2}(1 - \gamma^5)$$

project out chiral right- and left- handed states

- ★ In the ultra-relativistic limit, chiral states correspond to helicity states
- ★ Any spinor can be expressed as:

$$\psi = \frac{1}{2}(1+\gamma^5)\psi + \frac{1}{2}(1-\gamma^5)\psi = P_R\psi + P_L\psi = \psi_R + \psi_L$$

•The QED vertex $\overline{\psi}\gamma^{\mu}\phi$ in terms of chiral states:

$$\overline{\psi}\gamma^{\mu}\phi = \overline{\psi}_R\gamma^{\mu}\phi_R + \overline{\psi}_R\gamma^{\mu}\phi_L + \overline{\psi}_L\gamma^{\mu}\phi_R + \overline{\psi}_L\gamma^{\mu}\phi_L$$

conserves chirality, e.g.

$$\overline{\psi}_{R} \gamma^{\mu} \phi_{L} = \frac{1}{2} \psi^{\dagger} (1 + \gamma^{5}) \gamma^{0} \gamma^{\mu} \frac{1}{2} (1 - \gamma^{5}) \phi
= \frac{1}{4} \psi^{\dagger} \gamma^{0} (1 - \gamma^{5}) \gamma^{\mu} (1 - \gamma^{5}) \phi
= \frac{1}{4} \overline{\psi} \gamma^{\mu} (1 + \gamma^{5}) (1 - \gamma^{5}) \phi = 0$$

★In the ultra-relativistic limit only two helicity combinations are non-zero

Helicity structure of weak interactions

★The charged current (W[±]) weak vertex is:

$$\frac{-ig_w}{\sqrt{2}}\frac{1}{2}\gamma^{\mu}(1-\gamma^5)$$

***Since** $\frac{1}{2}(1-\gamma^5)$ projects out left-handed chiral particle states:

$$\overline{\psi} \frac{1}{2} \gamma^{\mu} (1 - \gamma^5) \phi = \overline{\psi} \gamma^{\mu} \phi_L$$

*Writing $\overline{\psi} = \overline{\psi}_R + \overline{\psi}_L$ and from discussion of QED, $\overline{\psi}_R \gamma^\mu \phi_L = 0$ gives $\overline{\psi}_{\frac{1}{2}} \gamma^\mu (1 - \gamma^5) \phi = \overline{\psi}_L \gamma^\mu \phi_L$

Only the left-handed chiral components of particle spinors and right-handed chiral components of anti-particle spinors participate in charged current weak interactions

\starAt very high energy $(E\gg m)$, the left-handed chiral components are helicity eigenstates :

$$\frac{1}{2}(1-\gamma^5)u \implies$$

$$\frac{1}{2}(1-\gamma^5)v \implies$$

LEFT-HANDED PARTICLES
Helicity = -1

RIGHT-HANDED ANTI-PARTICLES Helicity = +1

In the ultra-relativistic limit only left-handed particles and right-handed antiparticles participate in charged current weak interactions

e.g. In the relativistic limit, the only possible electron - neutrino interactions are:

★ The helicity dependence of the weak interaction ← parity violation

RH anti-particle LH particle $\overline{V}_e \xrightarrow{\overrightarrow{p}_{\overline{V}_e}} \overrightarrow{p}_e = e^-$

Valid weak interaction

Helicity in pion decay

★The decays of charged pions provide a good demonstration of the role of helicity in the weak interaction

EXPERIMENTALLY:
$$\frac{\Gamma(\pi^- \to e^- \overline{\nu}_e)}{\Gamma(\pi^- \to \mu^- \overline{\nu}_\mu)} = 1.23 \times 10^{-4}$$

- Might expect the decay to electrons to dominate due to increased phase space.... The opposite happens, the electron decay is helicity suppressed
- **★** Consider decay in pion rest frame.
 - Pion is spin zero: so the spins of the $\overline{\nu}$ and μ are opposite
 - Weak interaction only couples to RH chiral anti-particle states. Since neutrinos are (almost) massless, must be in RH Helicity state
 - Therefore, to conserve angular mom. muon is emitted in a RH HELICITY state

$$\overline{\mathbf{v}}_{\mu}$$
 \longleftarrow μ^{-}

But only left-handed CHIRAL particle states participate in weak interaction

★The general right-handed helicity solution to the Dirac equation is

$$u_{\uparrow} = N \begin{pmatrix} c \\ e^{i\phi}s \\ \frac{|\vec{p}|}{E+m}c \\ \frac{|\vec{p}|}{E+m}e^{i\phi}s \end{pmatrix}$$
 with $c = \cos\frac{\theta}{2}$ and $s = \sin\frac{\theta}{2}$

