INTRODUCTION TO DATA SCIENCE

This lecture is
based on course by E. Fox and C. Guestrin, Univ of Washington

What we've learned so far

Nearest neighbor search

Nearest neighbor search

1-NN search

Space of all articles, organized by similarity of text

Nearest neighbor search

k-NN search

Space of all articles,
organized by similarity of text

Nearest neighbor search

TF-IDF document representation

Emphasizes important words

- Appears frequently in document (common locally)

$$
\text { Term frequency }=\square \quad \text { word counts } \square
$$

- Appears rarely in corpus (rare globally)

$$
\text { Inverse doc freq. }=\log \frac{\# \text { does }}{1+\# \text { docs using word }}
$$

Trade off: local frequency vs. global rarity

Nearest neighbor search

Scaled Euclidean distance

$\operatorname{distance}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{q}}\right)=$
$\sqrt{a_{1}\left(\mathbf{x}_{i}[1]-\mathbf{x}_{q}[1]\right)^{2}+\ldots+a_{d}\left(\mathbf{x}_{i}[d]-\mathbf{x}_{q}[d]\right)^{2}}$
weight on each feature

title

abstract
main body
conclusion

Nearest neighbor search

Cosine similarity - normalize

Similarity $=\sum_{j=1}^{d} x_{i}[j] x_{q}[j]$

$$
\begin{aligned}
& \sqrt{\sqrt{\sum_{j=1}^{d}\left(x_{i}[j]\right)^{2}} \cdot \sqrt{\sum_{j=1}^{d}\left(x_{q}[j]\right)^{2}}} \\
& =\boldsymbol{x}_{i}^{\top} \mathbf{x}_{q}=\cos (\theta) \\
& \left\|\mathbf{x}_{\mathrm{i}}| | \mid \mathbf{x}_{\mathrm{q}}\right\|
\end{aligned}
$$

Nearest neighbor search

To normalize or not?

long document

short tweet

Normalizing can make dissimilar objects appear more similar

Common compromise:

 Just cap maximum word counts
Nearest neighbor search

Complexity of brute-force search

Given a query point, scan through each point

- O(N) distance computations per 1-NN query!
- O(Nlogk) per $k-$ NN query!

What if N is huge??? (and many queries)

Nearest neighbor search

KD-trees

Recursively partition the feature space

Nearest neighbor search

Nearest neighbor with KD-trees

Update distance bound when new
nearest neighbor is found

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node
3. Backtrack and try other branch at each node visited

Nearest neighbor search

Nearest neighbor with KD-trees

Use distance bound and bounding box of each node to prune parts of tree that cannot include nearest neighbor

Nearest neighbor search

Approximate k-NN with KD-trees

Before: Prune when distance to bounding box>r
Now: Prune when distance to bounding box $>r / \alpha$

> Saves lots of search time at little cost in quality of NN!

Nearest neighbor search

Limitations of KD-trees

- Difficult to implement
- Don't tend to perform well in high dimensions
- Under some conditions, visit at least $2^{\text {d }}$ nodes

Nearest neighbor search

Locality sensitive hashing

Bin index:

Nearest neighbor search

LSH for approximate NN search

What we've learned so far

k-means and MapReduce

k-means and MapReduce

Discover clusters of related documents

Cluster 3

k-means and MapReduce

k-means algorithm

0. Initialize cluster centers
1. Assign observations to closest cluster center
2. Revise cluster centers as mean of assigned observations
3. Repeat 1.+2. until convergence

k-means and MapReduce

A coordinate descent algorithm

1. Assign observations to closest cluster center

$$
z_{i} \leftarrow \arg \min _{j}\left\|\mu_{j}-\mathbf{x}_{i}\right\|_{2}^{2}
$$

2. Revise cluster centers as mean of assigned observations

$$
\mu_{j} \leftarrow \arg \min _{\mu} \sum_{i: z_{i}=j}\left\|\mu-\mathbf{x}_{i}\right\|_{2}^{2}
$$

