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Recap

* Working towards a proper calculation of decay and scattering processes

Initially concentrate on: _+ + € e
tam o e 98
efe — utu Y
‘€ qQ 7eg(
e_ u_ q q

A In Lecture2 covered the relativistic calculation of particle decay rates
and crc s sections

L.

M2
5 o« —— X (phase space)
flux

A Skipped relativistic treatment of spin-half particles
Dirac Equation

A In this Lecture will concentrate on the Lorentz Invariant Matrix Element

* Interaction by particle exchange
* Introduction to Feynman diagrams
* The Feynman rules for QED



Interaction by particel exchange

» Calculate transition rates from Fermi’s Golden Rule
Uy =27|Ty|°p (Ey)
where Tﬁ- is perturbation expansion for the Transition Matrix Element
(fIV1i) GIVIE)
={fIVl)+ ), E—E; -+
J#i

*For particle scattering, the first two terms in the perturbation series
can be viewed as:

“scattering in Vi i “scattering via an
a potential intermediate state”
i Vi . Viji
1

» “Classical picture” - particles act as sources for fields which give
rise a potential in which other particles scatter - “action at a distance”

* “Quantum Field Theory picture” - forces arise due to the exchange
of virtual particles. No action at a distance + forces between particles
now due to particles



*Consider the particle interaction g + b — ¢+ d which occurs
via an intermediate state corresponding to the exchange of particle X

*One possible space-time picture of this process is:

F 3

C  Initial statei: a+b
Final state f: ¢+d

Intermediate state j: ¢ + b + x

space

*This time-ordered diagram corresponds to
a “emitting” x and then b absorbing x

time ]
*The corresponding term in the perturbation expansion is:
VNGV
E,—E;
(d|V|x+b){c+x|V]a)
(Eq+Ep) — (Ec+Ey+Ep)

. T'ﬁb refers to the time-ordering where a4 emits X before b absorbs it

Iyi =

ab
T:‘



*Need an expression for (¢ + x|V|a) in a C

non-invariant matrix element 77; S

* Ultimately aiming to obtain Lorentz Invariant ME
*Recall Ty; is related to the invariant matrix element by

—1/2
Ty = [ 1E) > My,
where k runs over an 5art|<:|es In the matrix element

*Here we have
(c+x|V]a) =

(a—c+x)
(2E,2E.2E,)'/?
M[a_}cﬂ) is the “Lorentz Invariant” matrix element fora - ¢c + x

* The simplest Lorentz Invariant quantity is a scalar, in this case
8a
c+x|Via) =
( Via) (2E,2E.2E,)'/?
ga is a measure of the strength of the interactiona - ¢c + x

Note : the matrix element is only LI in the sense that it is defined in terms of
LI wave-function normalisations and that the form of the coupling is LI

Note : in this “illustrative” example g is not dimensionless.




8b

Similarl dlV b =
Giving 79 (d|V]x+Db)(c+x|V]a) b 8b d
g (EaJrEﬁ)_(Ec+Ex+Eb)
I 1 Sa8b

2E, (2E2Ep2E2E )" ? (Ey—E.—Ey)
* The “Lorentz Invariant” matrix element for the entire process is
M = (2E2E,2E2E)"*Tf

1 8a8b

2E& (E%‘_E%‘_E%)

Note:

¢ ;’Ef refers to the time-ordering where a emits x before b absorbs it

It is not Lorentz invariant, order of events in time depends on frame
¢+ Momentum is conserved at each interaction vertex but not energy
E; #E;
H = A - ros 2 =D 2
+ Particle x is “on-mass shell” i.e. E:=pi+m



8b

Similarl dlV b =
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I 1 Sa8b
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* The “Lorentz Invariant” matrix element for the entire process is
M = (2E2E,2E2E)"*Tf

1 8a8b
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Note:

¢ ;’Ef refers to the time-ordering where a emits x before b absorbs it

It is not Lorentz invariant, order of events in time depends on frame
¢+ Momentum is conserved at each interaction vertex but not energy
E; #E;
H = A - ros 2 =D 2
+ Particle x is “on-mass shell” i.e. E:=pi+m



