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Electron-proton scattering




Electron-proton scattering

e-
@ Two main topics: e-
& €°Pp — e7p elastic scattering
¢ e'p — e X deep inelastic scattering
& But first consider scattering from a point-like
particle e.g. e~ e~
eEU — e
i.e. the QED part of
(e7q —> e7q)
& Two ways to proceed: H H
& perform QED calculation from scratch
8e*
2
(|Mpi|*) = L [(p1-P2)(P3-p4) + (p1.p4)(P2-p3)] (1)

& take results from e*e~ — u*u- and use “Crossing Symmetry” to

obtain the matrix element fore 'y~ — e



Crossing symmetry

* Having derived the Lorentz invariant matrix element for €'~ — p*u-
“rotate” the diagram to correspond to € U™ — €7 U™ and apply the

principle of crossing symmetry to write down the matrix element !

ete" = utu- e e

e

* The transformation:

pi1 — Py P2 — =Py p3 — Py P4 — —Ph
Changes the spin averaged matrix element for
ee’ | W ey ey
pPiLp2 P3pa P\ Py P3Py




*Take ME for e*e~ — u*u- and apply crossing symmetry:

(pl .P3) —i—(pl p4) - <|Mﬁ‘| > e 4(1—'71 94) +(P1 Pa)z ()

4
(1Myif%) = 2¢ (p1.p2)? (P}-Py)?




(p1.p3)° ) _

* Work in the C.o.M:
p1 = (E,0,0,E) p2 = (E.,0,0,—F)
p3 = (E,Esin0,0,E cos )

o

ps=(E,—Esin6,0,—Ecos6) u/

giving P1.p2 =2E*; p1.p3 =E*(1 —cos0);

P1.P4 —Ez(l —|‘L059)

E*(1+4cos0)> +4E* o’
- M2y — 264 e e
<| ﬁ‘ ) E4(] CDSQ) E1n3
do 1 €4 1+ 2(1+cosb 2 - Vs = 1GeV
e L e M
dQ  647-s 8n-s  (1—cosB) -
g
*The denominator arises from the propagator —igpv/qz 5 .
here q° = (p1 —p3)* = E*(1 —cos6) -.
10

as q2 — () the cross section tends to infinity.




» What about the angular dependence of do et [l + ﬁlf(l + Cos 9)2]
the numerator ? dOQ  8mls (1 _ 0059)2

*The factor 1 + %(1 <+ COS 9)2 reflects helicity (really chiral) structure of QED

*Of the 16 possible helicity combinations only 4 are non-zero:

-1 cosf +1 .i cosO +1 | -1 cc:sl;‘l +1 | -1 cosO +1
S; = S.=+1 §:=-1
do — do 1 9
- — o< —(1 )
10 o< ] a0 4( -+ COoS )

i.e. no preferred polar angle spin 1 rotation again



*The cross section calculated above is appropriate for the scattering of two
spin half Dirac (i.e. point-like) particles in the ultra-relativistic limit
(where both electron and muon masses can be neglected). In this case

4 (p1.pa)* +(p1.p2)?

(IMfif?) = 2e
(p1.p3)?
*We will use this again in the discussion of “Deep Inelastic Scattering” of
electrons from the quarks within a proton

* Before doing so we will consider the scattering of electrons from the composite
proton -i.e. how do we know the proton isn’t fundamental “point-like” particle ?

e- e m
*In this discussion we will not be able to use the
relativistic limit and require the general expression
for the matrix element
P p M
2 8e* 2 2 2242
(1M ):m L(P1-p2)(P3-pa) + (p1.p4) (P2.p3) — (P1.p3)M — (p1.pa)m” +2m"M~| | (3)




Probing the structure of the proton

*In €’p — e7p scattering the nature of the interaction of the virtual
photon with the proton depends strongly on wavelength

+ At very low electron energies A > 1), : er
the scattering is equivalent to that from a

“point-like” spin-less object

+ At low electron energies A~ Fp - e
the scattering is equivalent to that from a
extended charged object

+ At high electron energies A < Ip - e~
the wavelength is sufficiently short to
resolve sub-structure. Scattering from
constituent quarks

+ At very high electron energies A < Fp
the proton appears to be a sea of
quarks and gluons.




Rutherford scattering revisited

* Rutherford scattering is the low energy

limit where the recoil of the proton can be e-
neglected and the electron is non-relativistic ... P o ) e
«Start from RH and LH Helicity particle spinors (neglect proton recoil)
¢ -
ei‘;’s e’f’c.‘ N = VE+m:
MTZN P c HJJIN I 5 .
|%|+m¢ Ef;Tm . s = sin(6/2); c=cos(6/2)
i | .,
E—me § _E—I-me ¢
*Now write in terms of: o — |I_5| Non-relativistic limit: & — 0
E+m, Ultra-relativistic limit: o¢ — 1
c —5
s e
:> u-]- =N 0‘5_(3 ul =N (IS.
oe'?s —oe'%c
and the possible initial and final state electron spinors are:
1 0 c —S5
. 0 1 - s o c
up(pr) =Ne| o | wp)=Ne| o up(p3) =Ne | qe | w1 (p3)=Ne | g

0 —0 oLs
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* Consider all four possible electron currents, i.e. Helicities R»#R, L—-L, L»R, R—L

em, 27 w(p3) v uy(pr) = (E+m,) Je,2as, —2iats, 20| (4)

