Elementary Particle Physics:

theory and experiments

Detectors for HEP: ATLAS at LHC
Calculating cross-sections and decay rates

Some slides taken from M. A. Thomson lectures
at Cambridge University in 2011

Prof. dr hab. Elzbieta Richter-Was




LHC (Large Hadron Collider )
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1)

Which particles are detected?

Charged leptons, photons and
hadrons: e, u,y,m,K,p,n...
(maybe new long-lived
particles, i.e. particles which
enter detector)

B (and D) mesons and 1 leptons
have ct ~ 0.09 ..0. x 10>m large
enough for additional vertex
reconstruction

Neutrinos (maybe also new
particles) are reconstructed as
mising transverse momentum

All other particles which decay
or hadronise in primary vertex
(top quark decays before
hadronises)

Quarks
Leptons
. Force particles

Higgs

Onlye, p, y of the fundamental Standard Model
Particles are directly detected

Heavy particles W, Z decay immediatelly



Sketch of particles interaction with

detector

innermost layer » outermost layer

tracking electromagnetic hadronic muon
system calorimeter calorimeter system

photons

electrons

—_— -

muons
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neutrons
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C. Lippmann - 2003



1)

3)

4)

The observables?

Photon makes photo-efect, Compton
scattering and pair production. It has no
track but an electromagnetic cascade in
the calorimeter.

Charged particles makes scattering,
ionisation, excitation and bremsstrahlung, &
transition and cherenkov radiation. They
produce tracks.

Electrons make electromagnetic cascades
(clusters) in the calorimeter

Hadrons also interact strongly via inelastic

interactions, e.g. neutron capture, induced
fission, etc. They make hadronic cascades

(clusters) int he hadronic calorimeter.

Only weakly interacting particles
(neutrinos) are reconstructed as missing
transverse momentum (,,missing energy”). 4




The ATLAS example

Typical 4m cylindrical onion structure

25m

forward calorimeters
. Pixel detector ~
Toroid magnefs LAr electromagnetic calorimeters
Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor tracker




Reconstructed properties

From the hits, tracks, clusters, missing transverse
momentum and vertices we reconstruct the particles
properties:

1)
2)
3)

Momentum from curved tracks
Charge from track curvature

Energy from full absorption in calorimeters and
curved tracks

Spin from angular distributions
Mass from invariant mass from decay products
Lifetime from time of flight measurement

ldentity from dE/dx, lifetime or special behaviour (like
transition ratiation)



Detector design constraints (I)

* Constraints from physics:

1)

2)

High detection efficiency demands minimal
cracks and holes, high coverage

High resolution demands little material like
support structures, cables, cooling pipes,
electronics etc. (avoid multiple scattering)

Irradiation hard active materials to avoid
degradation and changes during operation

Low noise
Easy maintenance (materials get radioactive)



Detector design constraints (I1)

* Enviromental contraints,
i.e. from LHC design
parameters:

1)

2)

3)

4)

6)

Collision events every ™
25ns

Muons from previous event
still in detector when
current enters tracker

High occupancy in the inner
detector

Pile up (more proton proton
collisions in each bunch
crosing)

High irradiation




Magnet system

* Use Lorentz force to curve tracks

F = qE+qva

Elsesric

« Max E is about 50MV/m in high vacum, just
B field used (5T gives ~10° stronger force)

* Curvatureorradius:qvB=mv}/T=>p=q
BR

*» At |east three hits needed to reconstruct a
unique R of a track

* Remember solenoid resolution:
{ap'l'/pTLulennid H('&SILEB) pT ce=R 1R_' {]_1,-"1'}2}1;2

(in GeV with sin im, Lin cm and B in T. Large B is good against high
oCCupancy. g = sagitta
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Size and field examples

ATLAS barrel toroid
20.5kA,39T

frable 1
ain parameters of some HEP detector magnets (solenoids).