• project out the left-handed chiral part of the wave-function using
$$P_L = \frac{1}{2}(1-\gamma^5) = \frac{1}{2}\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

giving
$$P_L u_{\uparrow} = \frac{1}{2} N \left(1 - \frac{|\vec{p}|}{E+m} \right) \begin{pmatrix} c \\ e^{i\phi} s \\ -c \\ -e^{i\phi} s \end{pmatrix} = \frac{1}{2} N \left(1 - \frac{|\vec{p}|}{E+m} \right) u_L$$

In the limit $m \ll E$ this tends to zero

• similarly
$$P_R u_{\uparrow} = \frac{1}{2} N \left(1 + \frac{|\vec{p}|}{E+m} \right) \begin{pmatrix} c \\ e^{i\phi} S \\ c \\ e^{i\phi} S \end{pmatrix} = \frac{1}{2} N \left(1 + \frac{|\vec{p}|}{E+m} \right) u_R$$

In the limit $m \ll E$, $P_R u_\uparrow o u_R$

Hence
$$u_{\uparrow} = P_R u_{\uparrow} + P_L u_{\uparrow} = \frac{1}{2} \left(1 + \frac{|\vec{p}|}{E+m} \right) u_R + \frac{1}{2} \left(1 - \frac{|\vec{p}|}{E+m} \right) u_L$$
RH Helicity RH Chiral

- •In the limit $E\gg m$, as expected, the RH chiral and helicity states are identical
- Although only LH chiral particles participate in the weak interaction the contribution from RH Helicity states is not necessarily zero!

★ Expect matrix element to be proportional to LH chiral component of RH Helicity electron/muon spinor

$$M_{fi} \propto rac{1}{2} \left(1 - rac{|ec{p}|}{E+m}
ight) = rac{m_{\mu}}{m_{\pi} + m_{\mu}}$$
 from the kinematics of pion decay at rest

***** Hence because the electron mass is much smaller than the pion mass the decay $\pi^- \to e^- \overline{\nu}_e$ is heavily suppressed.

Evidence for V-A

★The V-A nature of the charged current weak interaction vertex fits with experiment

EXAMPLE charged pion decay

- •Experimentally measure: $\frac{\Gamma(\pi^- \to e^- \overline{\nu}_e)}{\Gamma(\pi^- \to \mu^- \overline{\nu}_\mu)} = (1.230 \pm 0.004) \times 10^{-4}$
- Theoretical predictions (depend on Lorentz Structure of the interaction)

EXAMPLE muon decay

e.g. TWIST expt: $6x10^9 \mu$ decays Phys. Rev. Lett. 95 (2005) 101805

Measure electron energy and angular distributions relative to muon spin direction. Results expressed in terms of general S+P+V+A+T form in "Michel Parameters"

$$\rho = 0.75080 \pm 0.00105$$

V-A Prediction: $\rho = 0.75$

Weak charged current propagator

- **★**The charged-current Weak interaction is different from QED and QCD in that it is mediated by massive W-bosons (80.3 GeV)
- ★This results in a more complicated form for the propagator:
 - in handout 4 showed that for the exchange of a massive particle:

$$\frac{1}{q^2} \longrightarrow \frac{1}{q^2 - m^2}$$

- In addition the sum over W boson polarization states modifies the numerator
- W-boson propagator

$$\frac{-i\left[g_{\mu\nu}-q_{\mu}q_{\nu}/m_W^2\right]}{q^2-m_W^2}$$

- $\frac{-i\left[g_{\mu\nu}-q_{\mu}q_{\nu}/m_W^2\right]}{q^2-m_W^2} \quad \frac{\mu}{q^2-m_W^2} \quad \frac{q}{2} \quad v$ However in the limit where q^2 is small compared with $m_W=80.3\,\mathrm{GeV}$ the interaction takes a simpler form.
- W-boson propagator ($q^2 \ll m_W^2$)

$$\frac{ig_{\mu\nu}}{m_W^2}$$

• The interaction appears point-like (i.e no q² dependence)