* But need to consider also the other time ordering for the process

S1 4. C *This time-ordered diagram corresponds to
< : “ PPN z ~
o ; b “emitting” x and then a absorbing x
* X is the anti-particle of x e.g.
SRS w W
I ] ]
time Vu H Vu H

*The Lorentz invariant matrix element for this time ordering is:
Mbgz I ] 8a8b
'f 2E; (Ep—E4—E,)
*In QM need to sum over matrix elements corresponding to same final
state: My = MY +M¥

_ 8a8b 1 n I
2Er Ea - E{: — Ex Eb - Ed - Er
1

_ 8a8b _
2Er Ea - Ec - Ex Ea - Ec +E1

| Energy conservation:
(Ea +Ep =E, +Ed)



Sa8b 2Ey

*Which gives M ¢; 2E,  (E,—E.)?_E2
X

8a8b
(E%'_'E%)Q'_'Eg

From 1sttime ordering E? = p?> +m? = (p, — p.)*> +m?
8a8b
(Ea — Ec)* — (Pa— Pe)* —m3
8a8b
(Pa — pc)* —m3

giving My =

8a8b
q* —mg

- Mf.i —

* After summing over all possible time orderings, M/; is (as anticipated)
Lorentz invariant. This is a remarkable result - the sum over all time
orderings gives a frame independent matrix element.

* Exactly the same result would have been obtained by considering the
annihilation process
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Feynman diagrams

* The sum over all possible time-orderings is represented by a
FEYNMAN diagram

v 4 v 4
g| a ¢ g| a c a c
£ - B
+ P = :
d d
b b d
a C In a Feynman diagram:

@ the LHS represents the initial state

@ the RHS is the final state
@ everything in between is “how the interaction

d happened”

b

* It is important to remember that energy and momentum are conserved
at each interaction vertex in the diagram.

time time
1
|
|
I
|
1
1
|

* The factor ]/(q2 — mz) is the propagator; it arises naturally from

X

the above discussion of interaction by particle exchange
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* The matrix element: Mﬁ- = _Sabb _ depends on:

2 2
o~ — ny

& The fundamental strength of the interaction at the two vertices 8a, &»

@ The four-momentum, g, carried by the (virtual) particle which is
determined from energy/momentum conservation at the vertices.
Note q2 can be either positive or negative.

c Here g=p1—p3=ps—pr=t “t-channel”

For elastic scattering: p1 = (E;ﬁl ); P3 = (Eaﬁia)
g =(E—E)*—(p1— p3)*

d
g* <0 termed “space-like”
5 . Here =B S e P4:Sschanne|
onX /%, InCoM: p1=(E,p); p»=(E,—p)
% AN @ =(E+E) (-5 =4E

q*>>0 termed “time-like”
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Virtual particles

“Time-ordered QM”

(=P (=W H
b d b d
time time
A ——
*Momentum conserved at vertices

*Energy not conserved at vertices E
*Exchanged particle “on mass shell”

E)g - |ﬁx|2 — m,:zs

Feynman diagram

a C
b
b d 7 N

- —

*Momentum AND energy conserved
at interaction vertices
*Exchanged particle “off mass shell”

EJE — |ﬁx|2 — qz 7é m,%
VIRTUAL PARTICLE

*Can think of observable “on mass shell” particles as propagating waves
and unobservable virtual particles as normal modes between the source

particles: _—

——

WY
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Aside: V(r) from particle exchange

* Can view the scattering of an electron by a proton at rest in two ways:

*Interaction by particle exchange in 2" order perturbation theory.
a c

8a8b
22

X

X My =
b d q

* Could also evaluate the same process in first order perturbation
theory treating proton as a fixed source of a field which gives

ise t tential V
rise to a potential V(r) f M = (y |V (r)|y)
i / Obtain same expression for My; using
*p e YUKAWA
V(r) V(r) = ga8s - potential

* In this way can relate potential and forces to the particle exchange picture

* However, scattering from a fixed potential V (r) is not a relativistic
invariant view
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Quantum Electrodynamics (QED)

* Now consider the interaction of an electron and tau lepton by the exchange
of a photon. Although the general ideas we applied previously still hold,
we now have to account for the spin of the electron/tau-lepton and also
the spin (polarization) of the virtual photon.