[(a
o W (p3) YUy (p1) = (E+m,) ( 2—!—1) 2as, —2ias,20c] )
‘.?_L,_...f...e u(p3) P uy(pr) = (E +me) [(1—0t*)s,0,0,0] (6)
&=y o2 T (p3) g (pr) = (E +me) [(a2 — 1)5,0,0,0] (7)

*In the relativistic limit (¢ =1 ),i.e. E > m
(6) and (7) are identically zero; only R»R and L—L combinations non-zero
p| < E wehave o =0

ur(p3) v ur(pr) = (p3)y*u;(p1) = (2me) [c,0,0,0]
w (p3)ytuy(p1) = =1 (p3)y*ui (p1) = (2m,)s,0,0,0]

All four electron helicity combinations have non-zero Matrix Element

i.e. Helicity eigenstates # Chirality eigenstates
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*The initial and final state proton spinors (assuming no recoil) are:

(1) (]) smutmnsofmrac
up(0) = \/2M, 0 u (0) = /2M, 0 : equation for a particle :
0 0 at"r.est
giving the proton currents: Jpt1 = Jpll = 2M,(1,0,0,0)
JptL = Jp11 =0

*The spin-averaged ME summing over the 8 allowed helicity states

16M2 / J|—Ja§
(IMFl) = Le — (16Mymg) (4c” +4s”) = \" ]

44 q*

where g* = (p) —p3)? = (0,p1 — p3)* = —4[p|*sin” (6/2)
MZ 4 Note: in this limit all

2 angular dependence

(‘Mf.f,') I—;‘4 4(9/2) / isigr,'ntheprgpagator

« The formula for the differential cross-section in the lab. frame

|

2
do 1 )
= M (8)
—Elcosﬂ) My

dQ  64n? (M+E1
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*Here the electron is non-relativistic so E ~ m, < Mp and we can neglect
E| in the denominator of equation (8)

do 1 m234
‘2

dQ 64:ir2M2 Mji 6472 |p|*sin*(6/2)
*Writing e? = 4w and the kinetic energy of the electronas Ex = p2/2m€

— (dg) 062\&\_
d€ / Rutherford 16E§ sin*6/2 |- (9)

QED coupling

* This is the normal expression for the Rutherford cross section. It could have
been derived by considering the scattering of a non-relativistic particle in the
static Coulomb potential of the proton V(F), without any consideration of the
interaction due to the intrinsic magnetic moments of the electron or proton.
From this we can conclude, that in this non-relativistic limit only the interaction
between the electric charges of the particles matters.
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The Mott scattering cross-section

* For Rutherford scattering we are in the limit where the target recoil is
neglected and the scattered particle is non-relativistic Ex << m,

* The limit where the target recoil is neglected and the scattered particle is
relativistic (i.e. just neglect the electron mass) is called Mott Scattering

* In this limit the electron currents, equations (4) and (6), become:
uy(p3)ytur(p1) =2Ec,s,—is,c] uy(p3)ytu (p1) = E10,0,0,0]
Relativistic = Electron “helicity conserved”

* It is then straightforward to obtain the result:

2
—) ( dg_ — 5 x 7 C032 E (1 D)
d ' 2
Mott L4E sin 6/% 2
Rutherford formula Overlap between initial/final
with Ex = E (E > m,) state electron wave-functions.
- Just QM of spin "%

* NOTE: we could have derived this expression from scatteringqof
electrons in a static potential from a fixed point in space V(I‘) :
The interaction is ELECTRIC rather than magnetic (spin-spin) in nature.

* Still haven’t taken into account the charge distribution of the proton.....
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Form factors

— = -
* Consider the scattering of an electron in the static potential r—r V(r
due to an extended charge distribution. _,
- L r
*The potential at ¥ from the centre is given by:
C0p(7) sy g3
V(F) = — 47 with [p(F)dF =
=) a7 '
*In first order perturbation theory the matrix element is given by: S ﬁy"
P
—ip3. Py (2 LiP1-T 432 i £
M = WrlvOlvi) = f Mt =P

[/ gt _OP(F) 3y // =)y _QP(F) s
4m[F — 7| 4TT|F — |

= — —f

*Fix 7 and integrate over d3r with substitution R=r—r

My = / o QR\d3 / p(F)e 4" &%F = (My:) poin F (7°)

* The resulting matrix element is equivalent to the matrix element for scattering
from a point source multiplied by the form factor

F(§%) = /.p(?")ei‘?'}’d:;?
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(dO' ) COS
e —
dQ ) o 4E2sin*6/2

(12

0
2 r =212
2| (q )‘

*There is nothing mysterious about form factors - similar to diffraction of plane

waves in optics. :

For example:

*The finite size of the scattering centre

introduces a phase difference between
plane waves “scattered from different points

in space”. If wavelength is long compared
to size all waves in phase and F(c}’z) =1

point-like exponential Gaussian Uniform Fermi
p(7) k sphere function
F(c}'z) Y \ Pl Gaussian sinc-like
Dirac Particle Proton 5L 40Ca

*NOTE that for a point charge the form factor is unity.
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Point-like electron-proton scattering

*So far have only considered the case we the proton does not recaoil...
For E; > m, the general case is

P1 = (E] 70 0, El)
e- P P2 = (M 0 0 0)
"""" p3 = (E3,0,E3s8in0,E3cos0)
ps = (Es,p4)
*From Eqn. (2) with m =m, = O the matrix element for this process is:
8¢*
(IMpif?) = (1 =) [(p1-p2)(p3-pa) + (p1-pa) (p2-p3) — (p1.p3)M°] (1)

