INTRODUCTION
TO DATA SCIENCE

This lecture is
based on course by E. Fox and C. Guestrin, Univ of Washington



What we’ve learned so far

Nearest neighbor search

5/12/2017




Nearest neighbor search
N
1-NN search

Space of all articles,
organized by similarity of text

E— o
nearest neighbor
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Nearest neighbor search
B

k-NN search

Space of all articles,
organized by similarity of text
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Nearest neighbor search

5
TF-IDF document representation

Emphasizes important words

- Appears frequently in document (common locally)

Term frequency = word counts

— Appears rarely in corpus (rare globally)
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Inverse doc freq. = |log TR
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Trade off: local frequency vs. global rarity tf * idf

5/12/2017



Nearest neighbor search
e

Scaled Euclidean distance

distance(x;, x,) =
Var(x[11-x, (12 + .. + ay(x[d]-x,[d])?

\/

weight on each feature

title
abstract
main body
conclusion
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Nearest neighbor search

Cosine similarity — normalize
Similarity = Zx-[j] X[

‘/Z (xilj]) JZX 1)

j=1

>

- Not a proper
distance

metric = x'x, = cos(6)

Feature 2

- Efficient t
S [[x ] []x, | 0
SpEII'SE vVecs
R
Feature 1
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Nearest neighbor search
=

To normalize or not?

Normalizing can

make dissimilar

objects appear
more similar

Common
compromise:
Just cap maximum
word counts

long document long document
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Nearest neighbor search
B
Complexity of brute-force search

Given a query point, scan through each point
- O(N) distance computations per 1-NN query!
- O(Nlogk) per k-NN query!

What if N is huge???
(and many queries)
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Nearest neighbor search

KD-trees
0. ® Recursively partition the
o2 feature space o
Splitdim 1

_n_:_-—'. Split value 2

".' ) Split dim 2 NC) \XES
o o Split value 2 @ ---

° . NO ES 1.00 431

013 2.85 0.00 0.00
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Nearest neighbor search
N

Nearest neighbor with KD-trees

Update distance bound when new

e®e . ‘ R j/ nearest neighbor is found
= ] SN N
. w e iR C{d’\b\o é,cs”b‘c o |§‘|\b‘b

1. Start by exploring leaf node containing query point
2. Compute distance to each other point at leaf node
3. Backtrack and try other branch at each node visited
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Nearest neighbor search
e

Nearest neighbor with KD-trees

Use distance bound and bounding box of each node to
prune parts of tree that cannot include nearest neighbor
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Nearest neighbor search
s

Approximate k-NN with KD-trees

LA

} ] . IN N

@]
L ORARAY IR

Before: Prune when distance to bounding box > r
Now: Prune when distance to bounding box > r/ &

Saves lots of search time at little cost in quality of NN!
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Nearest neighbor search
N

Limitations of KD-trees

« Difficult to implement

- Don't tend to perform

well in high dimensions

+ Under some conditions,
visit at least 29 nodes
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Nearest neighbor search

Locality sensitive hashing

Bin index:
[0 0 0]

Line 2

Bin index:
[0 10]

~#Hawful

Linel Binindex:

) [110]
3
5 Line 3
1 Bin index:
0 [111]
0 ! : 3 4 Hawesome
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Nearest neighbor search

LSH for approximate NN search

Bin lODOI [001] [010] [011] (100] |[[101] [110] 111]

=7
Data {1,2} {4,8,11} {7,9.10} ) {3.5,6}
indices:

Bin index:
Query point here, 000! Line2
Bin index:
but is NN? o (010
: Linel Binindex:
[110]

Next closest Line 3
bins (flip 1 bit)

o o Hawful

Bin index:
111}

01 2 3 4 .. #awesome
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What we’ve learned so far

k-means and MapReduce
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k-means and MapReduce
o