*The basic interaction between a photon and a charged particle can be
introduced by making the minimal substitution

p—=p —gA; E=b- pr (here g = charge)

In QM: p=—iV; E =id/ot
Therefore make substitution:  idy, — id, —gA,
where Ay=(0,-A); dy=(9/d1,+V)

* The Dirac equation:

. oy -
(xi) - i}”a—leriY-Vw—qy“Aw—mw:O

15



0 A 2
w”a—'fzy“ﬂw = my—i7.Vy+qy*Auy

<P Ay = (Pm—iTV)y+q" ¥ Auy
“ ~ J %_1
Combined rest Potential
mass + K.E. energy

*We can identify the potential energy of a charged spin-half particle
in an electromagnetic field as:

(note the A, term is

‘A/D b— q}/o'}/”A‘u just: g Y’Ag =q¢ )

* The final complication is that we have to account for the photon
polarization states.

Ay = e(M) giliF-ED

e.g. for a real photon propagating in the z direction we have two
orthogonal transverse polarization states

(i) 8 Could equally have
ell) — e2) = 1 chosen circularly

8 0 polarized states

16



*Previously with the example of a simple spin-less interaction we had

//\
= (WelV IVe) e (WalV ) ‘
8a gb /\ d o Pl ps
*In QED we could again go through the procedure L ©
of summing the time-orderings using Dirac
spinors and the expression for VD If we were
to do this, remembering to sum over all photon p2 P4
polarizations, we would obtain: o l) T v r
€ g
M = [ PB Qe'}’o}’“”e’ (P1 ]Z ,u q [ r(P4 Q'TYOYVHI }5’2)]
~ ~N" & ~~—— ~— T 7
Massless photon propagator || Interaction of 7 ':'
summing over polarizations with photon !
. "'
Virtuality in t-channel
not a charge!

Interaction of e-
with photon
 All the physics of QED is in the above expression!

17



*The sum over the polarizations of the VIRTUAL photon has to include
longitudinal and scalar contributions, i.e. 4 polarisation states

N[l et 8
0) _ n_ |1 2 3) _
g = (9 e = [ e = (Y e = (9
0 0 0 1
and gives: Zgﬁ'(gﬁ)*:_guv Thls is not obvious - forthe““;

moment jl.lSt take |t on trustmg
andthemvarlantmatrlxelementbecomes
M = [u}(p3)ge V"V u.(p1) } (b (pa) Y’y ue(p2)]
* Using the definition of the adjoint splnor V= 1;!' }/0

M = [i.(p3)ge V" ue(p1)] —

* This is a remarkably simple expression !
75 }ﬂuug transforms as a four vector. Writing
JH=1.(p3) Y u.(pr)  Ji =uc(pa)y uc(p2)

M= —q.q; j;g showing that M is Lorentz Invariant

[ﬁr(Pﬁl)qf'}’Vur(PZ)]
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Feynman rules for QED

It should be remembered that the expression
_ —8uv —
M= [ue(ps)qe}’“ue(m)}—q; Uz (pa)gey’ ur(p2)]

hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual

photon. If we are then presented with a new Feynman diagram
we don’t want to go through the full calculation again.

