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Modern high-energy physics experiments collect data using dedicated complex multi-level trigger

systems which perform an online selection of potentially interesting events. In general, this selection

suffers from inefficiencies. A further loss of statistics occurs when the rate of accepted events is

artificially scaled down in order to meet bandwidth constraints. An offline analysis of the recorded data

must correct for the resulting losses in order to determine the original statistics of the analysed data

sample. This is particularly challenging when data samples recorded by several triggers are combined.

In this paper, we present methods for the calculation of the offline corrections and study their statistical

performance. Implications on building and operating trigger systems are discussed.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Modern high-energy collider experiments operating at high
interaction rates rely on complex multi-level trigger systems (see
e.g. Refs. [1–6]) which select potentially interesting scattering
events from large backgrounds. The selection procedures reduce
the initial interaction rates, often by several orders of magnitude,
to output rates acceptable for permanent storage. The recorded
events are used in subsequent physics analyses. The lower level
trigger systems are typically built in custom hardware using
information from different detector components. The higher
trigger levels often consist of computer farms performing partial
or complete event reconstruction which allows the application of
sophisticated decision algorithms.

At each trigger level, events fulfilling the criteria of one or more
independent trigger selections are chosen. Event losses occur due
to inefficiencies of the trigger selections with respect to the offline
analysis. These inefficiencies result from the coarse event
reconstruction performed within the limited time available at
each level. In addition, the bandwidth restrictions at the different
levels may prevent the recording of all events accepted by certain
selections designed to cover phase space regions with high rates.
The solution applied by the experiments is an artificial down-
scaling of the corresponding event rates.

In an offline data analysis, the effects of limited efficiency and
rate downscaling must be corrected for, in order to determine the
original statistics of the analysed data sample. This is particularly
ll rights reserved.

endermann).
challenging for analyses of combined event samples recorded by
several independent trigger selections. Such a combination may
be necessary if the individual trigger selections cover different
regions of the analysed phase space. Typical cases are:
�
 Trigger selections based on information from different detector
components, e.g. a data analysis relying on trigger selections
using signals from barrel and endcap muon chambers.

�
 Trigger selections designed for different kinematic regions, e.g.

an analysis of events accepted by several trigger selections
requiring the energy in a calorimeter to exceed different
thresholds.

�
 Trigger selections sensitive to different objects in the final

state, e.g. a study of complex final states triggered via electron,
muon and/or jet selections.

Ideally a particular combination of trigger selections is already
foreseen at the design stage of the trigger configuration before
data taking. If a combination provides full efficiency for a given
signal, only the downscaling must be corrected for in an offline
analysis. However, for many trigger setups full efficiency cannot
be achieved. In particular, this may be true for analyses unfore-
seen initially, in which the necessity of the combination becomes
apparent only in retrospect.

In this paper we provide recipes for the calculation of the
aforementioned corrections. We discuss their applicability and
statistical performance assuming various trigger setups. The aim
is to achieve the smallest statistical uncertainty.

The paper is organised as follows. In Section 2 basic definitions
used throughout the paper are introduced. Analyses using event
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samples recorded via a single trigger selection are discussed in
Section 3. Section 4 presents several methods to calculate the
corrections for combined event samples collected with a one-level
trigger system. The corrections of trigger inefficiencies are
considered separately. The recipes are then extended to multi-
level trigger systems in Section 5. Finally, the implications for the
design and operation of trigger systems are summarised in
Section 6.
2. Basic ingredients and definitions

Trigger selections. The decision at each trigger level is based on
the fulfillment of requirements imposed on event properties, such
as a minimum energy in a calorimeter, a certain number of tracks
in tracking or muon chambers, or a correct timing of the signals. In
this paper these pieces of trigger logic are called trigger elements.
Within one level the trigger elements are combined into logical
expressions (using AND, OR, etc.) which we call trigger items.1 A
trigger item may, of course, simply consist of a single trigger
element. At each level an event is accepted if it fulfills at least one
trigger item. The rate of events collected by a trigger item can be
scaled down by a downscale factor d, such that on average only
every d-th selected event is kept by the system. The corresponding
downscale procedures can be implemented via simple counters
leading to deterministic downscaling, or via more sophisticated
random selection mechanisms (non-deterministic downscaling). In
multi-level systems, individual trigger items from several levels
are further combined into chains (see Section 5). Events fulfilling
all trigger items within a chain are finally accepted by the trigger
system.

Runs. Data at collider experiments are usually collected in
event samples of separate runs, in which stable detector
performance and steady running conditions are maintained. The
trigger setup, in particular the downscaling factors are kept
constant within one run, but may vary from run to run as a
reaction to changing conditions, e.g. instantaneous luminosity and
background rates.