> Alternating minimization
> 1. $(z$ given $\mu)$ and 2 . (μ given z)
> $=$ coordinate descent

k-means and MapReduce

Convergence of k-means to local mode

k-means and MapReduce

MapReduce framework

k-means and MapReduce

MapReduce abstraction

Map:

- Data-parallel over elements, e.g., documents
- Generate (key,value) pairs
- "value" can be any data type

Reduce:

- Aggregate values for each key
- Must be commutative-associative operation
- Data-parallel over keys
- Generate (key,value) pairs

Word count example:

```
map(doc)
```

 for word in doc
 emit(word,1)
 reduce(word, counts_list)
$\mathrm{c}=0$
for i in counts_list
$\mathrm{c}+=$ counts_list[i]
emit(word, c)

MapReduce has long history in functional programming
. - Popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!

k-means and MapReduce

MapReducing 1 iteration of k-means

Classify: Assign observations to closest cluster center

$$
z_{i} \leftarrow \arg \min _{j}\left\|\mu_{j}-\mathbf{x}_{i}\right\|_{2}^{2}
$$

Map: For each data point, given $\left(\left\{\mu_{j}\right\}, \mathbf{x}_{\mathrm{i}}\right)$, emit $\left(\mathrm{z}_{\mathrm{i}}, \mathbf{x}_{\mathrm{i}}\right)$
Recenter: Revise cluster centers as mean of assigned observations

$$
\mu_{j}=\frac{1}{n_{j}} \sum_{i: z_{i}=k} \mathbf{x}_{i}
$$

Reduce: Average over all points in cluster $j\left(z_{i}=k\right)$

What we've learned so far

Mixture models

Mixture models

Probabilistic clustering model

Cluster 3

Cluster 4
captures uncertainty in clustering

Mixture models

Failure modes of k-means

Mixture models

Jumble of unlabeled images

Mixture models

Model of jumble of unlabeled images

Mixture models

Mixture of Gaussians (1D)

Each mixture component represents a unique cluster specified by:
$\left\{\pi_{\mathrm{k}}, \mu_{\mathrm{k}}, \sigma_{\mathrm{k}}^{2}\right\}$

Mixture models

Mixture of Gaussians for clustering documents

Space of all documents
(really lives in \mathbf{R}^{\vee} for vocab size V)

Make soft assignments of docs to each
Gaussian

Mixture models

Restricting to diagonal covariance

Each cluster has $\left\{\pi_{\mathrm{k}}, \boldsymbol{\mu}_{\mathrm{k}}, \Sigma_{\mathrm{k}}\right.$ diagonal $\}$

$$
\Sigma=\left(\begin{array}{llll}
& \text { V params } \\
\sigma_{1}^{2} & & & \\
& \sigma_{2}^{2} & & \\
& & \sigma_{3}^{2} & \\
& & & \ddots \\
& & & \\
& & & \sigma_{V^{2}}
\end{array}\right)
$$

Mixture models

Inferring cluster labels

Data

EM algorithm \rightarrow

soft assignments

Mixture models

Expectation maximization (EM):

An iterative algorithm

1. E-step: estimate cluster responsibilities given current parameter estimates

$$
\hat{r}_{i k}=\frac{\hat{\pi}_{k} N\left(x_{i} \mid \hat{\mu}_{k}, \hat{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \hat{\pi}_{j} N\left(x_{i} \mid \hat{\mu}_{j}, \hat{\Sigma}_{j}\right)}
$$

2. M-step: maximize likelihood over parameters given current responsibilities

$$
\hat{\pi}_{k}, \hat{\mu}_{k}, \hat{\Sigma}_{k} \mid\left\{\hat{r}_{i k}, x_{i}\right\}
$$