Fortunately this isn’t necessary - can just write down matrix element
using a set of simple rules

Basic Feynman Rules:

et wt @ Propagator factor for each internal line
Y (i.e. each internal virtual particle)
& Dirac Spinor for each external line
e T (i.e. each real incoming or outgoing particle)

@ Vertex factor for each vertex

19



Basic rules for QED

@ External Lines

[ incoming particle u(p) ——
spin 172 outgoing particle u(p) —>
incoming antiparticle v(p) —
_ outgoing antiparticle V(p) —c—
_ [ incoming photon et (p) AN
spin1 = . u *
| outgoing photon el (p) NN\
@ Internal Lines (propagators)
) o Ig,uv u VvV
spin 1 photon qg NNNS
spin 1/2  fermion i(YHqu+m)

®
q* —m?
® Vertex Factors
spin 1/2  fermion (charge -le|)  iey"

@ Matrix Element — ;)M = product of all factors

20



P1 — .
ed.  p P3 e - U(p3)liey" Ju.(p
o p o ~ e (p3)liey*|uc(p1)
—iguv
glq q°
P : ps < p
¢ v 7 v = Uc(pa)liey’|u(p2)

M = [ (p3)ie ue(py) ‘ifz“" e (ps)iey us(p2)

*Which is the same expression as we obtained previously

y P4/

ed. et ur

—iM = [v(p2)iey"u(p1)] _Z’;W [@(p3)iey"v(pa)]

/p

Note: + At each vertex the adjoint spinor is written first
+ Each vertex has a different index
+ The Suv of the propagator connects the indices at the vertices

21



* Interaction by particle exchange naturally gives rise to Lorentz Invariant
Matrix Element of the form
8a8b

My =
A

* Derived the basic interaction in QED taking into account the spins
of the fermions and polarization of the virtual photons:

—iM = [u(p3)iey*u(p1)] _;ﬁ“" [a(ps)iey’u(p2)]

* We now have all the elements to perform proper calculations in QED !

22



Electron-positron annihilation




QED calculations

@ How to calculate a cross section using QED (e.g. e'e~— p*u-):
© Draw all possible Feynman Diagrams

*For e*e~ — p*u- there is just one lowest order diagram
et ur
Y
M o< ¢% < oL,

e T

+ many second order diagrams + ...

et Y ut e e
4 2
>\A®\< * M .. Moo,
e- w e u
@® For each diagram calculate the matrix element using Feynman rules

© Sum the individual matrix elements (i.e. sum the amplitudes)
Mﬁ =M +M>,+Mz+....

*Note: summing amplitudes therefore different diagrams for the same final
state can interfere either positively or negatively!
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and then square \Mﬁ\z = (M +M,+ M3+ )(MT—Q—M; + M3 + ver)

m) this gives the full perturbation expansion in 0,

« For QED @, ~ 1/137 the lowest order diagram dominates and
for most purposes it is sufficient to neglect higher order diagrams.

et . ur et Y U
M? < o, M? o< o
S K e K-
® Calculate decay rate/cross section
*e.g. for a decay *
r=—2 / Myi[?dQ
32mmy; .
*For scattering in the centre-of-mass frame
ik
dQ* — e4n2s |pr|" ! (1)

*For scattering in lab. frame (neglecting mass of scattered particle)

do - | E5 2 ‘M ”|2
dQ ~ 6412 \ ME, /i

25



Electron-positron annihilation

* Consider the process: e*e- — TV P3 L
*Work in C.0.M. frame (this is appropriate . 4‘
for most e*e- colliders). e x e’
P2
p=(E00.p) p=(E00.-p) 41
p3 = (E,py) ps = (E,—py) H

*Only consider the lowest order Feynman diagram:

+ ¢ Feynman rules give: :
—I8uv

—iM = [W(p2)iey*u(py)] " [i(p3)iey"v(pa)]

NOTE: °Incoming anti-particle v
*Incoming particle 7]
* Adjoint spinor written first

with s= (p1+p2)> = (E+E)*> =4E*

26



Electron and muon currents

*Here q2 — (P] +p2)2 — S and matrix element

—iM = [(p2)iey*u(p1)]—

82

- M:—?gw[ v(p2) 7 u(p1)][a(p3)y'v(ps)]

* Introduced the four-vector current

H=yrty

which has same form as the two terms in [ ] in the matrix element

EE [ p3)ieyYv(ps)]

* The matrix element can be written in terms of the electron and muon currents

(Je)' =V(p2)v"'u(p1) and  (ju)" =u(p3)?y'v(ps)