Trigger bits. The states of trigger items in the trigger system are
encoded in bits. We denote by the raw trigger item bit

rij ¼
1 if event j is accepted by trigger item i before downscaling;

0 otherwise;

(

and by the actual trigger item bit

aij ¼
1 if event j is accepted by trigger item i after downscaling;

0 otherwise:

(

For the following discussion we assume that these bits for all
trigger levels are stored in the record of each event and are
available for offline data analysis.

Efficiency. For an unbiased event sample fulfilling a given
analysis selection the number of events accepted by a raw trigger
item divided by the original number of events denotes the
efficiency � of this trigger item. By definition the efficiency
depends on the offline selection.

Various techniques for the efficiency determination exist,
which are often specific to certain experiments and physics
signals. A detailed review of these techniques is beyond the scope
of this paper. In general they rely on an event sample collected by
a reference trigger item based on information independent from
that used by the studied trigger item. Accounting for variations of
the efficiency in the phase space, it is usually determined in bins
1 Some experiments adopt a different nomenclature, calling trigger items e.g.

subtriggers or just triggers.
of certain event parameters q:

�ðqÞ ¼
number of events selected by both trigger items

number of events selected by reference trigger item
(1)

where only events fulfilling the offline event selection are used.
The actual bit of the reference trigger item must be set ðaij ¼ 1Þ for
all events of the reference sample in order to ensure their
selection by this trigger item, thus avoiding any potential bias. In
contrast, for the studied trigger item either the raw or the actual
bit can in principle be used. For the latter, downscale factors have
to be taken into account. The usage of the raw trigger item
however increases the available statistics by the downscale factor
d of this trigger item. This underlines the importance of storing
the raw trigger item information in the offline event record. The
obtained efficiency distribution is usually fitted by a smooth
function, which can in principle vary from run to run. In practice,
it is determined offline for the entire event sample or for large
subsamples with stable running conditions.

The efficiency of an individual trigger element used within a
trigger item is defined analogously. For a trigger item consisting of
several not fully efficient trigger elements, the total efficiency can
be determined applying similar considerations as given subse-
quently in Section 4.3 for combinations of several trigger items
with inefficiency.

Event weights. The recipes presented in this paper provide a
weight wj for each event j ¼ 1; . . . ;N of the analysed sample which
corrects for the above-mentioned event losses, such that the
original statistics of the analysed event sample is given by the sum
of the weights

Nori ¼
XN

j¼1

wj. (2)

This results in the visible cross-section2 s given by s ¼
P

wj=L
where L is the integrated luminosity of the event sample. A non-
trivial requirement for each method is that the relative statistical
uncertainty of the cross-section determination should improve
with luminosity.
3. Treatment of a single trigger item

If an event sample selected by a single trigger item i is used in
an analysis, i.e. aij ¼ 1 for each event j, the weight of the event in
run k can be calculated with

wj ¼
dik

�ikðqjÞ
(3)

where dik is the downscaling factor for trigger item i in run k, and
�ikðqjÞ is the efficiency of this trigger item in this run as a function
of a set of event parameters qj.

Example. A simple example is given by an analysis using a single
trigger item with a constant downscale factor d and an efficiency �
constant over the whole parameter space of the physics process
under investigation. In this case the weights of the events j ¼

1; . . . ;N passing the offline selection criteria, including the trigger
requirement aij ¼ 1, are given by wj ¼ d=� and the respective
visible cross-section can be calculated as s ¼ ð

P
wjÞ=L ¼

ðN=LÞ � ðd=�Þ.

If the downscaling factors vary strongly from run to run, events
from runs with high downscale factors in the sample obtain large
weights according to Eq. (3). This leads to a low statistical
2 The determination of the true cross-section involves further corrections for

detector efficiency, acceptance, etc. which are irrelevant for the present discussion.
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significance of the result, especially for differential distributions,
where large statistical errors may occur in certain regions of phase
space. A higher significance is reached if an average weight over
all runs in the whole event sample is used. With N selected events,
with the original number of events Nori and the total cross-section
of the triggered processes s, the event weight is given by

wj ¼
Nori

N
¼

Nori=s
N=s

¼

PNruns

k¼1 LkPNruns

k¼1 Lk

�ikðqjÞ

dik

(4)

where Nruns and Lk are the total number of runs and the
luminosity of the run k, respectively. For a given original number
of events Nori, i.e. for a given integrated luminosity of the sample,
the averaged weight for a trigger item depends solely on the total
number of events collected via this item, N. Hence, any
optimisation of the downscaling factors during data taking which
leads to a larger collected statistics results in smaller weights and
consequently in a smaller statistical uncertainty.