*Experimentally observe scattered electron so eliminate p4
*The scalar products not involving P4 are:

p1.-p2=EM p1.p3:E1E3(1—COSB) p2.p3 = EsM

*From momentum conservation can eliminate P4 : P4 = P] + P2 —P3
p3-pa=Pp3-p1+p3.p2— P3P3 = E\E3(1 —cos8)+ EsM
pi p4—g§f§1+p1 -P2—P1-p3 = E/M — EE;;(]—COSG)

p1 ;}1 = E] |p1|~ — m ~ 0 i.e. neglect i,
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* Substituting these scalar products in Eqn. (11) gives

8e*
(Mp?) = o _p3)4ME]E3 [((E1 —E3)(1 —cos@)+M(1+cosB)]
8e* .
= (p] —p3)42ME1E3 [(E] —E3)Sm2(9/2) —}—MCOSQ(Q/Z)} (12)
* Now obtain expressions for q4 = (p1— p3 )4 and (E| —E3)
q* = (p1—p3)* =pi+p5—2p1.p3 = —2E1E3(1 —cos 0) (13)

= —4E | E;sin”6/2 (14)
NOTE: ¢° <0 | Space-like

« For (E| — E3) start from
q-p2 = (p1 = p3)-p2 = M(E1 — E3)

anduse  (g+p2)> = p2 qg=(p1—p3)=(ps—p2)
g +p3+2g.p20 = p;
@ +M +2q.pp = M

- qp = —q)2

18



*Hence the energy transferred to the proton:

q* (15)

2M
Because q2 is always negative E| — E3 > () and the scattered
electron is always lower in energy than the incoming electron

E,—E; = —

*Combining equations (11), (13) and (14):

Re? qz
M2y = OMEE; |Mcos?0/2 — L _sin?20/2
WAP) = opaniars MEEs [Meos'0/2— o sint 62
M2€4 o) q2
= ; 9 2_ .- 29 2
E\E3sin® 62 {COE’ 2= i O/ }
«For E > m, we have
2
do . | E3 |M “|2 52M1‘
Q@ ~ 64n? \ME, ) " *= N
do 052 E3 7 q2 5
? a0 4E?sin*0/2 E) (COS 2 S8/ (16)
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Interpretation

& So far have derived the differential cross-section for ep — e€7p elastic
scattering assuming point-like Dirac spin "z particles. How should we
interpret the equation?

= ~{cos“0/2— —-smn"06/2
dQ  4E?Zsin*0/2 E / 2M? /
«Compare with ( do ) o> , 0
— = cos” —
dQ ) v 4EZsin*6/2 2

the important thing to note about the Mott cross-section is that it is equivalent
to scattering of spin 2 electrons in a fixed electro-static potential. Here the
term Eg/E1 is due to the proton recoil.

x 2

= “lcos“0/2  ——sin“0/2
dQ  4E7sin6/2 E ( / 2M? /

hd

J

2 ici ion :
- Magnetic interaction : due to the

spin-spin interaction

M| D

*the new term: o< Sin

20



Interpretation

*The above differential cross-section depends on a single parameter. For an electron
scattering angle @, both q2 and the energy, F3, are fixed by kinematics

*Equating (13) and (15) e Substituting back into (13):

—2M(E\ —E3) = —2EE3(1 —cos 0) 5 2ME?(1 —cos8)
) q = —

B3 M M+ E;(1—cos0)

E| M+ E{(1 —cosB)

—)

® eg.ep—>ep at E,,=529.5MeV, look at scattered electrons at &= 75°

For elastic scattering expect: E.B.Hughes et al., Phys. Rev. 139 (1965) B458
3000
L3 = et 2500} :zf.:': e 5;1
M + El ( I —cos 9) {HYDROGEN UNCORRECTED } Ii i
938 x 529 i !
Ey = | —= 373 MeV o P
938 4+ 529(1 — cos 75°) % 1500l ;
The energy identifies the scatter as elash‘g\ i i
Also know squared four-momentum transfer $ T . i
i i i
2 x 938 x 5292(1 — cos 75° - .
‘qz‘ - ( ) — 294MCV2 o L N L v, ',

938 +529(1 — cos75°) 30 5% 385

SCATTERED ELECTRON ENERGY (Mwv)
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Elastic scattering from a finite size proton

* In general the finite size of the proton can be accounted for by introducing
two structure functions. One related to the charge distribution in the proton, GE(qz)
and the other related to the distribution of the magnetic moment of the proton,

Gu(q®)
* It can be shown that equation (16) generalizes to the ROSENBLUTH FORMULA.

do o’ E’;( :+1Gy 56 29)
= : COS 1 21G3, sin
dQ  4E2sin*0/2E \ ( M2

1+17) 2

2
with the Lorentz Invariant quantity: | r — _ q_ > (0

AM?

* Unlike our prewous dlscussmn of form factors, here the form factors are a
function of q rather than q and cannot simply be considered in terms of the
FT of the charge and magnetic moment distributions.

But q2 = (E; — E3)2 — Ejz and from eq (15) obtain

2
- __’2 — 2 1 - (i)
, =4 { M
<1 wehave ¢°=~ —g* and G(q*) = G(3°)

q
4M?

So for
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*Hence in the limit q""'/ﬁlﬂ/f2 < 1 we can interpret the structure functions in
terms of the Fourier transforms of the charge and magnetic moment distributions

Ge(q) ~ Gu(@) = [ &V p (M
Gu(q®) = Gu(@) = [ ¢V u(7)d’7

*Note in deriving the Rosenbluth formula we assumed that the proton was
a spin-half Dirac particle, i.e.