2
€ . .
- M= _?guv(]e)}u(]u)v
€’2
M = —:J}:-ju

» Matrix element is a four-vector scalar product - confirming it is Lorentz Invariant

27



Spin in e*e” annihilation

* In general the electron and positron will not be polarized, i.e. there will be equal
numbers of positive and negative helicity states
* There are four possible combinations of spins in the initial state !

ey 2 et e, Tt 5, 2 et 5, S et
RL RR LL LR

» Similarly there are four possible helicity combinations in the final state
* In total there are 16 combinations e.g. RL—+RR, RL—RL, ....

* To account for these states we need to sum over all 16 possible helicity
combinations and then average over the number of initial helicity states:

| ]
(M%) = 1 Z M;|* = 1 (‘MLLHLL‘Z‘F ‘MLL%LR‘Z_F---)
spins
* i.e. need to evaluate: 62

— = ?]c]u
for all 16 helicity combinations !

* Fortunately, in the limit £ > my only 4 helicity combinations give non-zero
matrix elements - we will see that this is an important feature of QED/QCD
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«In the C.o.M. frame in the limit E > m yu‘
)

p1 = (E,0,0,E); p»=(E,0,0,—E) e P ) o
p3 = (E,Esin0,0,Ecos0); / Do
ps = (E,—sin8,0,—Ecos8) u.|. P4
*Left- and right-handed helicity spinors for particles/anti-particles are:
: Iy LIy I
ejtp“‘. Emc I:"',;J|—m " l:"q|—|—m¢
+=N pl =N E =N 20 R
“ |€|i m© “l .;T'Tm ) 4] .’*—i—:.v:'5 V| h_i_”é
Pl i Bl .
m€!¢_g —pnelc R o0 ¢

- 0. 7]
where § =sIn5;, ¢=CO085 and N=+VE-+m
*In the limit £ > m these become:

C —35 S C

i i0 i i

w=VE{ " s =VE G s vi=VE| L v =VE [T
se'? —ce'? cel? sel?

* The initial-state electron can either be in a left- or right-handed helicity state

1 0

0 1
ur(p1) =vVE 1 Qul(Pl)z\/E E

0 —1

29



* For the initial state positron (8 = 3’1’) can have either:

1 0
0 1
vi(p2) =VE 1 ;v (p2) =VE 0
0 1
» Similarly for the final state L1~ which has polar angle 6 and choosing (b =
ur(p3)=VvVE S| ups)=VE| § |; i
s

«And for the final state u* replacing 6 — Tt —0; ¢ — 7 " obtain

=
[LIT1Y

c s using sin (%) = COS g
s . _ —c | . )
vT(p‘l):\/E —c 1 vl(p4) _\/E s » COS(EZ;B) :Sln%
—s —c ,
o2 et = —1
*Wish to calculate the matrix element M = —— j..j,
5

* first consider the muon current j_u, for 4 possible helicity combinations

RR yu‘ RL yu‘ LR yu_ LL yu—

30



The muon current

*Want to evaluate (j“)v — E(pg)]’vv(pz;) for all four helicity combinations

*For arbitrary spinors Y/, (P with it is straightforward to show that the
components of W’y”gb are

U0 = w0 =wion+ w00+ yses+vies (3)
V' = VYYo=t v+ v+ wie (4)
VY9 = VYV =—i(yios— w05+ 50— widn) (5)
VYo = v =vio—yiou+ o - vie (6)

*Consider the JLL;;JLLEFc:cmmbinaticm using Y = i (I) =V

s ¢
with v =VE (SC) ur =VE (g) ;
—c s

i (p3)Y'vi(ps) = E(es—sc+es—sc)=0

- i (p3)Y'vi(ps) = E(=c*+5° —c*+5%) =2E(s*—c¢*) = —2Ecos 0
wr(p3)Yvi(ps) = —iE(—c*—s*—c*—5%) =2iE
wr(p3)Y'vi(ps) = E(cs+sc+ces+sc)=4Esc=2Esinf
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*Hence the four-vector muon current for the RL combination is

w1 (p3)Y'vi(pa)

2E(0,—cos8,i,sin 0)

*The results for the 4 helicity combinations (obtained in the same manner) are:

o =

2E(0,—cos0,i,sin0)
(0,0,0,0)

(0,0,0,0)
2E(0,—cos8,—i,sin0H)

RL
RR

LL
LR

* IN THE LIMIT E > m only two helicity combinations are non-zero !