Example. In a toy Monte Carlo (MC) experiment we simulate an
analysis relying on a single trigger item with full efficiency. The
simulated data sample corresponds to 20 runs in which the rate of
the trigger item is scaled down by downscale factors varying from
run to run. Within each run a non-deterministic downscaling
procedure is used. In half of the runs, good running conditions are
assumed, such that the downscale factors are low—between 1 and
5. The other 10 runs correspond to bad running conditions
affecting the trigger rate, hence the downscale factors are much
larger—in this example of the order of 100. The run luminosity is
varied such that each run consists of 1000–1500 events. The ratio
of the number of events in each run to its integrated luminosity is
smeared using Poissonian statistics. Fig. 1 shows the original
distribution of an example variable X, as well as the distributions
of triggered events reweighted using the run-dependent weights
of Eq. (3) and the averaged weights of Eq. (4) with their
X
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Fig. 1. Results of a toy Monte Carlo simulation of an analysis relying on a single

trigger item. The original generated distribution of an example variable X (dashed

histogram) is depicted, as well as the distribution of triggered events reweighted

using run-dependent (open circles) and averaged weights (closed triangles) with

their respective statistical errors. Note that the error bars on the most of the

triangles are too small to be seen.
corresponding uncertainties. Both methods are able to
reproduce the original distribution but with different statistical
performance. As expected, the application of the averaged weights
results in a smaller statistical uncertainty and thus a much
smoother distribution. This is reflected by the total numbers of
events and their uncertainties obtained with the two methods.
Statistical uncertainty. With N selected events, the statistical
uncertainty on the original number of events Nori is given by the
standard formula

dNori
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1

w2
j

vuut . (5)

For different sets of N real numbers wj, all having the same sum3

Nori, the sum of the squares of these numbers is minimised when
all numbers are equal. This can easily be proven using for instance
the method of Lagrange multipliers or mathematical induction.
Therefore, the application of averaged event weights (Eq. (4))
minimises the statistical uncertainty dNori

. For the same reason,
weight averaging over run ranges improves the result for all
methods of combining triggers described in this paper (cf.
Sections 4 and 5).

In case of a deterministic downscaling procedure, e.g. using
hardware counters, each dk-th event in run k is accepted and the
initial number of events Nori is exactly equal to the sum of event
weights and the sum of the counter values pk at the run ends:
Nori ¼

P
wj þ

P
pk. Since the second term can be neglected in the

limit of large statistics in individual runs, one might expect a
statistical uncertainty of dNori

¼
ffiffiffiffiffiffiffiffiffi
Nori

p
. However, this is only true

for the total number of events in the sample accepted by a trigger
item. In the subsequent data analyses, cuts are made and
differential distributions are studied, such that the errors are
determined for subsamples of events. In practice, the sum of event
weights in a subsample, e.g. in one bin of a differential
distribution, is not exactly equal to the original number of events
Nori due to statistical fluctuations of the downscaling procedure
from bin to bin. The sum gives, however, a correct statistical
estimate of Nori within the uncertainty given by Eq. (5). For non-

deterministic downscaling this equation is correct in all cases.
Systematic uncertainties. In a deterministic downscaling proce-

dure, selecting the first or last event within a downscale interval
introduces a systematic error if the varying value of the downscale
counter at the end of each run is not considered in the analysis.
The relative error for the total number of events is then of the
order of Nrunsd=ð2�

P
wjÞ, where d is a typical downscale factor, �

is the average efficiency and
P

wj is the sum of weights of all
recorded events. This error is typically negligible except for
analyses using many short runs with large downscale factors. The
uncertainty is further reduced if the selection is performed in the
middle of the downscale interval since, on average, the counter
values at run ends are equally spread around the middle value.4

The uncertainty can be completely avoided with a non-determi-
nistic downscaling procedure, e.g. if the downscale system selects
events on a random basis, or if at least a random position of the
downscale counter at each run start is chosen.
3 The sum of event weights is, of course, not constant but fluctuates around

Nori with the spread given by Eq. (5).
4 Exceptional cases are runs with extremely small statistics selected by the

actual trigger item, e.g. resulting from large downscale factors, low efficiency or

short run time, in which no more than one event per run is selected, and the

downscale counter does not reach on average the middle of the interval.
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4. Combination of trigger items in one-level systems

In this section, we present methods for the calculation of
corrections for event losses in analyses of combined event
samples recorded by several trigger items in a trigger system
consisting of only one level. The methods are also applicable if the
higher trigger levels accept all events preselected by the first-level
trigger items in the analysed phase space. The basic concepts
discussed here are extended in Section 5 to the general case of
multi-level systems.