Discover clusters of related documents

o
Cluster 3 Cluster 4
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k-means and MapReduce

k-means algorithm

0. Initialize cluster centers

1. Assign observations to
closest cluster center

2. Revise cluster centers
as mean of assigned
observations

3. Repeat 1.4+2. until
convergence
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k-means and MapReduce
N

A coordinate descent algorithm

1. Assign observations to closest cluster center
. 2
zp = argmin || — X[
J

2. Revise cluster centers as mean of assigned
observations

pj < argmin Y || — x[3
H 1izi=]

Alternating minimization

1. (zgiveny) and 2. (u given z)
= coordinate descent
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k-means and MapReduce

Convergence of k-means to local mode

15 r ; r ; r ; r ; 15
10 | L 10 |
| . ¢ Tl .
e e
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°I + ..1‘% [ ] .: - °l L] .l.:'a '.:
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* oy " &80
e .1.1
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k-means and MapReduce
=

MapReduce framework

Map Phase Shuffle Phase = Reduce Phase
{livl)
{kz;""z)
. k

; Parallelize )

£ operations

g across

R multiple

machines

(ke,vs)

(ke,ve)
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k-means and MapReduce

o2 4
MapReduce abstraction

Map: Word count example:

- Data-parallel over elements,
e.g., documents

- Generate (key,value) pairs
* “value” can be any data type

map(doc)
for word in doc
emit(word,1)

Reduce: reduce(word, counts_list)
c=0
foriin counts_list

c += counts_list[i]
emit(word, c)

Aggregate values for each key

Must be commutative-associative
operation

Data-parallel over keys
Generate (key,value) pairs

MapReduce has long history in functional programming

.. - Popularized by Google, and subsequently by open-source Hadoop implementation from Yahoo!
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k-means and MapReduce
I

MapReducing 1 iteration of k-means

Classify: Assign observations to closest cluster center

2; — argnglﬂ 1 — x;|[3

Map: For each data point, given ({u}.x), emit(z;x;)

Recenter: Revise cluster centers as mean of assigned
observations

Reduce: Average over all points in cluster j (z,;=k)
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What we’ve learned so far

Mixture models
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Mixture models
6

Probabilistic clustering model

captures
uncertainty
In clustering

Cluster 3 Cluster 4
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Mixture models

Failure modes of k-means

overlapping clusters

disparate cluster sizes

different shaped/
oriented clusters
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Mixture models
N

Jumble of unlabeled images

....ulllllll
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Mixture models
0

Model of jumble of unlabeled images
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Mixture models
B

Mixture of Gaussians (1D)

Each mixture component represents
a unique cluster specified by:

{11, , Yy, O7}

LIS
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Mixture models
E

Mixture of Gaussians for
clustering documents

Space of all documents
(really lives in RY for vocab size V)

Make soft assignments
of docs to each
Gaussian
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Mixture models
=N

Restricting to diagonal covariance

Each cluster has {1, , p,, 2, diagonal }
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Mixture models
S

Inferring cluster labels
EM algorithm =

Data soft assignments
-.' ‘.. ) ;.-
. . ‘-'5-..
- ¢ ‘1,':'.:-'. ’ .:ﬁ 3 ".: ’
MRS IR ORI 3
*z Rt e S -:W: 2 eI
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A "? :““. o Sap ‘ et
o: b
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Mixture models

Expectation maximization (EM):
An iterative algorithm

1. E-step: estimate cluster responsibilities
given current parameter estimates
AN (| fue, Bk

Z}il #iN (i | fi, %)

2. M-step: maximize likelihood over
parameters given current responsibilities

File =

ﬁ.k: ﬁk: Eﬁjk | {?ﬁik’a ﬂ:i}
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Mixture models
s

EM for mixtures of Gaussians
INn pictures - replay

ZA
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Mixture models
6

Relationship to k-means

Consider Gaussian mixture model with

Spherically
/&2 ™ symmetric clusters

and let the variance parameter o =2 0

Datapoint gets fully assigned to

nearest center, just as in kK-means
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What we’ve learned so far

Latent Dirichlet allocation
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Latent Dirichlet allocation

Topic vocab
distributions:

SCIENCE

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Drausin F. Wulsin®, Emily B. Fox®, Brian Litt*F
*Department of Bicengineering, University of Pennaylvania, Philadelpkia, PA
® Department of Neurology, University of Pennsylvania, Philadelphia, PA
<Department of Statiatics, University of Washington, Seattle, WA

Abstract

= As onous regime-switching, and (iii) an
nagic rogimse We encode a sparse and changing
cwhannels using a Markov-switching Gaussian
swgocess driving the channel dynamics and
porggnee of this mdgl in parsing and out-of-sample pre-
a. We show that ofgmodel produces intuitive state
a help antomate clinical analysis of seizures and enable
arisol §f suthelinical bursts and full clinical seizres.

g <kl oyparametrie, EEG, factorial hidden Markov model,
araphical model, §the soriks

1. Imtroduction \
Despite over three
what defines a seiw i

0 arch, we still have very little idea of
ure. izmo stems both from the complexity of
epilepsy as a disease and a pancity™of quantitative tools that are flexible

Clustering:

One topic indicator
z, per document |

All words come from
(get scored under)
same topic z,

Distribution on
prevalence of
topics in corpus
™= [T, T, .. ]
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Latent Dirichlet allocation

39
Comparing and contrasting

Previously Now
Prior topic i =k) = ) =
probabilities "k Pz ) =
Likelihood —
under
each topic @
{modeling, complex, epilepsy,
- modeling, Bayesian, clinical,
tf'ldﬂ vector epilepsy, EEG, data, dynamic...}
compute likelihood of tf-idf | compute likelihood of the
vector under each Gaussian | collection of words in doc

under each topic distribution
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Latent Dirichlet allocation
0|

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Same topic Drausin F. Wulsin®, Emily B. Fox, Brian Litt® .
distributions: ° Department of Bivengineering, University of Penmsyivania, Philedetphin, PA In LDA-

*Department of Neurology, University of Fennsylvania, Philadelphia, PA
=Department of Statiatice, University of Waskington, Seafifs, WA

SCIENCE . . .
One topic indicator

Ahbstract Ziw per WOI‘d in dOC |

can manifest short, sub-clinical epileptic “bursts” in

LWy We believe the relationship between
2 of oventE=samrthiag not proviously studied quantitatively

ortant insights into The-siiire-and_intrinsie_dynamics of Each word scored
u:ul_" our work is to parse thesg ovonts .
under topic z;,,

regimes. A challenge posed

st of oleotrodes

Al regimes between a var-
i witching, and (iii) an

ind changing Distribution on

N ——

—SWILCITTTR

mamsad | topics In document
parsing wad out-of sample pro-
e intuitive state L = . . -
e sute | L = [TT TTjp ... Tyl
al bursts and
EEG, factorial hidded 1
el time series
Introd k&u 0
Despite pe decades of research, we still have very little idea of Py "L. 4) T
nes This ignorance stems both from the complexity of Q\O{J@ é\o {-?\C-
a8 a and a paucity of quantitative tools that are flexible
I APKOKOKO
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Latent Dirichlet allocation

Gibbs sampling for LDA

TOPIC 1

TOPIC 2

TOPIC 3

AL

Modeling the Complex Dynamics and Changing
Correlations of Epileptic Events

Dirausin F. Wulsin®, Emily B. Fox®, Brinn Litt*5
2 [lepariruent of Blomginerring, Uraversity of Perasplvonia, Philadelphis PA
 Depentracnt off Newrology, [necrsuy of Pernoyseni, Fhdadaphia, P
¢ Departmerat of Stadstics, Dniversiy of Washirgton, Seatcle, WA

Abstract

Pati i il onn i short, sub-clinical epileptic “bumts” in
tan o |elini I | We [elieve fhe relatioship between
these twa ol of pveiEs nntpu'n-nmm stdied q'u.antn.nx.nuh
conld d important insights into the noture and iotriesic d of
ﬁd Al of our work is to pame these Bﬂln:plmttﬂ
istinct dyomic regimes. & posed by the intracrans