CDF CLEO-I ALEPH ZEUS H1 KLOE BaBar Atlas CMS

B(T) 15 15 1.5 1.8 1.2 06 1.5 20 4.0
R(m) 15 155 2.7 15 28 26 1.5 125 3.0
L(m) 48 35 6.3 245 52 39 35 366 125

The magnet layout is a major constraint for the rest of the detector!
See A. Gadi, A magnet system for HEP experiments, NIMA 666 (2012) 10-24
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ATLAS Inner Detector

* 3 layers of pixel
modules in barrel

e 2x5 disks of forward
pixel disks

* 4 layers of strip (SCT)
modules in barrel

* 2x9 disks of forward
strip modules

Figure : ATLAS Inner detector (ID) in LHC run 1 with pixel and strip
(SCT) silicon and transition radiation (TRT) detectors. The length 1s

about 5.5 m.
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ATLAS Inner Detector

ATLAS inner detector

[ R=514mm
R=443 mm

R=371mm

L R=299 mm

R=1225mm
Pixels{ R =88.5mm
R=50.5mm
R=0mm1




Transition Radiation Tracker

Combine tracking with T I
particle identification (PID) T Catnoo v
* Charged particles radiate %\1:::‘;1:%,
photons when crossing
material borders.

* e* radiate x-rays more —
than heavier particles.

Noble
Gas

* Use this particle PID, i.e.  zour™ o
distinguis e* from - I S
hadrons.

 ATLAS has a TR detectorin 5o |
the inner detector. [t uses  °® st
gas for detection. e e i

1 10 1 10

Pion momentum (GeV) Electron momentum (GeV)



! y— ete  conversions

p;(e*) = 1.75 GeV, 11 TRT high-threshold hits
p;(e) = 0.79 GeV, 3 TRT high-threshold hits




I

V= e+e- conversions

p;(e*) = 1.75 GeV, 11 TRT high-threshold hits

ATLAS preliminary

Data conversion candidate

MC conversion candidate
" MC truth conversion

MC truth Dalitz decay

Pixel layer 1
Pixel layer 3
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Cells in Layer 3

ATLAS EM Calorimeter I

Accordion Pb/LAr [n|<3.2 ~170k channels
Precision measurement |n|<2.5

3 layers up to |n|=2.5 + presampler |n|<1.8
2 layers 2.5<|n|<3.2

Layer 1 (y/n° rej. + angular meas.) ' Zg//;\f//
An.Ap = 0.003 x 0.1 B ‘ 2%
Layer 2 (shower max) : [ f

An.A@ = 0.025 x 0.0.25 L~
Layer 3 (Hadronic leakage) A /

An.A@ = 0.05 x 0.0.025
Energy Resolution: design for n~0

AE/E ~ 10%/VE ® 150 MeV/E ® 0.7%
Angular Resolution

50mrad/VE(GeV)
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The segmentation

s/
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ATLAS Hadronic Calorimeter (Tile)

e

ooobouqocoOoocbouq%oonga
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e M»l»l»Wl»f
Fe/Scint with WLS “" M .M.. VN e
fiber Readout via PMT ————

) g . I

Figure 5-15 Cell geometry of half of a banrel mod- Figure 5-16  Proposed cell geometry for the
ule. The fibres of each cell are routed 1o cne PMT.  extended barel modules (version “a la bamnel”).
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The ATLAS detector

Length : ~ 46 m
Radius : ~ 12 m

Muon Deteciors TIN Colo_’rimeter Liquid Arg'on Calorimeter Welgh‘l‘ .~ 7000 tons

3-level trigger S

~108 electronic channels

reducing the rate
from 40 MHz to
~200 Hz

Inner Detector (|n|[<2.5, B=2T):
Si Pixels and strips (SCT) +
Transition Radiation straws
Precise tracking and vertexing,
e/n separation (TRT).