4.1. Division Method

An obvious approach for a combined analysis on a single
trigger level is the Division Method, in which the phase space is
divided into distinct regions in terms of appropriate kinematic
variables, and only events selected by a single actual trigger item
are used in each region, while all other events are not considered.
Clearly, for the smallest statistical uncertainty the trigger item
which provides the largest number of events must be used in the
corresponding region. This division simplifies the task to an
analysis of separate samples each using one trigger item, as
described in Section 3. The efficiency of the trigger items must be
determined individually in the respective phase space regions,
which may introduce a certain complexity in practice.

Example. The phase space is divided into intervals of energy
measured in a calorimeter, in each of which a separate trigger
item is used. However, one of the items includes the requirement
of a certain number of tracks in a tracking chamber. In this case it
could be necessary to determine the efficiency of this trigger item
as a function of an appropriate track-related variable, e.g. the
number of reconstructed tracks, for the energy interval in which it
is used.

4.2. Advanced methods for fully efficient combinations

For analyses in which the individual trigger items provide
sufficient statistics in their respective phase space regions, the
Division Method may yield adequate precision. Otherwise, more
elaborate approaches can be used, such as the Exclusion Method

and the Inclusion Method, described in the following.
For both methods, a correction for the trigger inefficiency is not

necessary if the chosen combination of the trigger items is fully
efficient in the analysed kinematic range, as is often the case for
combinations designed before data taking. Note that this does not
imply that each individual trigger item is fully efficient in the
whole range, but it is sufficient that each event in the original
sample fulfilling the offline selection is triggered by at least one of
the chosen raw trigger items. The event may then still be rejected
by the downscaling procedure.

For this reason we first discuss both methods for the case of
full efficiency. These recipes, though not labelled as in this paper,
have been used in data analyses by the H1 collaboration (e.g. in
Refs. [7–9]) to correct for downscaling. Later we present newly
developed techniques which include efficiency corrections. Final-
ly, we compare the statistical performance of the various
methods.

4.2.1. Exclusion method for fully efficient combinations

Similarly to the Division Method, the Exclusion Method [10]
splits the event sample into subsamples in which single trigger
items are considered. However, the sample is now divided not in
terms of kinematic variables, but according to trigger item bits
and downscale factors. From the set of considered trigger items i,
for which the raw trigger has fired ðrij ¼ 1Þ in event j taken in run
k, the trigger item i� with the smallest downscale factor is chosen

i� : di�k ¼ min
rij¼1

dik. (6)

The weight for the event is then given by

wjk ¼ di�kai� j. (7)

Consequently, the event is rejected, if the actual bit ai�j for the
trigger item with the smallest downscale factor is not set.

In case of trigger items with equal downscale factors, the order,
in which the status of the actual bits is checked, is arbitrary, but
must not depend on the status itself. A simple solution is to define
the order once for the whole run range. A similar prescription
holds for every variation of the Exclusion Method discussed in the
following.

As before, a better statistical significance is reached if weights
averaged over all runs are used (cf. Eq. (4)). In this case, for each
considered trigger item i, the average weight factor

w0i ¼

PNruns

k¼1 LkPNruns

k¼1 Lk
1

dik

(8)

is calculated once for the whole run range. For all trigger items
with the raw bit rij ¼ 1 in event j, the smallest weight factor is
then assigned as the weight to the event, if the corresponding
actual bit ai�j is set, i.e.

i� : w0i� ¼ min
rij¼1

w0i

wj ¼ w0i�ai� j. (9)

Again, the event is rejected, if the corresponding actual bit ai�j is
not set.5

This averaging procedure can only be used if the definitions of
all chosen trigger items remain unchanged during the run range,
as it assumes that if the raw bit is set for an event in a certain run,
it would also be set for an identical event in any other run. In
practice, trigger items may be redefined within the running
period, e.g. trigger thresholds may be modified. For the calculation
of event weights the corresponding event sample must then be
split into subsamples with constant definitions. Consequently,
frequent redefinitions of trigger items should be avoided.
4.2.2. Inclusion method for fully efficient combinations

In the previously discussed methods the event sample is split
into subsamples, in which the weight calculation for each event is
based on a single trigger item. On the contrary, in the Inclusion
Method [11,12] a combined weight based on all considered trigger
items is determined for the entire event sample. For each event, at
least one actual trigger item bit from the set of considered items is
required to be set. Thus, events only triggered by items not
considered in the given analysis are rejected.

