Elementary Particle Physics: theory and experiments

Experiment:

Accelerators for high energy physics

Prof. dr hab. Elżbieta Richter-Wąs

Accelerators for high energy physics experiments

Energy frontier

- The interplay between electron and hadron machines has a long and fruitful tradition
 - J/ψ at SPEAR (e^+e^-) and AGS (proton fixed target)
 - ↑ discovery at E288 (p fixed target), precision B studies at the e⁺e⁻ B factories
 - top quark at LEP and Tevatron

• . . .

 To be continued in the form of LHC and ILC

Complementarity between pp and ee machines

• Proton-(Anti-)Proton Colliders

- Higher energy reach (limited by magnets)
- Composite particles: unknown and different colliding constituents, energies in each collision
- Confusing final states
- Discovery machines (W, Z, t)
- In some cases: precision measurements possible (W mass at the Tevatron)

• Energy reach limited by RF

e

- Point like particles, exactly definded initial system, quantum numbers, energy, spin polarisation possible
- Hadronic final states with clear signatures
- Precision machines
- Discovery potential, but not at the energy frontier

CERN accelerator complex

Luminosity frontier

Need corresponding rise in luminosity (beam intensity)
 Number of events Instantaneous luminosity

$$\overset{\bullet}{N} = \sigma L = \sigma \int \overset{\bullet}{\mathcal{L}} dt$$
Cross section Integrated luminosity

- High luminosity brings all the challenges for the detectors:
 - High event rates
 - Pile up
 - Beam beam interactions
 - Beamstrahlung

6

Designing a machine

- Particle species
 - Electron/positrons
 - Protons/antiprotons
 - Muons/antimuons
- Beam energy
- Spin
- Luminosity

- How do you produce antiparticles?
- Ones produced how ones keep them (muon collider)?
- Ones collided what ones does with spent beams?
- Accelerator and detector protection

Accelerator is much more than just....

- Particle production
- Damping, cooling or preparation
- Injection and extraction
- Acceleration
- Collimation (betatron, energy etc.)
- Diagnostics and controls
- Machine (and detector protection)
- Beam delivery and luminosity production
- Technology spin off
 - Lower energy machines, medical applications, applied physics, materials,

Acceleration

- Electric field (either static or more commonly, time varying) to accelerate, or more appropriately, increase energy of beam
- Magnetic part of Lorentz force used to guide and focus
 - Dipole magnets: to bend
 - Quadrupole: to focus or defocus

Synchrotron

- Workhorse of modern particle physics
 - Huge legacy of discovery
 - Increase energy whilst synchronously increasing bending magnet strength
 - Stable storage of high beam current/power
- Magnetic field proportional to momentum

Synchrotron + many passages in RF cavities

LHC **circular machine** with energy gain per turn ~0.5 MeV acceleration from 450 GeV to 7 TeV will take about 20 minutes

Superconducting magnets in LHC tunnel

Deflection by 1232 superconducing dipole magnets

Synchrotron

• Time varying electric field:

$$V(t) = V_0 \sin(\omega_{RF}t + \phi)$$

$$\uparrow$$
Angular frequency of accelerating field

Particle gets a kick every revolution

Synchrotron Radiation Limits

- Why not just build bigger LEP?
 - Reuse accelerating section every revolution of particle bunch
 - Power loss due to synchrotron radiation
 - LEP2 was practical limit for electron-positron synchrotron

Absolute Limits on Acceleration

- Need to create large on axis electric fields
 - Accelerating structures:
 - Superconducting (~35 MV/m)
 - Normal conducting (~100 MV/m)
- Beyond these values there is high voltage breakdown

16 MV/beam, built and assembled in four modules

Principle of a synchrotron

- Injection at low energy
- Ramping of magnetic field and acceleration by RF field. Beams are accelerated in bunches
- Operation (collisions) at top energy

CERN accelerator complex

Experimental long straight section

The 2 LHC beams are brought together to collide in common region. Over ~260m the beams circulate in one vacum chamber with "parasitic" encounters. The crossing angle of about 300µrad

Luminosity

- What luminosity is required for measurement?
 - Need some knowledge of x-section
- Simple relationship between number of particles, frequency of collision and beam sizes

CMS Experiment at LHC CERM Data recorded: Mon May 28-01:16:20:2012 CE91 Run/Event: 195099-35438125 Lumi.section: 65-1 Oxbit/Crossing: 16992111 12295

 ⇒ With the parameters of 2012 for each bunch crossing there are up to ~35 interactions (lower luminosity, less number of bunches)
 ⇒ 'Hats off' to ALTAS & CMS for handling this pile-up !!

Layout of beam system dump

Dump line

Beam Loss Monitors

- Ionization chambers to detect beam losses:
 - Reaction time ~ ½ turn (40 μs)
 - Very large dynamic range (> 10⁶)
- There are ~3600 chambers distributed over the ring to detect abnormal beam losses and if necessary trigger a beam abort !
- Very important beam instrumentation!

The LHC: just another collider?

	Start	Туре	Max proton energy [GeV]	Length [m]	B Field [Tesla]	Lumi [cm ⁻² s ⁻¹]	Stored beam energy [MJoule]
TEVATRON Fermilab Illinois USA	1983	p-pbar	980	6300	4.5	4.3 10 ³²	1.6 for protons
HERA DESY Hamburg	1992	p – e+ p – e-	920	6300	5.5	5.1 10 ³¹	2.7 for protons
RHIC Brookhaven Long Island	2000	lon-lon p-p	250	3834	4.3	1.5 10 ³²	0.9 per proton beam
LHC CERN	2008	lon-lon p-p	7000 Now 4000	26800	8.3	10 ³⁴ Now 7.7× 10 ³³	362 per beam
Factor			7	4	2	50	100

Collisions at LHC

Summary: 2010 - 2012 $L = \frac{kN_b^2 f \gamma}{4\pi \beta^* \varepsilon^*} F$

Parameter	2010	2011	2012	Nominal
Energy [TeV]	3.5	3.5	4.0	7.0
N _b [10 ¹¹ p/bunch]	1.2	1.45	1.6	1.15
k (no. bunches)	368	1380	1380	2808
Bunch spacing [ns]	150	75 / 50	50	25
Stored energy [MJ]	25	112	140	362
ε* [μ m]	2.4	2.4	2.5	3.75
β* [m]	3.5	1.5 → 1	0.6	0.55
Crossing angle [µrad]	200	240	290	285
L [10 ³⁴ cm ⁻² s ⁻¹]	0.02	0.35	0.76	1.0
Beam-beam parameter/IP (∆Q _{bb})	-0.0054	-0.0065	-0.0069	-0.0033
Average Pile-up @ beg. of fill	8	17	38	26

The next years