Mixture models

EM for mixtures of Gaussians

 in pictures - replay

Mixture models

Relationship to k-means

Consider Gaussian mixture model with

and let the variance parameter $\sigma \rightarrow 0$
Datapoint gets fully assigned to nearest center, just as in k-means

What we've learned so far

Latent Dirichlet allocation

Latent Dirichlet allocation

Topic vocab distributions:

SCIENCE	
experiment	0.1
test	0.08
discover	0.05
hypothesize	0.03
climate	0.01
\ldots	\ldots

TECH	
develop	0.18
computer	0.09
processor	0.032
user	0.027
internet	0.02
\ldots	\ldots

SPORTS	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01

\vdots

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events
Drausin F. Wulsin ${ }^{\text {a }}$, Emily B. Foxc ${ }^{\text {e }}$, Brian Litt ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Bioengineering, University of Pennsylvania, Philadelphia, PA ${ }^{5}$ Department of Neurology, University of Pennsylvania, Philadelphia, PA ${ }^{\text {c Department of Statistics, University of Washington, Seattle, WA }}$

Abstract

Despite over three dec des of research, we still have very little idea of what defines a seizure. This ignorange stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

Clustering:

One topic indicator z_{i} per document i

All words come from

 (get scored under) same topic z_{i}Distribution on prevalence of topics in corpus $\mathbf{\pi}=\left[\begin{array}{llll}\pi_{1} & \pi_{2} & \ldots & \pi_{K}\end{array}\right]$

Latent Dirichlet allocation

Comparing and contrasting

Now
$p\left(z_{i}=k\right)=\pi_{k}$

\{modeling, complex, epilepsy, modeling, Bayesian, clinical, epilepsy, EEG, data, dynamic...\} compute likelihood of the collection of words in doc under each topic distribution

Latent Dirichlet allocation

Same topic distributions:

SCIENCE	
experiment	0.1
test	0.08
discover	0.05
hypothesize	0.03
climate	0.01
\ldots	\ldots
TECH	
develop	0.18
computer	0.09
processor	0.032
user	0.027
internet	0.02
\ldots	\ldots

SPORTS	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01
\ldots	\ldots

\vdots
11

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events

Drausin F. Wulsin ${ }^{\text {a }}$, Emily B. Fox ${ }^{\text {e }}$, Brian Litt ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Department of Bioengineering, University of Pennsylvania, Philadelphia, PA ${ }^{\text {b }}$ Department of Neurology, University of Pennsyivania, Philodelphia, PA ${ }^{\text {D Department of Statistics, University of Washington, Seattle, WA }}$

Abstract

Fauinen enilensy can manifest short, sub-clinical epileptic "bursts" in addition to fuikiciona elinicar seizures We believe the relationship between i, en two classes of events setmething not previously studied quantitatively Chatideld important insights into the mature-and intrinsic dynamics of seizure agoal of our work is to parse these complex epileptic events Into disting dgapanic regimes. A challenge posed by the intracranit EEG can vary=-cempen pationt\$ We developan Bayesian nonparametric Markov your ins process thit-antas on (i) shared dynamic regimes between a variab. rutumer of channels, (i) ohpow dichsinasy on dyamic regimes, we encotese sparse and changing se nof dep mencies bentwen we channels usings Markoy-switchma Gaussian dempn rate the importance of this enodecit persing and out-of-sample predictions of IEEG data. We show tha pour mode! products intuitive state assignments that can help automate clinical anr ysis af seizures and enable the comparison of sub-clingcal bursts and full clinical soizures
the comparisohyf sub-cimical bursts and full clinical boizures
K.tywores: Bayesian nomparametric EEG, factorial hidden Markov model. graphical motel, time series

Despite dver three decades of research, we still have very little idea of wilat defines seizure This ignorance stems both from the complexity of epilepsy as a disease and a paucity of quantitative tools that are flexible

In LDA:

One topic indicator $z_{\text {iw }}$ per word in doc i

Each word scored

under topic $z_{\text {iw }}$
Distribution on topics in document $\boldsymbol{\pi}_{\mathrm{i}}=\left[\begin{array}{llll}\pi_{\mathrm{i} 1} & \pi_{\mathrm{i} 2} & \ldots & \pi_{\mathrm{iK}}\end{array}\right]$

Latent Dirichlet allocation

Gibbs sampling for LDA

TOPIC 1

experiment	0.1
test	0.08
discover	0.05
hypothesize	0.03
climate	0.01
	-

TOPIC 2

Tevelop	0.18
domputer	0.09
processor	0.032
user	0.027
internet	0.02
\ldots	\ldots

TOPIC 3	
player	0.15
score	0.07
team	0.06
goal	0.03
injury	0.01
	.-

> Modeling the Complex Dynamics and Changing Correlations of Epileptic Events
> Drausin F. Wulviin${ }^{2}$, Ernily B. Fax ${ }^{c}$, Brian Littsp
> ${ }^{-}$Depertment of Phocrgitneritig, Unditerstiy of Perunglvanta, Philhdolphita, PA EDeparimert of Slatistios, Unitity of Pity of Washingtom, Seatile, WA

Abstract

Patientas-with epilepest can manifest short, sub-climical epileptic "burstas" in
 could yield important insighta into the nature and intrinaice dynarnics of Eeizures A Aosi of our work is to parse these complex epileptic events
into distinct dynamic regimes. A Challeng posed by the intracranin EEG into distinct dynarnic regimes. A challeng poesed by the intracraninal EEG
(iEFG) data we study is the fact that the number and plocernent of electrodes con vary between patient We develop a Bayesin, monparametric Markov switching process that allows for (i) shared dymamic regirnes between a variable mumber of channels, (ii) asymehronous regime-switching, and (iii) an unknown dictionary of dynamuc regirnces. We encode a sparse and changing set of dependencies between the channels using a Markof -switching Gaussian fraphical model for the innowationg proceses driving the channel dynamics and demonstrate the importance of this model in parsing and out-of-sample predietions of iEEG data. We show that our model prodiaces intuitive state
 the cormparison of sub-clinical bursts and full clinical wizures
Keywords: Bayesian monparametri] EEG, factorial hidden Markov model praphica model, time series

1. Introduction

Despite over three decandes of research, we still have very little iden of what defines a seixurar: This ignorance stems both from the complexity of eqilepry as a disousd and a paucity of quantitative tools that are flexible

Step 1: Randomly reassign all $z_{i w}$ based on

- doc topic proportions
- topic vocab distributions

Draw randomly from responsibility vector $\left[r_{\text {iw1 }} r_{\text {iw2 }} \ldots r_{\text {iwk }}\right]$

Latent Dirichlet allocation

Gibbs sampling for LDA

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events
Drauxin F. Wukina ${ }^{2}$, Emily B. Foxx ${ }^{\varepsilon}$, Brian Litta ${ }^{s} p$

eDepariment of Statistics, Unitucrsity of Washingtion, Seatill, WA

Abstract

 addition to full-blown linical ceivures We believe the relationship between
these two clases of eventa- something not previously studied quantitativelycould yield important imsights into the nature and intrinsic dynaminss of
 into distinet dynamic regimes. A shallengg posed by the intracranind EEEG
(iEFG) data we study is the fact that the number and placernent of electrodes (iEEG) data we study is the fact that the number and placement of electrodea
can vary between patientes We develop on Bayexian ponparametric Markon can vary between patienter
switching process that allows for (i) shareen 8 ymanmic reginess between a varn switching proceas that allows for (n) sharod of channels, (ii) neynchronous regime-switching, and (iii) an unknown dictionary of dynarme regirnes. We encode n panse pad chansing
aut- af dependencies between the channels using a Markof -switching Gausian yet of dependencies between the channels using a Markorf-switching Gaussian graphica model for the innovations process driving the channel dynamics and demonstrate the importunce of this model in parsing and out-of-sample pre-
dictions of iREC dats. We show that car model orodvoes intuitive state dictions of iEEG data. We show that canr model produces intuitive state assignments that can helf putosnate simica amalysas of veixures
the comparison of sub-clinical bursts and full cinicn, peisures Kevwords: Baycsimn nopparametrid EEG, factorial hidden Markov model Eruphicn model, time seriss