.. | Momentum resolution:
| o/pr ~ 3.4x10“ p(GeV) ® 0.015

/ ! \ ~y
Toroid Magnets Solenoid Magnet SCT Tragker Pixel Detector TRT Tracker

EM calorimeter: Pb-LAr Accordion \ |

e/y trigger, identification and measurement HAD calorimetry (|n[<5): segmentation, hermeticity

E-resolution: ~ 1% at 100 GeV, 0.5% at 1 TeV | Tilecal Fe/scintillator (central), Cu/W-LAr (fwd)

Trigger and measurement of jets and missing E+
E-resolution: 6/E ~ 50%/VE € 0.03

L



converted Y into e" e

TRT <

-

R=1225 mm
Pixels { R = 88.5 mm
R =50.5mm

R=0mm B=1T



This will be very useful |
to reject the background % _;*
from ° T
opening of photons coming
from a 1 (p=40 GeV)

AR > 007
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Photon identification

, reminder: opening angle between the two
with shower shapes

photons of a 7° of py =40 GeV is > 0.007
to be compared with size of strip calo
I sampling ~0.003

n” candidate passing “loose”, failing Ltight™ selection

S ——™”
SOATLAS tight
EXPERIMENT selection

g uses
mainly
calo
1st
sampling

45




Photon candidate passing “tight™ selection

JATLAS

.EXPERIMENT

Run Number 155180, Event Number 44820761

Date 2010.05-17 1251 20 CEST

.
_——
N

Nice shape in first sampling of EM calormeter



Electron identification

ElectronlD attempts to make optimal use of the tracking and calorimetric
detectors. This includes shower widths, ratios of various energy deposits,

tracking hits, track-cluster matching, etc. (IBL not shown below!)
Thanks to Joey and Kurt for the image!

TRT (72 layers)

P T
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" Fur,
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SCT
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| [T 0T
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A
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Electron identification

First layer of the EMCAL

E . — Emax,l_Ema}:,E " w — ZEi{i_ima}:}z
Ratio Ermax1+Emax2 ' —-stot S E
I-/F - Tl T third layer hadronic calorimeter
M second layer /Slectiomagnetic 7"
. -EE:l‘i_!‘"m:.z Hr}__e" i
. K] Im_"—lll EEI K E
.__.|||I|“|I||.|_._ wstot uses 20 strips in n E
TRT (72 layers) E ¢
gt e mmm
\ R 558 Ro
ScT \ _ --
beam axis L He
- T mss R,
primary vertex - B EEE

TRT PID



Electron identification

Second layer of the EMCAL

W,, = \/Z Einf (ZE'.?F); R, = E3l7. Ry = B33

2_E 2_E E?%7’ E3%7

third layer
- TF") L7
E, o al
- V'3 electromagnetic .- .
th im & 35 {Anpaiup) region 1 I X . !
aof cells in the second layer. calorimeter .-"J 1

first layer (strips) &

TRT (72 layers)

*. Fh,

TRT PID

SCT

beam axis

primary vertex

EEEEEEE
ENEEEEN
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A
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Electron identification

Third layer of the EMCAL and HCAL

_Esy EP
f3 = Eemcar ' RHad = Er
fs =
second layer iﬁ;:ﬁ;&?"mjﬁf !
first layer (strips) i' -
-
IIII...HI.
| n
TRT (72 layers) . il;.'!gﬁﬂ P
: 5=E=-u= - HEE
S .. 1]
sCT \ . mas
beam axis . - H
. A A
primary vertex Forr 1
: ([ 1]

TRT PID

A
-

A
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Nuclear Instruments & Methods in Physics Research

topical issue

Instrumentation and detector technologies for frontier high energy
physics

Volume 666, pages 1 - 222 (21 February 2012)

Edited by:
Archana Sharma (CERN)

Technological advances in radiation detection have been pioneered and led by particle
physics. The ever increasing complexity of the experiments in high energy physics has
driven the need for developments in high performance silicon and gaseous tracking
detectors, electromagnetic and hadron calorimetry, transition radiation detectors and
novel particle identification techniques. Magnet systems have evolved with
superconducting magnets being used in present and, are being designed for use in,
future experiments. The alignment system, being critical for the overall detector
performance, has become one of the essential design aspects of large experiments. The
electronic developments go hand in hand to enable the exploitation of these detectors
designed to operate in the hostile conditions of radiation, high rate and luminosity.