L e
‘U—ﬂ—/!S

*However, the experimentally measured value of the proton magnetic moment
is larger than expected for a point-like Dirac particle:

- € -
=2.79—8
K M
So for the proton expect

/p V&7 = 1 /u &F =, = +2.79

* Of course the anomalous magnetic moment of the proton is already evidence
that it is not point-like !
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Measuring from-factors

*Express the Rosenbluth formula as:

d d G2 + 1G> 0
€9 _ (G) ( AT +21:Gi,ftan22)
0

do  \dQ (1+1)
where do a,:z E 0 i.e. the Mott cross-section including
—_ 3 q 22 the proton recoil. It corresponds
dQ 4E2 sin 9/2 E1 2 to scattering from a spin-0 proton.

E-Atverylowq T——q2/4M2~0 ='Athighq2: 7> 1

do do 5, 3 . do do 1+ 2rtan? 0\ 2, 2
e ~ i . = ~ + 2Ttan” — G :
e (dg) o) 1/ ), 2) )

*In general we are sensitive to both structure —,

functions! These can be resolved from LS

the angular dependence of the cross Ny \

section at FIXED q | slope = 271G,
- 2 2
T intercept = (%)
tan” 6 /2
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*Cross sections measured to 2-3 %

® EXAMPLE: e p — e at E,, = 529.5 MeV

*Electron beam energies chosen to give certain values of g

PROTON

q* = 293MeV?

— y 'L;a-‘m2 5/2 ‘

do/da (cm2/STERADIAN)

E.B.Hughes et al., Phys. Rev. 139 (1965) B458
Form Factor

FORM FACTORS

L]
&

INCIDENT ENERGY (MeV)

NOTE

Experimentally find
Gy (q?) = 2.79G(g?),

i.e. the electric and
and magnetic form
factors have same

distribution
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Higher energy electron-proton scattering

*Use electron beam from SLAC LINAC: 5<E, A <20 GeV

*Detect scattered electrons using the
“8 GeV Spectrometer”

bending magnets

§ 1.6 Gev X

Sl TOROIDS ~___

PLAN VIEW HODOSCOPES ¢ DISCRIMINATOR

P.N.Kirk et al., Phys Rev D8 (1973) 63
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High g2 results

* Form factor falls rapidly with q2

_ Protonformfactor *Proton is not point-like
Pointi *Good fit to the data with “dipole form”:
oint-like proton
‘ R G 1
2 M
Gi(q7) ~

T 2797 (1+42/0.71GeV2)?

* Taking FT find spatial charge and
magnetic moment distribution

p(r) ~ poe /“

with a~0.24 fm
*Corresponds to a rms charge radius
Frms =~ 0.8 fm

* Although suggestive, does not
imply proton is composite !

qz/GeVE * Note: so far have only considered

ELASTIC scattering;
R.C.Walker et al., Phys. Rev. D49 (1994) 5671

A.F.Sill et al., Phys. Rev. D48 (1993) 29
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Summary: elastic scattering

* For elastic scattering of relativistic electrons from a point-like Dirac proton:

2 2
E
do 5 « ] (0052 =T w2 g)
do 4Ej sin ‘0 /2 E

V 2\ J \ v J \ ~ J

(6 ]f=at

Rutherford || Proton | | Electric/ Magnetic term
recoil Magnetic due to spin
scattering

* For elastic scattering of relativistic electrons from an extended proton:
do o> B3 (G§+rG§V,00326+2TG . 29)
= 3 4 3 51N

dQ  4FE%sin* 0 /2 E 2

(1+7) 2

Rosenbluth Formula

* Electron elastic scattering from protons demonstrates that the proton is an
extended object with rms charge radius of ~0.8 fm
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Deep-Inelastic scattering




e p Elastic Scattering at very high g2

* At high q2 the Rosenbluth expression for elastic scattering becomes

do aZ E’% Qz 7 .9 9) qz
= — | ——5 Gy sin” — T=———">1
(dg)emﬂic 4E12 Sil‘]ﬁ1r 9/2 Eq (2M2 M 2 AM?

*From e- p elastic scattering, the proton magnetic form factor is

1
Gu(a?) ~ Y g4 athigh g2
m(@’) (14 42/0.71GeV?)2 = Gu(q’)>q . ,a ,'g, q-l —

do \
|:> o< q_6 , Al ¢ —We2 GeV
B} e We3 GeV
elastic "

o

*Due to the finite proton size, elastic scattering
at high q2 is unlikely and inelastic reactions
where the proton breaks up dominate.

P3 e
P /{
e- > 9 S—

oL “\ELASTIC
= \;r:.memus
o) X O =d Y
P2 e - I T
P4 0?/GeV?
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Kinematics of inelastic scattering

- *For inelastic scattering the mass of the final state

p e ) .
I /:( hadronic system is no longer the proton mass, M
_f (7
e = < I

* The final state hadronic system must

contain at least one baryon which implies

q\ the final state invariant mass My, > M
p > X 2 2 (2 = 12
j2%) P M —P4—(E4_|P4| )
4
* For inelastic scattering introduce four new kinematic variables: X,y,V, Q2
* Define: 0?
X = Bjorken x (Lorentz Invariant)
2p2-q
where Q2 = —q2 Q2 >0
*Here Mz = pﬁ — (q+pz)2 — _Q2 —I—2p2.q—|—M2 Note: in many text

books W is often

= Q> =2pr.q+M?* — M;’( = (%< 2p>.q used in place of My

- - - o
hence 0 < x <1 inelastic x=1 elastic | * ﬂg:'ﬁ'jc i
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* Define: pP2-q p3 ©
- |y= (Lorentz Invariant) Pl
pz ‘p] - : 11} 9". [TL1}

e
*In the Lab. Frame: q\
p1 = (E1,0,0,E1) p2 = (M,0,0,0)
q = (E1 — E3,p1 — p3) P2
M(E; — E3) E; p4
=) y — f— —_
ME; E;
So y is the fractional energy loss of the incoming particle
O<y<l1