Connection to Fermi theory

★In 1934, before the discovery of parity violation, Fermi proposed, in analogy with QED, that the invariant matrix element for β-decay was of the form:

$$M_{fi} = G_{\rm F} g_{\mu\nu} [\overline{\psi} \gamma^{\mu} \psi] [\overline{\psi} \gamma^{\nu} \psi]$$

where
$$G_F = 1.166 \times 10^{-5} \, \text{GeV}^{-2}$$

- Note the absence of a propagator: i.e. this represents an interaction at a point
- ★After the discovery of parity violation in 1957 this was modified to

$$M_{fi} = \frac{G_{\rm F}}{\sqrt{2}} g_{\mu\nu} [\overline{\psi} \gamma^{\mu} (1 - \gamma^5) \psi] [\overline{\psi} \gamma^{\nu} (1 - \gamma^5) \psi]$$

(the factor of $\sqrt{2}$ was included so the numerical value of G_F did not need to be changed)

★Compare to the prediction for W-boson exchange

$$M_{fi} = \left[\frac{g_W}{\sqrt{2}}\overline{\psi}\frac{1}{2}\gamma^{\mu}(1-\gamma^5)\psi\right]\frac{g_{\mu\nu} - q_{\mu}q_{\nu}/m_W^2}{q^2 - m_W^2}\left[\frac{g_W}{\sqrt{2}}\overline{\psi}\frac{1}{2}\gamma^{\nu}(1-\gamma^5)\psi\right]$$

which for $q^2 \ll m_W^2$ becomes:

$$M_{fi} = \frac{g_W^2}{8m_W^2} g_{\mu\nu} [\overline{\psi}\gamma^{\mu} (1 - \gamma^5)\psi] [\overline{\psi}\gamma^{\nu} (1 - \gamma^5)\psi]$$

Still usually use $G_{\rm F}$ to express strength of weak interaction as the is the quantity that is precisely determined in muon decay

Strength of Weak Interaction

- Here $q^2 < m_u (0.106 \,\text{GeV})$

$$\frac{-i\left[g_{\mu\nu}-q_{\mu}q_{\nu}/m_W^2\right]}{q^2-m_W^2}\approx\frac{ig_{\mu\nu}}{m_W^2}$$

- In muon decay measure g_W^2/m_W^2 Muon decay \longrightarrow $G_{\rm F}=1.16639(1)\times 10^{-5}\,{\rm GeV}^{-2}$ $\frac{G_{\rm F}}{\sqrt{2}}=$

$$G_{\rm F} = 1.16639(1) \times 10^{-5} \,\rm GeV^{-2}$$

$$\frac{G_{\rm F}}{\sqrt{2}} = \frac{g_W^2}{8m_W^2}$$

★ To obtain the intrinsic strength of weak interaction need to know mass of W-boson: $m_W = 80.403 \pm 0.029 \, \text{GeV}$ (see handout 14)

$$\alpha_W = \frac{g_W^2}{4\pi} = \frac{8m_W^2 G_F}{4\sqrt{2}\pi} = \frac{1}{30}$$

The intrinsic strength of the weak interaction is similar to, but greater than, the EM interaction! It is the massive W-boson in the propagator which makes it appear weak. For $q^2\gg m_W^2$ weak interactions are more likely than EM.

Summary

★ Weak interaction is of form Vector – Axial-vector (V-A)

$$\frac{-ig_w}{\sqrt{2}}\frac{1}{2}\gamma^{\mu}(1-\gamma^5)$$

★ Consequently only left-handed chiral particle states and right-handed chiral anti-particle states participate in the weak interaction

MAXIMAL PARITY VIOLATION

- ★ Weak interaction also violates Charge Conjugation symmetry
- ★ At low q^2 weak interaction is only weak because of the large W-boson mass

 $\frac{G_{\rm F}}{\sqrt{2}} = \frac{g_W^2}{8m_W^2}$

★ Intrinsic strength of weak interaction is similar to that of QED