This volume provides a panorama of the state-of-the-art in the field of radiation detection
and instrumentation for large experiments at the present and future particle
accelerators.
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Cross-section and decay rates

* In particle physics we are mainly concerned
with particle interactions and decays, i.e.
transitions between states

* these are the experimental observables of particle physics
* Calculate transition rates from Fermi’s Golden Rule

['si = 27|Ty|*p(Ey)

Fﬁ is number of transitions per unit time from initial state
" i) tofinal state (f| - not Lorentz Invariant !

Tf,; is Transition Matrix Element
$dF <f‘ﬁ‘]>(j|ﬁ‘i’> H|5 the
= perturblng
p(Ey) is density of final states

* Rates depend on MATRIX ELEMENT and DENSITY OF STATES
A -

iy S

the ME contains the fundamental particle physics just kinematics

from M. A. Thomson lectures at Cambridge University in 2011 >



Cross-sections

* Aiming towards a proper calculation of decay and scattering processes

Will concentrate on: e _
Ty X w °
AR y
€ q 7eq
(e-q—e-q to probe e -
proton structure) q g

A Need relativistic calculations of particle decay rates and cross sections:
Myl
= X (phase space
7~ X (phase space)
A Need relativistic treatment of spin-half particles:

Dirac Equation
A Need relativistic calculation of interaction Matrix Element:

Interaction by particle exchange and Feynman rules
+ and a few mathematical tricks along, e.g. the Dirac Delta Function

from M. A. Thomson lectures at Cambridge University in 2011



Particle decay rates

* Consider the two-body decay ' 1
* Want to calculate the decay rate in first order ¢
perturbation theory using plane-wave descriptions /
of the particles (Born approximation): 2
__ Nl p.F—Et S
Y1 = Ne'lP7-En (kF=pF as h=1)
= Ne™ P~

where N is the normalisation and p.X = p“x“

For decay rate calculation need to know:

* Wave-function normalisation YT P
* Transition matrix element from perturbation theory || na t‘;"e“
« Expression for the density of states nvariant form

*First consider wave-function normalisation

* Non-relativistic: normalised to one particle in a cube of sidea
Jyy'dv=Na’=1 = N =1/a’,
from M. A. Thomson lectures at Cambridge University in 2011 *



Non-relativistic phase space

« Apply boundary conditions (p = /ik):
* Wave-function vanishing at box boundaries

= (uantised particle momenta:

a
2mn Z?IH; . __ 271n,
Px =" i » Py = f’ P:= a
* Volume of single state in momentum space: Dy a
)’ - o
a V
* Normalising to one particle/unit volume gives
number of states in element: d3ﬁ =dp,dp,dp, W A
d dgﬁ X ! dSﬁ - — Px
n=- - =
@ vV (2n) »
* Therefore density of states in Golden rule: P,
,O(E ) dn dn d‘p‘ with
P VaE |, |dip| dE |, p=PBE
MR AR AR I
* Integrating over an elemental shell in /2
momentum-space gives . tp
> Ef)= X
(d3p=4frp2dp) p( f) (ZR.)’; ﬁ

from M. A. Thomson lectures at Cambridge University in 2011 >



Golden rule revisited
Ly = 2|T5i|"p (Ey)

* Rewrite the expression for density of states using a delta-function

dn “dn _
T . = d—ES(E—E,-)dE since Fr = E;

Note : integrating over all final state energies but energy conservation now
taken into account explicitly by delta function