1. Introduction

Despite over thres decades of research, we still have very little iden of whot defines n scixured This ignornnce stems both from the complexity of
ecrilensy as a disewse and a paucity of quantitative tools that are flexible

Step 2: Randomly reassign doc topic proportions based on assignments $z_{i w}$ in current doc

Step 3: Repeat for all docs

Latent Dirichlet allocation

Gibbs sampling for LDA

TOPIC 1	
Word 1	$?$
Word 2	$?$
Word 3	$?$
Word 4	$?$
Word 5	$?$
\ldots	\ldots

Modeling the Complex Dynamics and Changing Correlations of Epileptic Events Draunin F. Wulkin², Ernily B. Faxx ${ }^{\varepsilon}$, Brinn Litts ${ }^{p}$ ${ }^{3}$ Department of Newrobgy, Untacrstify of Perregibentio, Philaddphia, PA eDeparimerat of Slatistics, Untersstry of Washingtom, Seotele, WA
Abstract
Patients with epilepey can mannifeat short, sub-clinical epileptic "bursts" in addition to full-blown linical peisures We believe the relationship between these two clasess of events-something not previously stadied quantitatively could yield important insights into the nature and intrinaic dynamics of peixures A goal of our work is to panse these complex spileptic events into dastinct dynamic regimes. A thallenge posed by the intracramin EESG (iEFG) data we study is the fact that the number and plocernent of electrodes can vary between patiente We develop on Byyexian monparametric Markon switching process that allows for (i) shorearotynamic regimes between a variable mamber of channels, (ii) nsynchronow regime-switching, and (iii) an unknown dietionary of dynamic regirnes. We encode n 5 parse fad changing set of dependencies between the channels using a Markof -switching CGausian graphien model for thr innovationt process driving the channel dynamics and demonstrate the jmportance of this model in parsing and out-of-amaple predictions of IEEC data. We show that san model produces intuitive state aseignmentes that can help automate plimicn analysas of eixures and enable the comparison of sub-clinical bursts and full clinicn, peisures
Kevwords: Bayceian hanparametria EEG, factocial hidden Markov model graphica model, time series
1. Introduction Despite over thres decsudes of research, we still have very little iden of what defines a seizure This ignorance stems both from the complexity of equilepry as a diseose and a pancity of quantitative tools that are flexible

Step 4: Randomly reassign topic vocab distributions based on assignments $z_{\text {iw }}$ in entire corpus

Latent Dirichlet allocation

Collapsed Gibbs sampling for LDA

Randomly reassign $z_{\text {iw }}$ based on current assignments z_{jv} of all other words in doc and corpus

Latent Dirichlet allocation

Collapsed conditional distribution

3	$?$	1	3	1
epilepsy	dynamic	Bayesian	EEG	model

Topic 1

Topic 3

Probability of assignment of word in doc i to topic k proportional to:

How much doc likes topic

Topic 2

$$
\frac{m_{\text {dynamic }, k}+\gamma}{\sum_{w \in V} m_{w, k}+V \gamma}
$$

\square
topic likes
word

Latent Dirichlet allocation

What to do with sampling output?

Predictions:

1. Make prediction for each snapshot of randomly assigned variables/parameters (full iteration)
2. Average predictions for final result

Parameter or assignment estimate:

- Look at snapshot of randomly assigned variables/parameters that maximizes "joint model probability"

Summary of what we have learned

Models

 Module 4

Algorithms

Core ML