[iEEG) data we study is the foct that number and placement. nfdnc
o vary between We develop afB o] [ ]

switching process tho l:rll'sﬁ:lr i thz\addlmmrnglmnﬂh tWEen o vari-

.nhl:_- af ch i) ] regimeswitching, and (i) an

unknown dictionnry of rl:.rn.nmlc n:pmm. = ml%xd

set of dependencies between the chanpels nsing o it chi g Ganssian)
model for process ﬂ::nngtﬁn;:hannd dymarmies and
te the im madel in e onst-of sample pee

dictions of] dota.  We show that ocur lmuhl n:u‘luceu intuitive stote

semignments that can help) Jeli nnaly=s of and enable
the comparison of sub-clinse clinical

K, Dees] G, Gl b1 M
e

1. Imtroducton

Deemspite over three deoades of research, we still have very Little iden of
what defines ofsdzere] This ignorance stems both from the complexity of
as nf[diseaseland o pancity of quantitative tools thot are flexible

0.6 -
04
0.2 -

0 T T T T

Step 1: Randomly

reassign all z;,, based on
- doc topic proportions
- topic vocab distributions

Draw randomly from

respansibility vector
[r. e Finic)
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Latent Dirichlet allocation

0)

TOPIC 1

TOPIC 2

TOPIC 3

Modeling the Complex Dyvnamics and Changing
Correlations of Epileptic Events

Dirausin F. Wulsin®, Emily B. Fax®, Brian Litt*F
& [lepantment of ering, U of Philndelphis, PA
S Deparirend off Nenrology, Unisersily of Perauyinemin, Phdadeiphia, P4
¢ Deparemerat of Stacstics, Universiuy of Wasfurgton, Seatde, WA

Abstract

F- i cart, mabclinical epiloptic “bursts” in
tiom to § o Vﬁ:% !:II’_‘ relationship between
thee two classes of even SOIELIIE ok prev v stodied quantitatively

could vield important insights into the ooture aod intriosic d of
of our work i to these complex eveats
into distinet dynumic regimes, A posed by the intracran:

[iEEG) data we study is the foct that number and placement of elect =]
o vary betwes We develap

switching process oW
mhﬁaf channels, (i)

unknown dictionnry of dynamse regimes

model for

dictions o =
mmignments can hel and ennhle
the comparson of sub-clinie

PN EE e o
1m . tizme series

1. Introdoction

Dhempite decndes of research, we still have very little iden of

mes This ignorance stems bhoth from the complexity of
[ d n paucity of quantitative tools that are fecible

bbs sampling for LDA

0.6 -

04

0.2 - 31712‘7;

Step 2: Randomly
reassign doc topic
proportions based on
assignments z;, in
current doc

Step 3: Repeat for all docs
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Latent Dirichlet allocation

Gibbs sampling for LDA

TOPIC1 Modeling the Complex Dynamics and Changing 06 -
Word 1 ? Correlations of Epileptic Events .
Werd 2 ? ) pabiar, Eai . - .//
Word 3 7 Dimusin F. Walsin®, Emily B. Fox®, Brinn Litt! D 4 .
Word 4 ? “J’.annmn{ uf:'r!mmmng, lew!qfr of Fﬂmqﬁnmﬂ, qu, Pa
Word 5 F unmmall of Statistics, ['niversity of Iiul'lmmu, Senltle, “".rl 0 2 _/
0 T T T T
TOPIC 2 : : RSP B
Flinic ST e e relatinmship between o " - .
Word 1 z thmmdmﬂ Dl'l:'n:n SOMELNLILE, Lot pa%ﬂmlm; quamlprt.n.tn\di DQ 'Q\ Q\ ‘Q\
Word 2 ? conld wield artant insights into the onture and intriosic d of "& «D 4(\0 ,4\0
F QI %u[ our work i ko these mlnplm: ewvents
e : mto gtinet OyBamic regimes. A posed by the intracran
Word 4 ? (iEECG) data we study is the foct that numdier and placement of slec
Word 5 ? m?t;ar!. betwee We r|.r:'n:|c|p
switching process that allows FDAIME TEEIEES Detween & varl-
. ab af champels, (i) regime.swi and (i) an .
e ﬁ Step 4: Randomly
nidencies between the chanmels nsing HwL
model for racems driving the mel dtnnmr_:u M M
TOPIC 3 o e o e el reassign topic vocab
Word 1 ? dictions o rlnhn.hd“'r: show i o . nhk . . )
o o= that can P and e
werdz 7 o Eomparc of i T distributions based on
Werd 3 ?
g mk!!llllllEEEMmhwmlllll - -
Words 2 B e assignments z;, in
Werd 5 ?
- Introduction entire corpus
Dhempite demndes of research, we still have very bittle iden of
. nes This ignorance stems both from the complexity of
- ﬁu n. d o pancity of quantitative tools thnt are fexible
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Latent Dirichlet allocation