* Hence the golden rule becomes: ['f; = 2?1'/ ‘Tf‘;‘ES(Eg —E)dn

the integral is over all “allowed” final states of any energy
* For dn in a two-body decay, only need to consider

p(Er) =

1
one particle : mom. conservation fixes the other f/\/ﬂ
r 2?[/ }T ‘?B(F F F ) d3ﬁ1 / E;nuuunn-a-x?;n;
P = . —F1— 6 ian = i
g 7 T M S
* However, can include momentum conservation explicitly by integrating over

the momenta of both particles and using another d-fn

L L Ep &F
['si= (271')4/‘Tﬁ|25(E;' ) _EZ)Si(Pi_ ) P1L S P2

71— P2
R ) ()
Energy cons. Mom. cons. v g

Density of states
from M. A. Thomson lectures at Cambridge University in 2011
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Lorentz invariant phase-space

* In non-relativistic QM normalise to one particle/unit volume: fl,!/* wdV =1
* When considering relativistic effects, volume contracts by Y = E/m

* Particle density therefore increases by Y — E/m

* Conclude that a relativistic invariant wave-function normalisation
needs to be proportional to E particles per unit volume

* Usual convention: | Normalise to 2E particles/unit volume| [y y/'dV = 2E

* Previouslyused ' normalised to 1 particle per unit volume j l,lf* WdV =1
* Hence lp” — (ZE)I/zq/ is normalised to 2F per unit volume

* Define Lorentz Invariant Matrix EIement,Mﬁ , in terms of the wave-functions
normalised to 2F particles per unit volume

Mg = (Y- Y5 |H|..y,_ W) = (2E1 2E>.2E5...2E,) P Ty,

from M. A. Thomson lectures at Cambridge University in 2011
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Golden rule revisited

* For the two body decay My = (l,lf; Wéuf]f‘ W;)
i — 142 = (2E.2E1.2E) 2 (yi vl B | w;)
(2E;2E\ 2E) 2Ty,

* Now expressing Tf,- in terms ofMﬁ gives

27) Yo
Ffi:( ) /|Mfi|26(Ef—El—E2)63(Pa_P'l_P2)

d’ pi & p>
(23’1’)3251 (23’1’)3252

2E

Note:
o My; uses relativistically normalised wave-functions. It is Lorentz Invariant

5 d3ﬁ is the Lorentz Invariant Phase Space for each final state particle
(2;5)325 the factor of 2F arises from the wave-function normalisation

9 This form of Fﬁ is simply a rearrangement of the original equation
but the integral is now frame independent (i.e. L.1.)

° Fﬁ- is inversely proportional to E,, the energy of the decaying particle. This is
exactly what one would expect from time dilation (E; = ym).

© Enerav and momentum conservation in the delta functions

from M. A. Thomson lectures at Cambridge University in 2011 °



Decay rate calculations

Tyi=-—— [ |My[*8(E;— E) — E2)8° (B — P —
* Because the integral is Lorentz invariant (i.e. frame independent) it can be

evaluated in any frame we choose. The C.o.M. frame is most convenient

-IntheCoMframeE:mf and pi=0 =
d3—*ld3

[y Mi[*8(m; — E; — E2)8° (p

+ Integrating over P2 using the d-function: i/g
| *

| d*pi
Ifi= Mgi|*8(mi—E) — E
:> fi SEZEI' ./‘ fII (m; ] 2)4E Ez 2/
now E% = (m§+|ﬁ||z) since the d-function imposes p2 _Pl

« Writing d3ﬁ1 _ 2dP1 sin0dOdg = p%dpldﬂ  For convenience, here

|p1\ is written as p;

2
r7dp1dQ
= Tj= 32?1'2E /|Mﬁ\25 n; — ml-f—p m,}_|_p )1 Epéz

from M. A. Thomson lectures at Cambridge University in 2011
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Decay rate calculations

 Which can be written 1 ' 5
in tll1e form o Lri= 212E,; ] ‘Mﬂ‘ S(PI)S(f(Pl))dpldQ (2)