*In the C.o0.M. Frame (neglecting the electron and proton masses):
p1 = (E;0,0,E); P2 = (E,O,U, —E); p3 = (E.JESiH 9*50,ECOSQ$)
—_ y:%(l—cose*) for E>M
* Fi ine: )
flna.v befine 1% pz_Mq (Lorentz Invariant)

*In the Lab. Frame: V=FE| —Ej3
v is the energy lost by the incoming particle
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Relationship between kinematic variables

* Can rewrite the new kinematic variables in terms of the squared p|p2
centre-of-mass energy, s, for the electron-proton collision e- > p
o . 2 _ 2 M2 ............':;................5
s=(p1+p2)* p, -I-p2 +2ip1.p2 P1-p2+ -I-% Moot
zp] P2 =S8— M2 i of electron
*For a fixed centre-of-mass energy, it can then be shown that the four kinematic
variables Qz D2.q P2.q
2 — 2 — — : — :
=g ¥=5 - =M
: P29 P2.P1
are not independent.
*i.e. the scaling variables x and i can be expressed as —— S
Q2 "M Note the mmple
X = y=——"=V relatlonshlp hetween
2MV s — M? ‘yandv r

and Xy = =  Q°= (s—Mz)xy

s — M?
*For a fixed centre of mass energy, the interaction kinematics are completely
defined by any two of the above kinematic variables (except y and v)

*For elastic scattering (x — 1] ) there is only one independent variable. As we saw
previously if you measure electron scattering angle know everything else.

33



Inelastic scattering

Example: Scattering of 4.879 GeV electrons from protons at rest
 Place detector at 10° to beam and measure the energies of scattered e-

* Kinematics fully determined from the electron energy and angle !
* e.g. for this energy and angle : the invariant mass of the final state

hadronic system W2 = Mf{ — 10.06 — 2.03F; (try and show this)
1500 b @ Elastic Scattering
= i !51 —  4.879GeV ﬂl f} proton remains intact
= - 100 ¥ W=M
9 ool M W lﬁ f‘ /l Inelastic Scattering
£ " |WM%@ W } / produce “excited states”
o | FMH of proton e.g. AT(1232)
P_qs é 500 |- 'm W — MA
Elastic Scattering — : =
(Divided by 15) _..} & Deep Inelastic Scatternzlg
0 ! ! ! | ! | ! L\ proton breaks up resulting
2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4‘[16(/‘;-]5 in a many par'ticle final State
W [GeV] oo 14120 DIS = large W
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Inelastic cross-sections

*Repeat experiments at different angles/beam energies and determine
g* dependence of elastic and inelastic cross-sections

| T T T T T T

i 1 sElastic scattering falls of rapidly
j,\ SRS MR with q2 due to the proton not being
| T We35Gev; point-like (i.e. form factors)
10 : 3
L i1 cInelastic scattering cross sections
g - " 4 only weakly dependent on qz
© 10 \ S
e | E . . .
© \ 1 +*Deep Inelastic scattering cross sections
\‘\ ‘ | almost independent of q2 !
07 \'\Ei‘“ggﬁﬁmﬁ E i.e. “Form factor” — 1
: AN i
S ] -) Scattering from point-like
S objects within the proton !
o o 1 2 3 4 5 6 7
Q?/GeV?
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Elastic -> Inelastic scattering

* Recall: Elastic scattering

*Only one independent variable. In Lab. frame express differential cross
section in terms of the electron scattering angle (Rosenbluth formula)
do a> E3 (Gr+1Gh 0 56 2

= 5 . 4 3( £ Mcosz—+21GM3m — r:Q—

dQ  4E7sin® 6/2 E (1+7) 2 2 AM>

Note: here the energy of the scattered electron is determined by the angle.

*In terms of the Lorentz invariant kinematic variables can express this differential
cross section in terms of Q2

do _ 4no’ [GE +1Gy, | M?y? ly262
o> 0* | (1+71) Q> 27 M

4
which can be written as:

5

fz(;z) (1--2) + 2]

do  4na?

o>  ©0*

* Inelastic scattering
*For Deep Inelastic Scattering have two independent variables. Therefore
need a double differential cross section

Q2

36



Deep Inelastic scattering

* |t can be shown that the most general Lorentz Invariant expression
forep — e X inelastic scattering (via a single exchanged photon is):

2 2T 2.2 2
dc  4ra (lyMy )FE(X’Q)JFyZFl(x,QQ)} (1) | INELASTIC

wd? O 0? . SCATTERING
do 4na? [ M?*y? , ) ELASTIC
c.f. d0? - 0* _(1 A 02 )fZ(Q )+ 7Y flQ }] SCATTERING

.

We WI|| soon see how thIS connects to the quark model of the proton

'--

* NOTE: The form factors have been replaced by the STRUCTURE FUNCTIONS
Fi(x,Q°) and F(x,0?%)

which are a function of x and Q2: can not be interpreted as the Fourier transforms
of the charge and magnetic moment distributions. We shall soon see that they
describe the momentum distribution of the quarks within the proton

* |In the limit of high energy (or more correctly Q2 > M2y2 ) eqn. (1) becomes:

d*’c  4rma’ B (x,0%)

d? ~ O (1—y) +y7Fi(x,0%) (2)
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* In the Lab. frame it is convenient to express the cross section in terms of the
angle, @, and energy, /3, of the scattered electron - experimentally well measured.