* This is an important feature of QED. It applies equally to QCD.
* In the Weak interaction only one helicity combination contributes.
* The origin of this will be discussed in the last part of this lecture

* But as a consequence of the 16 possible helicity combinations only

four given non-zero matrix elements
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Electron-positron annihilation cont.

* For €'~ = u*u~ now only have to consider the 4 matrix elements:

T T
- - 2

= [ | + = [ | +
MRR e Ll | e e Ll | e MRL

MLR

* Previously we derived the muon currents for the allowed helicities:

2N upwt o w(pa)yYvi(pa) = 2E(0,—cos8,i,sin0)
B 2E(0,—cos B, —i,sinB)

uu___,'ﬁ-——;’*u L B ,
s Mp Mg = (p3)Yvi(pa)

*Now need to consider the electron current

33



The electron current

*The incoming electron and positron spinors (L and R helicities) are:

l 0 1 0
uT_\/E(‘f);ul_\/E(é); vT—\/E(_O]);vV—\/E((I])
0 —1 0 ]

*The electron current can either be obtained from equations (3)-(6) as before or
it can be obtained directly from the expressions for the muon current.

(Je)* =V(p2)Y*u(p1) (Ju)* =u(p3)yv(ps)

*Taking the Hermitian conjugate of the muon current gives

@(p3) P v(p)]” = [ulps) PV v(ps)]’

= v(ps) P u(ps) (AB)" = BTA’
v(pa) YT u(ps) Pr=9
v(ps) YV u(ps) P = P
= V(pa)Y'u(ps)
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* Taking the complex conjugate of the muon currents for the two non-zero
helicity configurations:

v (pa)Pur(p3) = [%(p3)7y"v(ps)]” = 2E(0,—cos@,—i,sinO)
vi(Pa)¥u(ps) = [(p3)7'vi(pa)]” = 2E(0,—cos8,i,sin6)
To obtain the electron currents we simply need to set @ = ()

e =, = e egef : ?l(pz)’}/vm(pl) = 2FE(0,—1,-i,0)

e—=0 «—=e* |ejef 1 Vi(p)Yu(p1) = 2E(0,—-1,i,0)
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Matrix element calculation

F
e

*We can now calculate M = —— j,.j,, for the four possible helicity combinations.

€.g. the matrix element for eEe}f — uf;ﬂzr which will denote| Mpp

Vi
/ : Here the first subscript refers to the helicity
e "= = - of the e~ and the second to the helicity of the p".
: Don’t need to specify other helicities due to '
: “helicity conservation”, only certain chiral
u : combinations are non-zero. _
. . — + . . = L .
*Using: eger = (jo)F =V (p2)V'uy(p1) = 2E(0,-1,-i.0)
— + . . Vv = V o . .
Hg Hy - (Ju)" =u(p3)y'v (ps) = 2E(0,—cos8,i,sinb)
2
: € : .
gives Mpp = —— [ZE(O? —1,—1i, 0)] . [ZE(O, —c0s0,i,s1n 9”
\)
= —¢*(1+cos0)
— —4;:ra(1-|-(;059) where O 282/471';1: '1/'|37
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Similarly |MRR|2 = |MLL|2 = (471'05)2(1 -I-COSB)2
|MRL|2 = |MLR|2 = (4?Ta)2(1 — COS 9)2

Mgr

-1 cos0 +1

e?(1+cos)?

Mgy

e+
A
-1 cos0 +1

e?(1 —cos 0)?

MLR

e+

A
: """--...._ M '
-1 cosb +1

e?(1 —cos0)?