7

where g(p1) = pi/(E1Ez) = pi(mi+p7) " (m3+p})~'/2
and  f(p1) =mi—(mj+p)"* = (m3+p})'? - Uil
Note: -« ( (p1)) imposes energy conservation. i/{g'
) (0 determines the C.0.M momenta of /
the two decay products P’

. 2
ie. f(p1)=0for pr=p
* Eq. (2) can be integrated using the property of & - function derived earlier (eq. (1))

[ s(e)((p1))dp1 = )

|df/dpl ‘p"
where P is the value for which f(p*) =0

* All that remains is to evaluate df /dp;
df P pp.._ pop BB

. I/g(pl)ﬁ(m —p)dpi =

dpr (M 4pH)12 (mE4pH)2 0 E B PR E

from M. A. Thomson lectures at Cambridge University in 2011
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Decay rate calculations

E\E ;
[ M| L o
pi1(E1+Ep) ErEy |, _ e

giving: Fﬂ = .
i

Pl
323’1'25.-:]’ Al Ei+E |, —p

« But fmmf(pl) =0,i.e. energy conservation: f| + Fy =
\ / 2
| s M| ~d€Q

In the particle’s rest frame £; = mE

(3)

VALID FOR ALL TWO-BODY DECAYS !
+ p* can be obtained from f(p;) =0

(m 4+ p™2) !+ (m3 4+ p™2) V2 = m,

1
2}?11

- =

[(?n? - (-‘?11 + i"ﬂz)g} [m% — (1?I| — mz)z}

from M. A. Thomson lectures at Cambridge University in 2011 o



Cross-section definition

' = mn LITLTLY

f Flux number uf
no of interactions per unit time per target  incident particles/ :

incident flux <. ]t areatunittime |

1] 1

* The “cross section”, 5, can be thought of as the effective cross-
sectional area of the target particles for the interaction to occur.

* In general this has nothing to do with the physical size of the
target although there are exceptions, e.g. neutron absorption

¢— . here @ is the projective area of nucleus
Differential Cross section  pummmnes
- or generally :
do — no of particles per sec/per target into dQ ' do :
dQ) incident flux d_
€A dQ =d(cosB)d¢
e _ "do
> . . with [0 = 10 dQ
\‘_* integrate over all
} other particles

42
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Cross-section calculations

* Consider scattering process 7 /' 3
1+2—=3+4 1 » é——
1)
» Start from Fermi’s Golden Rule: 4/ :

d&p3 d’py
Fﬂ (27) /‘Tﬁzﬁ (E1+Ey—E3— E4)5 (P1+pr— pg—pa,)(zjf; (2?17)

where Tf, is the transition matrix for a normalisation of 1/unit volume

* Now Rate/Volume = (flux of 1) x (number density of 2) x &

= H1(1’|—|—V2) XNy X O

* For 1 target particle per unit volume Rate = (V'l + 1,:2)(}'
Li

O =
(vi+w2)

&y g
T4il*8(E) +E> — Ex — E4)&°
" +v /} il | +Ey —Ex— E4)0°(p1 + pr — P3 — p.a)(zﬂ_) (ZE)J

\—Y—-"\—Y—l

| the parts are not Lorentz Invariant ,,./

from M. A. Thomson lectures at Cambridge University in 2011
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Cross-section calculations

* To obtain a Lorentz Invariant form use wave-functions normalised to2F particles

per unit volume Y = (ZE)J/ZIV
* Again define L.I. Matrix element Mﬁ — (2E1 2E2 2E3 2E4)1/2Tﬁ
- (2m)? & ps & py
= 2E 2By (vi +v2) /'MM O(E1+E>—Ex —F4)5 (P + P> — P3 — Pa) 2E3 2E4

* The integral is now written in a Lorentz invariant form

* The quantity F' = 2F|2F>(vy + V) can be written in terms of a four-vector
scalar product and is therefore also Lorentz Invariant (the Lorentz Inv. Flux)