E3
e- :94 P
X
, Jet
2 .2 Q E3
=4FE 0/2;: x= ; =1—-—; v=E-—-FL
O =aRbssint0/2 x = e ey YT g 1
*In the Lab. frame, Equation (2) becomes:
d’c o’ | ,0 2 5 0
— = Fr(x,0%)cos® = + —F;(x,0%)sin® = (3)
dE5dQ: 4E2sin*6/2 | v jf 0%)cos” 5 + 3 il ) sin” 5

/
Electromagnetic Structure Function Pure Magnetic Structure Function
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Measuring the structure functions

*To determine Fi(x,0?%) and F>(x,Q?) for a given x and Q° need
measurements of the differential cross section at several different
scattering angles and incoming electron beam energies

Example: electron-proton scattering I, vs. (O at fixed x

+ B° o |8°
x |0° a 26° .
0.5 T T T T T T g o
o
D
04 F ‘} 1 23
=] * =9
e o3| + 4 o t%® #.# .H. Iy
2 w +
0.2 = 2
N =
ol b x=0.25 4 =3
- Lﬂ:
~ o
0 1 1 1 I_ 1 1 1 ‘-E%
0 2 4 6 8 3
0?/GeV?

+ Experimentally it is observed that both ] and F, are (almost)
independent of 0
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Bjorken scalling and Callan-Gross relation

* The near (see later) independence of the structure functions on Q% is
known as Bjorken Scaling, i.e.

Fi(x,0%) — Fi(x) P (x,0%) — P (x)

It is strongly suggestive of scattering from point-like constituents
within the proton

* It is also observed that F|(x) and F(x) s 15 < QNGEVIGE < 4

are not independent but satisfy the fol o i
Callan-Gross relation 2 M - ESeRiea S I
F(x) = 2¢F1 (0 | e

*As we shall soon see this is exactly what is 1,0p-—= -{,#-%—H #—’!—‘P‘i—— -

expected for scattering from spin-half quarks. H’ﬁ * * . + \
*Note if quarks were spin zero particles we would 0.5}

expect the purely magnetic structure function to spin 0

be zero, i.e. Fi(x)=0 \

0.5 x 1
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The quark-parton model

*Before quarks and gluons were generally accepted Feynman proposed
that the proton was made up of point-like constituents “partons”

*Both Bjorken Scaling and the Callan-Gross relationship can be
explained by assuming that Deep Inelastic Scattering is dominated
by the scattering of a single virtual photon from point-like spin-half
constituents of the proton. P3 e~

[

P
e >

\
I ; __.jl
X <

p2 \I\X

P4

Scattering from a proton — Scattering from a point-like
with structure functions quark within the proton

* How do these two pictures of the interaction relate to each other?
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*In the parton model the basic interaction is ELASTIC scattering from a
“quasi-free” spin-'z quark in the proton, i.e. treat the quark as a free particle!

* The parton model is most easily formulated in a frame where the proton
has very high energy, often referred to as the “infinite momentum frame”,

where we can neglect the proton mass and py = (Egj 0,0, Eg)

* In this frame can also neglect the mass of the quark and any momentum
transverse to the direction of the proton.

*Let the quark carry a fraction é; of the proton’s four-momentum.

M N (E2, p2) : \?
> P2

Epr+q
(EEr, E) e SN

* After the interaction the struck quark’s four-momentum is §P2 +4q
Epr+q)?=mim0 = ER4g+26prg=0  (Epi=mi=0)

0> Bjorken x can be identified as the fraction of the

- &= 2p2.q —* | proton momentum carried by the struck quark (in
a frame where the proton has very high energy)
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*In terms of the proton momentum
p2.9
s=(p1+p2)*~2p1pp y=
P2.P1
*But for the underlying quark interaction

s9=(p1+xp2)* =2xp1.pr = xs
Pqg-4  Xp2.4

Yg —
Pq-P1 XpP2.P1

Xg = 1 (elastic, i.e. assume quark does not break up)

*Previously derived the Lorentz Invariant cross section fore u™ —> e u-
elastic scattering in the ultra-relativistic limit

Now apply thisto € — €7(

2 2 €q i k charge, i.e.
2mote? 2 q 1S quar ge,
do M|y (144 e =+2/3; eq=—1/3
dg~ q* Sq
*Using —qz — Q2 - (Sq —mz)quq — q— = —yg=—Yy

) %q
do 2Toce

igr~ gr 'Y
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do dmoe?

q

o> ¢

[(l—y)+y;]

(3)

* This is the expression for the differential cross-section for elastic eq
scattering from a quark carrying a fraction X of the proton momentum.

* Now need to account for distribution of quark momenta within proton

* Introduce parton distribution functions such that gP (x)dx is the number
of quarks of type (] within a proton with momenta between x — x+ dx

@ Expected form of the parton distribution function ?