-1 cos +1

e>(14cosH)?

* Assuming that the incoming electrons and positrons are unpolarized, all 4
possible initial helicity states are equally likely.



Differential cross-section

*The cross section is obtained by averaging over the initial spin states

a:;d summi]ng ov;—:-r the final spin states: Mo |? + |Mm|i Mgg|? + My |?
o 2 2 2 2 H :
— = =X M M M M
= M(2(1 +¢0s0)>+2(1 —cos6)?)
256725
do o
m) | — = (1+cos’H
dQ 4s ( ) >
- - +
Example: Mark Il Expt., M.E.Levi et al., 1 cos® 1
ete- — Thath 60 Phys Rev Lett 51 (?933)1?41 o
Vi=29GeV T soh\, 0 4 T pure QED, O(cr’)
O — QED plus Z
FE contribution
e Angular distribution becomes
slightly asymmetric in higher
order QED or when Z

contribution is included
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* The total cross section is obtained by integrating u.')*unerﬁ'3 qb using

/(1 + cos® 0)dQ —2:'r/

—1

+1

(1+cos?6)dcos 0 = =3

1671

giving the QED total cross-section for the process €7~ — u*u~

B N NN N EEE SRR -y
u

* Lowest order cross section
i calculation provides a good
i description of the data !

This is an impressive result. From
first principles we have arrived at an
expression for the electron-positron
annihilation cross section which is
good to 1%

o(nb)’

10

0.1

0.01

T r||||r'|| T T TTTITT

T '|III|I['

I LI t | I R I LI I | l LI I |

ete” = u'u
v Jade

& Pluto

I_LlJl_Illillll

o

10 20

V/$(GeV)

P11 iplgr

O Mark J

11 .I.lllirl

I 1 1 IIIII




Spin considerations (E>>m)

* The angular dependence of the QED electron-positron matrix elements can
be understood in terms of angular momentum

* Because of the allowed helicity states, the electron and positron interact
in a spin state with Sz = +1, i.e. in a total spin 1 state aligned along the

zaxis: [1,4+1) or|l,—1)

» Similarly the muon and anti-muon are produced in a total spin 1 state aligned

along an axis with polar angle 0
Vi “n 1)9
e.g. | Mgg /’
e = L=
o+ D ‘]1]>
“'+
1, ])9 , of

* Hence MRR =< (lj]\ 1, ]) where Y corresponds to the spin state,

the muon pair.
* To evaluate this need to express \ 1, ])9 in terms of eigenstates of S,

* In the appendix it is shown that

[1,1) = (1 —cosB)l],—U+\/i§sin9|]1())+%(l+cos€)|l,+])
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*Using the wave-function for a spin 1 state along an axis at angle 0

y=1,1)g = 3(] —0059)|]?—])+%sin9“;0)+%(1 +cos8)|1,+1)

can immediately understand the angular dependence

MRR 2 |1?1>9
Y
— =

//P~ ot == |1.J,1> =

IMgr|* o< [(y|1,4+1)|> = 7 (1 +cosH)?

MLR %P’_ |1:~1>9
e_.;/“' _e.,. C==xp |17—]>m>

[MiR[? o< [(y[1, = 1)[* = (1 —cos 6)?

| |
-1 cosf +1

41



Lorentz invariant form of ME

* Before concluding this discussion, note that the spin-averaged Matrix Element
derived above is written in terms of the muon angle in the C.o.M. frame.

| _
<|Mff|2> = Z><(|MRR\2+|MRL\2+|MLR\2+|MEL|) , /P3<'l-l
1 o)
l 4 y) ) e b < e’
= —¢(2(1+cosO) +2(1 —cosB)”) / o
4 P
= ¢*(14cos*0) K

*The matrix element is Lorentz Invariant (scalar product of 4-vector currents)
and it is desirable to write it in a frame-independent form, i.e. express in terms
of Lorentz Invariant 4-vector scalar products

‘Inthe CoM. p; =(E,0,0,E) pr=(E,0,0,—E)
p3 = (E,Esin6,0,Ecos0) ps=(E,—Esin6,0,—Ecos0)
giving: P1.p2 =2E*; p1.p3=E*(1—cos0); pi.ps=E*(1+cos6)

*Hence we can write

(|Mpi|*) = 2¢* (P1-03)” + (P1-p4)” Iy (I2+H2)§

(1 -Pz)z
*Valid in any frame !