_ u 2. 271/2
F=4 [(Pl PZu) mlm”}
» Consequently cross section is a Lorentz Invariant quantity
Two special cases of Lorentz Invariant Flux:

* Centre-of-Mass Frame * Target (particle 2) at rest
F = 4EEy(vi+v) F o= 4EE(vi+n)
AE\E>(|p7|/E1+ |p"|/E2) = 4E m>v
415" |(E1 + E2) = 4Eimy(|p1|/En)
= 4|5t|\/g = 4m2|ﬁ||

44
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Cross-section calculations

* We will now apply above Lorentz Invariant formula for the ;/ 3
interaction cross section to the most common cases used B Z — P
in the course. First consider 2—2 scattering in C.o.M. frame 1 / 2

* Start from 4 P

(27) 2 / ) &y & iy
o= My|*8(E) +Ey —E3 —E4)8°(p) + pr — 3 —
TRTATEEN Mypi|"6(E1 +Ey — E3 — E4)6°(p) + 2 — 3 — P4) A7

-Hereﬁ1+f52:0 al’ld E\+E)=\/s
= o=

dgm d*py
My 28(\/s—E3—E3)8°(p

* The integral is exactly the same integral that appeared in the particle decay
calculation but with 71, replaced by \/_

|Pf|

= o = \[4\[/|Mﬁ| 40

4>

from M. A. Thomson lectures at Cambridge University in 2011



Cross-section calculations

* In the case of elastic scattering \ﬁﬂ = \ﬁ;\ €~ e 3

]
- 12 *
Oclastic ~— 64725 / ‘Mﬁ‘ de2
u* 4
* For calculating the total cross-section (which is Lorentz Invariant) the result on

the previous page (eq. (4)) is sufficient. However, it is not so useful for calculating
the differential cross section in a rest frame other than the C.o.M:

2 R
M ?dQ”
ans 7|

because the angles in dQ* = d(cos 9*)d¢ refer to the C.0.M frame
* For the last calculation in this section, we need to find a L.l. expression fodo

do

* Start by expressing d* in terms of Mandelstam t

i.e. the square of the four-momentum transfer [=q" = (Pl - p3)
u
e péi e A
¢ Product of
éfuur-vecturs :
" =p\ - p§ ; therefore L. ;
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Cross-section calculations

» Want to express d{Q* interms of Lurentz Invariant dt

where [ = (p] —pg) —pl -I—p; —2])1 P3 —m] -|-m3 2p].p3

+ In C.o.M. frame: X 4 3
pt = (E[,0,0,|5) ﬁx‘
pé“ = (E3,|p3]sin6",0, 73| cos ) L n h

Pipw = EE; |55 cose’ P :
t = mi+m—EE;+2|p}||p;|cos " 4
giving  df =2|p}||p5|d(cos 6%)
drdo*
therefore  dQ" =d(cos0")d¢" = — "b_,*
| | Q‘PIH 3|
1 |p3 ) ]
hence do M2dQ* = M| do*dr
64?1:23|E’{‘|‘ l 2-64x23|p'ﬂ2| rldg

* Finally, integrating over d¢* (assuming no¢)* dependence of‘Mﬁ‘z ) gives:
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Lorentz invariant differential cross-section

 All quantities in the expression fordO'/df are Lorentz Invariant and

therefore, it applies to any rest frame. It should be noted that ‘pt ‘2
is a constant, fixed by energy/momentum conservation

112 = gl (mi+ma)?lfs — (my —mo)”

* As an example of how to use the invariant expressiondo /dt

we will consider elastic scattering in the laboratory frame in the limit
where we can neglect the mass of the incoming particle £; > m;

= " e.g. electron or neutrino scattering
2
. s —ny
In this limit 7i = ( )
45
do 1
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2-> 2 body scattering in the LAB frame

t = (pr—ps)® =2M>—2p;.ps =2M> —2ME,
= 2M?—2M(E,+M —E3) = —2M(E; — E3)

