INTRODUCTION TO DATA SCIENCE

This lecture is based on course by E. Fox and C. Guestrin, Univ of Washington

WFAiS UJ, Informatyka Stosowana II stopień studiów

What is classification?

From features to predictions

Overwiew of content

Sentiment classifier

Input x: Easily best sushi in Seattle.

Classifier

Note: we'll start talking about 2 classes, and address multiclass later

Linear classifiers

Word	Coefficient	
#awesome	1.0	Coordy) 10 Hayyosama 15 Hayyfyl
#awful	-1.5	Score(x) = $1.0 \text{ #awesome} - 1.5 \text{ #awful}$

Logistic regression represents probabilities

Learning "best" classifier

Maximize likelihood over all possible w_0, w_1, w_2

Overfitting & regularisation

Decision trees

Overfitting & decision trees

Decision Tree

Depth 1

Logistic Regression

Degree 1 features

Alleviate overfitting by learning simpler trees

Occam's Razor: "Among competing hypotheses, the one with fewest assumptions should be selected", William of Occam, 13th Century

Handling missing data

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	?	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	high	safe
poor	?	high	risky
poor	5 yrs	low	safe
fair	?	high	safe

Boosting questions

"Can a set of weak learners be combined to create a stronger learner?" *Kearns and Valiant (1988)*

Yes! Schapire (1990)

Boosting

Amazing impact: • simple approach • widely used in industry • wins most Kaggle competitions

Boosting using AdaBoost

Ensemble: Combine votes from many simple classifiers to learn complex classifiers

Precision - recall

Scalling to huge dataset & on-line learning

4.8B webpages 500M Tweets/day