Chirality

*The helicity eigenstates for a particle/anti-particle for £ > m are:

C —5 S C

i i b it
w=vE|". |iu=vE| S s v=VE| L v =VE[T.
se'? —ce'? ce'? se'?

where SZSiH%; c:cos%
*Define the matrix 0010
.03 0001 Y /01
r=YrrY=,{3000 —(10)
0100

In the limit £ > m the helicity states are also eigenstates of }’5

’}’SHT = tuy; }/Su,i = —uj; Pyr = —V15 }lsvl =tV
* In general, define the eigenstates of }’5 as LEFT and RIGHT HANDED CHIRAL
states Urg, Ur; VR, VL
ie. Yur=-+ug; Yup=—up; Yvg=—Vg; ¥vp=-+vL

°In the LIMIT £ > m (and ONLY IN THIS LIMIT):
HREHT; uLELtl; VREVT; VLEVl
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Chirality

* This is a subtle but important point: in general the HELICITY and CHIRAL
eigenstates are not the same. It is only in the ultra-relativistic limit that the
chiral eigenstates correspond to the helicity eigenstates.

* Chirality is an import concept in the structure of QED, and any interaction of the
form E'}/"u
* In general, the eigenstates of the chirality operator are:
Pur = +ug; Yup=—ur; Pvg=—Vg: v =+

* Define the projection operators:

PR=301+7); P=301-7)

*The projection operators, project out the chiral eigenstates

Prugp =ugr; Prup =0; Pugr=0; Pru; =uy

Prvp =0, Ppvp=vy, Povg=vg:; Povp=0

*Note Pp projects out right-handed particle states and left-handed anti-particle states

*We can then write any spinor in terms of it left and right-handed
chiral components:

y=vyr+y =51+ )y+35(1—-9)y
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Chirality in QED

*In QED the basic interaction between a fermion and photon is:
ieYyr ¢
*Can decompose the spinors in terms of Left and Right-handed chiral components:
gy o = ie(Y,+Wr)V(0r+ 1)
= e(PrY Or+ YRV OL+V, V" O+ W, Y 1)

*Using the properties of }/5

P)yr=1 r'=y; Pr=-vmHy
it is straightforward to show
VRV 0L=0; Y7 ¢r=0

* Hence only certain combinations of chiral eigenstates contribute to the
interaction. This statement is ALWAYS true.

*For E > m , the chiral and helicity eigenstates are equivalent. This implies that
for E > m only certain helicity combinations contribute to the QED vertex !
This is why previously we found that for two of the four helicity combinations
for the muon current were zero

45



Allowed QED helicity combinations

+ In the ultra-relativistic limit the helicity eigenstates = chiral eigenstates
+ In this limit, the only non-zero helicity combinations in QED are:

: Scattering:

“Helicity conservation”

N
R R

N &

i Annihilation:

L
N

/
R

-----
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Summary

* In the centre-of-mass frame the e*e~ = p*u- differential cross-section is

do o’ X
8 % 1icos? e
o) 75 (1 +cos™6)

NOTE: neglected masses of the muons, i.e. assumed E> my

* In QED only certain combinations of LEFT- and RIGHT-HANDED CHIRAL
states give non-zero matrix elements

* CHIRAL states defined by chiral projection operators
__ 1 : _ 1
Pr=5(1+7); P.=3(1-7)

* Inlimit £ > m the chiral eigenstates correspond to the HELICITY eigenstates
and only certain HELICITY combinations give non-zero matrix elements

RR RL LR LL

Ty Ty Ty Ty
o= > #Z: e ™ </-: o= ,‘./‘-' e = “1/4-'
// et / et / et / et

ut T T T

47



