INTRODUCTION TO DATA SCIENCE

This lecture is based on course by E. Fox and C. Guestrin, Univ of Washington

WFAiS UJ, Informatyka Stosowana II stopień studiów

Visual product recommender

I want to buy new shoes, but...

Too many options online...

Visual product recommender

Text search doesn't help...

Features are key to machine learning

Goal: revisit classifiers, but using more complex, non-linear features

Image classification

Input: x
Image pixels

Output: y
Predicted object

Neural networks:

learning *very*

non-linear features

Linear classifiers

Graph representation of classifier: useful for defining neural networks

What can a linear classifier represent?

What can't a simple linear classifier represent?

Solving the XOR problem: Adding a layer

A neural network

 Layers and layers and layers of linear models and non-linear transformations

- Around for about 50 years
 - Fell in "disfavor" in 90s
- In last few years, big resurgence
 - Impressive accuracy on several benchmark problems
 - Powered by huge datasets, GPUs,
 modeling/learning alg improvements

Application of deep learning to computer vision

Image features

- Features = local detectors
 - Combined to make prediction
 - (in reality, features are more low-level)

Typical local detectors look for locally "interesting points" in image

- Image features: collections of locally interesting points
 - Combined to build classifiers

Many hand created features exist for finding interest points...

... but very painful to design

Standard image classification approach

Deep learning: implicitly learns features

19/12/2017

Deep Learning performance

Sample results using deep neural networks

- German traffic sign recognition benchmark
 - 99.5% accuracy (IDSIA team)

- House number recognition
 - 97.8% accuracy per character
 [Goodfellow et al. '13]

Deep Learning performance

ImageNet 2012 competition: 1.2M training images, 1000 categories

Deep Learning performance

ImageNet 2012 competition: 1.2M training images, 1000 categories

Winning entry: SuperVision 8 layers, 60M parameters [Krizhevsky et al. '12]

Achieving these amazing results required:

- New learning algorithms
- GPU implementation

Deep learning in computer vision

Scene parsing with deep learning

[Farabet et al. '13]

Deep learning in computer vision

Retrieving similar images

Challenges

Deep learning score card

Year 2015

Pros

- Enables learning of features rather than hand tuning
- Impressive performance gains
 - Computer vision
 - Speech recognition
 - Some text analysis
- Potential for more impact

Deep learning workflow

Deep learning workflow

Many tricks needed to work well...

Different types of layers, connections,... needed for high accuracy

[Krizhevsky et al. '12]

Challenges

Deep learning score card

Year 2015

Pros

- Enables learning of features rather than hand tuning
- Impressive performance gains
 - Computer vision
 - Speech recognition
 - Some text analysis
- Potential for more impact

Cons

- Requires a lot of data for high accuracy
- Computationally really expensive
- Extremely hard to tune
 - Choice of architecture
 - Parameter types
 - Hyperparameters
 - Learning algorithm

- ...

Computational cost+ so many choices

Е

incredibly hard to tune

@204F F--:II. F--- C C--I-- C..----

Transfer learning: Use data from one task to help learn on another

Old idea, explored for deep learning by Donahue et al. '14 & others

What's learned in a neural net

Transfer learning in more detail...

For Task 2, predicting 101 categories, learn only end part of neural net

Careful where you cut: latter layers may be too task specific

19/12/2017

Transfer learning with deep features workflow

What you can do now ...

- Describe multi-layer neural network models
- Interpret the role of features as local detectors in computer vision
- Relate neural networks to hand-crafted image features
- Describe some settings where deep learning achieves significant performance boosts
- State the pros & cons of deep learning model
- Apply the notion of transfer learning
- Use neural network models trained in one domain as features for building a model in another domain
- Build an image retrieval tool using deep features