I
Collapsed Gibbs sampling for LDA

Modeling the Complex Dyvnamics and Changing
Correlations of Epileptic Events

Dirausin F. Walsin®, Emily B. Fox®, Brinn Litt~®

8 [Jepariment of Blomgpineering, Uradversity of Pemsplvania, Phaadelphie P4
* Depertrnend of Neseology, [Uniseesily of Perouyizenio, Phdadeiphia, P4
¢ Departmerat of Stassties, Fniversity of Wasiuregton, Seattle, WA -

Abstract
%‘I' h short, sub-clinical epileptic “bumsts” in
on to fall-blo e relatinmship between

thesme two clnsses of even I- nmpwnn%}'sturlind quantitatively

mn vary hetwes We rl.n"mlup o Bn
kv oy of g 8 Randomly reassign z;,,
jrmpor madel in pamsing aod out-of sample pre-
J

could vield important insights into the poture and iotricsic dypas
é:_ @u!’ our _wnr]i : o these comple BT
(DG du e iyt s e et A
switching process th ows fg Egred dyvmarmr regmes betwesn o vare-
ahl af chanpels, (i) regime-switching, P

midencies between the channels u.ing 3 _mwitchi e
e e e ST i ““:ﬁ based on current
e e of s T Ewer | assignments z, of all
Keguwords: EEG, factorial bidden Rl .
i e other words in doc and
1. Introduction corpus

Dempite e of ressarch, we still have very Lttle ide of
mes This ignorance stems both from the complexity of
[EY d n pancity of guantitative tocls that are flexible
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Latent Dirichlet allocation
s |

Collapsed conditional distribution

3 ? 1 3 1
epilepsy  dynamic \Bayesian| EEG model

Topic 1 Topic 2 Topic 3
i —
Probablllty of assignment of word
In doc i1 to tDpIC k proportional to:
How much Tk + O mdynamic,k + 7y How much
doc likes topic likes
topic Ni—1+ Ko Z—wEV Mk + V7 word
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Latent Dirichlet allocation
I

What to do with sampling output?

Predictions:

1. Make prediction for each snapshot of randomly
assigned variables/parameters (full iteration)

2. Average predictions for final result

>

Parameter or assignment estimate:

- Look at snhapshot of randomly assigned
variables/parameters that maximizes
joint model probability”

Joint model
probability

q -

. . =
Iterations
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Summary of what we have learned

Models Algorithms Core ML

Mearest neighbors KD-trees Distance metrics
Module 1 Module 1 Module 1

i Locality sensitive Approximation
h(-"l:cl.‘rL[l:lsljﬁenggS hashing algorithms
' Module1l | | Module 1

Unsupervised
learning
Module 2

Mixture of Gaussians k-means
Module 3 Module 2

Latent Dirichlet
allocation
Module 4

Probabilistic
maodeling
Maodule 2, 3, 4

MapReduce
Module 2

Expectation | Data parallel
Maximization problems
Module 3 . Module 2

Gibbs sampling Bayesian inference
Module 4 Module 4
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