Note EI is a constant (the energy of the incoming particle) so

dt dE
= 2M—
d(cos0) d(cos6)
» Equating the two expressions for f gives E: = M
] M+ E|;—E{cosf

dE E\M , [ E3\* E?

so ) - 1 > =EiM =3 ) 53
d(cos @) (M+Ey—E cos0) E\M M

de 1 d& do 1 _ F?doc FEjdo E; 1 5
= = 5 | Myil

dQ  2md(cosB) dt 2t M dt m dt 7 16m(s—M?)

s=(p1+p2)> =M>+2p1.pr = M*> +2ME;
(s —M?) = 2ME,

¢ Particle 1 massless :
: 2 3
. = (p;=0)

L] [ L] P EUFUFETEAR

using

gives

‘In limit m — O:

from M. A. Thomson lectures at Cambridge University in 2011 +



Lorentz invariant differential cross-section

t = (po—pa)’=2M>—2p,.ps=2M> - 2ME,

= 2M?*—2M(E; +M —E3) = —2M(E; — E3)
Note EI is a constant (the energy of the incoming particle) so

dt dE
= 2M-——
d(cos0) d(cos0)
: . : M
* Equating the two expressions for [ gives E: =
) M+E; —E;cosb
: 2 2
{o] dEs = EM E, M F3 — 5
d(cos6) (M+E; —E cos8)? E\M M
do 1 dt do _ 1 ZME§ do _ Esdo _ E3 I My
dQ 2md(cos@)dt 2 M dt m dt 7 167(s —Mz)
using s = (p1+p2)> =M>+2pi.pr =M?*+2ME; EFa""E::_ma?S'ESSE
gives (s— MZ) =2ME, " et

Inlimit my — 0
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Lorentz invariant differential cross-section

In this equation, E; is a function of ¢:
EiM

Ex =
. M+E;—E;cosb
giving — = ! (m :0)
dQ 64n2 \M+E, —E | cosB

General form for 2—2 Body Scattering in Lab. Frame
*The calculation of the differential cross section for the case where 11, can not be
neglected is longer and contains no more “physics” (see appendix Il). It gives:

Again there is only one independent variable, #, which can be seen from
conservation of energy

E\+my= \/|ﬁ3\2—|—m§+\/|ﬁ|Iz+\§3|2—2|ﬁ1||53\c:059 +m3

—

i.e. ‘ﬁ%‘ is a function of 0 P4=P1—P3
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Summary

* Used a Lorentz invariant formulation of Fermi’s Golden Rule to

derive decay rates and cross-sections in terms of the Lorentz
Invariant Matrix Element (wave-functions normalised to 2E/Volume)

Main Results:

* Particle decay'

['= ]

p = ool e 2] e

9 Where p* is a function of particle masses
M i]?dQ

- 32;:2

* Scattering cross section in C.o.M. frame:

0]

2 *
64:'1:2 \ /|M I"d2

* Invariant differential cross section (valid in all frames):

do ]
dr 64:1‘.5'\ p;|

1
M5l 77 = g ls = (my - ma)][s = (my = mo)’)
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Summary

* Differential cross section in the lab. frame (m]=0)

2

do 1 [ E\°, . do 1 I S
= - - Myi - = M
dQ  64n (MEl) Myi dQ  64rn’ (M+E1 —E, 0059) My

* Differential cross section in the lab. frame (m_.[?IE 0)

dQ ~ 6472 |pilmi |P3|(Er +mo) —E3|pi|cos®

with E;+my = \/|ﬁ3|2—I—m%—l—\/\ﬁl\z—l—|ﬁ3|2—2|ﬁ]|\ﬁ3\cosﬂ—l—mi

Summary of the summary:
* Have now dealt with kinematics of particle decays and cross sections

* The fundamental particle physics is in the matrix element
*The above equations are the basis for all calculations that follow
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