Single Dirac
proton

gP(x)t

1x

Three static
quarks

q°(x)4

Vs

Three interacting
quarks

b2

R

L

gP (x)

v, 1x

+higher orders
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* The cross section for scattering from a particular quark type within the proton

which in the range X — x+dx is
¢ 4na? il I e
TR +7 | e (@ar
* Summing over all types of quark within the proton gives the expression
for the electron-proton scattering cross section

d’c®  4rma? y?
— (1—y)+ J esq”(x) 5
d.de2 Q4 ) ; q ( )

* Compare with the electron-proton scattering cross section in terms of
structure functions (equation (2) ):
d’c  4mo’

ddeg - Q4 (Il_y)

* By comparing (5) and (6) obtain the parton model prediction for the
structure functions in the general L.l. form for the dlfferentlal cross sectlon

P o P 2y Can relate measured structure
FQ (X?Q ) o ZXFJ (xaQ ) —-’CZ%‘? x —: : functions to the underlying

: quark distributions

Fz(-’fa QZ)
X

+y*Fi (x, Qz)] (6)
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The parton model predicts:

*Bjorken Scaling F(x,0%) — Fi(x) F(x,0%) — B(x)
* Due to scattering from point-like particles within the proton
«Callan-Gross Relation F>(x) = 2xFi(x)

* Due to scattering from spin half Dirac particles where the
magnetic moment is directly related to the charge; hence
the “electro-magnetic” and “pure magnetic” terms are fixed

with respect to each other.

* At present parton distributions cannot be calculated from QCD
* Can’t use perturbation theory due to large coupling constant

* Measurements of the structure functions enable us to determine the
parton distribution functions !

* For electron-proton scattering we have:
p _ 2 |
FZ (X) - xzeqqp (JC)
q

%

*Due to higher orders, the proton contains notonlyup e beé)
and down quarks but also anti-up and anti-down quarks " q
(will neglect the small contributions from heavier quarks)
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*For electron-proton scattering have:

FP(x) = xz egqp(x) =x (gup (x) + %dp (x) + gup (x) + %Ep(x))
q

*For electron-neutron scattering have:

F5" (x) —xZe T(x) —.x(4 x) + ld“(.x)—|—4_n(.x)—|— ld (x))

9 9

* Now assume |sospln symmetry”, i.e. that the neutron (ddu) is the same
as a proton (uud) with up and down quarks interchanged, i.e.

d"(x) =uP(x);  u"(x)=dP(x)
and define the neutron distributions functions in terms of those of the proton
u(x) =uP(x) =d"(x); dx)=dP(x)=u"(x)
ax)=uwP(x) =d (x); dx)=d"(x)=u"(x)
4

giving: | ;P (x) =2xF P (x) = x (§

u(x) + %d(x) + gu(x) + éd(x)) )

F5"(x) = 2xF(" (x) = x (363():) + ;u(.x) + gd(x) + ;E(x)) (8)
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*Integrating (7) and (8) :

/. ep(x)dx / (i (x)-i-u(x)]—f-é[d(x)—ka(x)]) dx — gﬁ¢+ %fd
4 1

[ Eran= [ ( d(x)+d<x)]+$[u(x>+u(xn)dx—§fd+§fu

* _ is the fraction of the proton momentum
Ju / [x”(x) +xu )}dx carried by the up and anti-up quarks

\O

\DI-P-

Experimentally . —

chp (x)dx 0 1 8 \ o {GeVIC]E <Q2<18 (GeWc}E ]

J " (x)dx = 0.12

5 0.3 .

- | [,~036 f;~0.18 W l

* In the proton, as expected, the up quarks carry Bl Wt i
twice the momentum of the down quarks [Area = 41% ]

* The quarks carry just over 50 % of the total Qi dpoy lf "":{. 7]
proton momentum. The rest is carried by [ 9/u T 9Jd e N
gluons (which being neutral doesn’t contribute 0 N B Ria. TP

to electron-nucleon scattering). ' ™
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Valence and Sea Quarks

*As we are beginning to see the proton is complex... u '

*The parton distribution function u? (x) = u(x) i % >
includes contributions from the “valence” K,ep
quarks and the virtual quarks produced by d .

gluons: the “sea” U
* Resolving into valence and sea contributions:
u

u(x) = uy(x) + us(x) d(x) =dv(x)+ds(x)
u(x) = us(x) d(x) = dg(x)
*The proton contains two valence up quarks and one valence down quark

. 1 ‘|
and would expect: / iy (x)dx = 2 / dy(x)dx = 1
0 J0

*But no a priori expectation for the total number of sea quarks !

*But sea quarks arise from gluon quark/anti-quark pair production and
with m,; — m, itis reasonable to expect

us (x) = ds(x) = us(x) = ds(x) = S(x)

*With these relations (7) and (8) become

ijp(x) =X (;lu,v (x) + édV(x) R IQ(JS(x)) cmn(x) =X (gdv(X) + %uv ()f) —+ 1935()())
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Giving the ratio F5"(x)  4dv(x)+uv(x)+10S(x)

K" (x) 4y (x) +dy(x) +10S(x)

*The sea component arises from processes such as g — Ul . Due to
the l/q dependence of the gluon propagator, much more likely to produce
low energy gluons. Expect the sea to comprise of low energy q/q

*Therefore at low X expect the sea to dominate:

F5™(x) W B ‘;I(x) d::minz'ztes ]
X € o
%T%] as x—0 77 () nsl' A -
FZ (.X) ‘1.1"{*
Observed experimentally osf- ‘\'« -
*At high X expect the sea contribution to be small ’Wo*
04— [} —
F5'(x)  4dv(x) +uv(x) o
P as x— | 0ol . v J
FP(x)  4uv(x)+dv(x) u(x) dominates

Note: yy = 2dy would give ratio 2/3 as x — 1 !
X
Experimentally F;"(x)/F,"(x) —1/4 as x—1

wp d(x)/u(x) —0 as x—1
This behaviour is not understood.
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Parton Distribution Functions (PDFs)

@ Ultimately the parton distribution functions are obtained from a fit to all
experimental data including neutrino scattering

*Hadron-hadron collisions give information on gluon pdf g(x)

,--;?:-\ 1 _""|r L | "'|-|F.It|t.0.a.!l. :[.i.alta.. - E NOte:
— : xg Q2 = 10 GeV? | *Apart from at large X
= ; iy (x) ~ 2dy (x)
*For x < (.2

gluons dominate
* In fits to data assume
us(x) = u(x)
* d(x) > u(x)
not understood - :
exclusion principle?
*Small strange quark '

0004 02 03 04 05 06 07 08 08 1 . component s(x)

Bjorken x

51



Scaling violations

*In last 40 years, experiments have probed the

proton with virtual photons of ever increasing energy e-

* Non-point like nature of the scattering becomes
apparent when ?t,}, ~ size of scattering centre

h 1GeVim
M= TAGey
Gl |§](GeV)

*Scattering from point-like quarks
gives rise to Bjorken scaling: no
qf’- cross section dependence

*IF quarks were not point-like, at
high 4> (when the wavelength of

the virtual photon ~ size of quark)
would observe rapid decrease in
cross section with increasing g2

*To search for quark sub-structure
want to go to highest g2

HERA

Resolved distance (fm)

10

Rutherford

1
1980
Year

1 1
1980 2000 2020

10%m

108 m
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HERA e*p Collider: 1991 - 2007

* DESY (Deutsches Elektronen-Synchroton) Laboratory, Hamburg, Germany

27.5 GeV 820 GeV
& ————— > < D Vs = 300 GeV
a5
t
! H1
HERA
Hale OST |HERMES) A\S
T RSy
Halle WEST (HERA-B) 2 km
Hall WEST (HERA-8)
Hallouest (HERA-8) Elkmnen/ Pastranen
-— Ebdmns/Positrons
e
\" 9 HABVLAR: *%m:Mu@
nome s L S
- “;::,-’
N \ ZEUS
v

* Two large experiments : H1 and ZEUS
* Probe proton at very high Q% and very low x
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Example of a High Q% event in H1

H1 Eun 122145 Event 68506 Date 19/09/1995

* Event kinematics determined
from electron angle and energy

) \Q% p

jet

(@ = 25030 GeV?, y =0.56, M = 211 GeV|

* Also measure hadronic 7

system (although not as
precisely) - gives some

redundancy (!“)
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F,(x, Q) results

. ) “i P ey 1-C E=1 ZEUS NLO QCD fir
* No evidence of rapid decrease of E }‘*{ ) e 1 PO 2000 1
cross section at highest Q? O sry /e " H1 300
|
- unark < ] 0_ 18 m c(]_‘\ & BCDMS
Ql
* For x > 0.05, only weak dependence = S
of F,on Q2 : consistent with the G [t
expectation from the quark-parton s |
model i M.an
* But observe clear scaling violations, e _,Mwwrm
particularly at low x ARRRSRISIEEEE e D
[ B e e e e S
szQ2 < F(x R e T
(x,0%) # Fa(x) | i,
- R s e D
L e b i pentod - anyy _=._.- - _1:=l14
: _.X__ . X . - x=0kE
ll]I1. | \‘Lll] | ""'103' m“ ””“;{I“I ws
. 2 2
Earlier fixed target data Q /GCV
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Origin of Scaling Violations

Iﬂ'

* Observe “small” deviations from exact Bjorken scaling Fz(x) — P> (x’ Qz)

4. &

% S low X
5 |
=~ medium X
—_tioh>
» InQ?

* At high Q? observe more low x quarks

* “Explanation”: at high Q? (shorter wave-length) resolve
finer structure: i.e. reveal quark is sharing momentum with
gluons. At higher Q? expect to “see” more low x quarks

- -_y
W S sanana ) *
«* *s
*

¥ *

L -

™ .f
[ -
; - -"-f
- a N
= . »
] § -
F a L L
® ]

- L

- -

-
- -
* .
Yaaganet

* QCD cannot predict the x dependence of Fg(x, QQ)
* But QCD can predict the Q2 dependence of F>(x, QZ)
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Proton-proton colisions at the LHC

* Measurements of structure functions not only provide a powerful test

of QCD, the parton distribution functions are essential for the calculation
of cross sections at pp and pp colliders.

« Example: Higgs production at the Large Hadron Collider LHC Year 2012

*The LHC will collide 7 TeV protons on 7 TeV protons
*However underlying collisions are between partons
*Higgs production the LHC dominated by “gluon-gluon fusion”

*Cross section depends on gluon PDFs

1l
o(pp— HX) ~ /(] [0 g(x1)g(x2)o(gg — H)dx dx>

*Uncertainty in gluon PDFs leadtoa 5 %
uncertainty in Higgs production cross section

* Prior to HERA data uncertainty was +25 %
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Summary

+ At very high electron energies A < Ip -
the proton appears to be a sea of
quarks and gluons.

+ Deep Inelastic Scattering = Elastic scattering
from the quasi-free constituent quarks

=) Bjorken Scaling F;(x,Q°%) — Fi(x) |point-like scattering
=) Callan-Gross F>(x) = 2xFi(x) | Scattering from spin-1/2

+ Describe scattering in terms of parton distribution functions u(x),d(x),
which describe momentum distribution inside a nucleon

¢+ The proton is much more complex than just uud - sea of anti-quarks/gluons

¢ Quarks carry only 50 % of the protons momentum - the rest is due to
low energy gluons

+ We will come back to this topic when we discuss neutrino scattering...
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