The weight calculation is based on the probability to accept the
event after the downscaling procedure. For a single trigger item i

with the downscale factor dik in run k, this probability for an event
j is

Pijk ¼
rij

dik
. (10)

Assuming all downscaling decisions to be independent of each
other, the probability that at least one of the Nitems trigger items
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accepts the event is given by

Pjk ¼ 1�
YNitems

i¼1

1�
rij

dik

� �
. (11)

The run-dependent weight for event j is then

wjk ¼
1

Pjk
(12)

while the weight averaged over runs is given by

wj ¼

PNruns

k¼1 LkPNruns

k¼1 LkPjk

. (13)

As for the Exclusion Method, the averaged weight can be used
only if the definition of all chosen trigger items remains
unchanged during the run range, such that it is possible to
calculate the triggering probability of an event in a run different
from the one in which it was recorded.

Note, that the assumption of independent downscaling
decisions is not valid in deterministic downscaling systems
containing several (quasi-)identical trigger items.6 In this case
the above formulae can still be applied if (i) the downscaling
factors for these items are different and (ii) the downscaling
factors are coprime integers, or in general, they are irreducible
fractions with coprime enumerators.

4.2.3. Comparison of the Exclusion and Inclusion Methods

While the Division Method and the Exclusion Method only use
a fraction of the total triggered event sample, the Inclusion
Method offers the advantage of using all events in the sample and
therefore outperforms the other methods in statistical precision.
6 Since identical trigger items accept the same events their downscaling

decisions are made synchronously leading to statistical correlation. Quasi-identical

items which select very similar event samples follow a synchronous downscaling

procedure in parts of the data-taking period.
For illustration we performed a toy Monte Carlo study comparing
the Exclusion and the Inclusion Methods.

Example. In the MC toy experiment the response of a trigger
system with three items is simulated. The items select events
based on the value of an event variable X (this could be e.g. the
energy in a calorimeter). The assumed efficiencies of the trigger
items are shown in Fig. 2a as a function of X. Each part of the
analysed phase space is fully covered by at least one trigger item,
i.e. the combination is fully efficient. An event sample is simulated
corresponding to 20 runs with varying luminosities and
downscale factors. The run luminosity is varied such that each
run consists of 500–600 events. The ratio of the number of events
in each run to its integrated luminosity is spread around a mean
value following Poissonian statistics. The downscale factors are
also varied from run to run: for the first (second, third) trigger
item they are spread around 50 (40, 20). In Fig. 2b the original
event distribution is shown as well as the distributions of
triggered events reweighted using the Exclusion and the
Inclusion Method with weights averaged over runs. Both
methods provide similar results which reproduce the original
distribution within the statistical uncertainties. As expected, the
Inclusion Method provides a better statistical significance, as
indicated by the error bars and by the error on the total number of
events.

While the Inclusion Method provides by construction a better
statistical precision, the relative improvement with respect to the
Exclusion Method depends on the concrete experimental setup
and is rather small in many practical scenarios. The maximum
gain is achieved if (i) the overlap of efficient regions of the trigger
items is large and (ii) the items have big downscale factors of
similar magnitude such that the overlap between the event
samples actually collected by the different trigger items is small.

Example. Two trigger items with downscale factors d1 and d2Xd1

are both fully efficient in the analysed phase space, i.e. both raw
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trigger items fired in all events. The number of events with the
actual trigger item bit 1 or 2 set is given by n1 ¼ Nori=d1 and
n2 ¼ Nori=d2, respectively,7 where Nori is the original number of
events. In total, Npn1 þ n2 events are recorded. With the
Exclusion Method, the relative statistical error on Nori is then
given by

dexcl
Nori

Nori
¼

ffiffiffiffiffiffiffiffiffiffi
n1d2

1

q
n1d1

¼
1ffiffiffiffiffi
n1
p ¼

ffiffiffiffiffi
d1

p
ffiffiffiffiffiffiffiffiffi
Nori

p (14)

while with the Inclusion Method we get

dincl
Nori

Nori
¼

ffiffiffiffiffiffiffiffiffiffi
Nw2

p
Nw

¼
1ffiffiffiffi
N
p ¼

ffiffiffiffi
w
pffiffiffiffiffiffiffiffiffi
Nori

p
with the weightw ¼

1
1

d1
þ

1

d2
�

1

d1d2

. (15)

The ratio of the two errors is thus

dexcl
Nori

dincl
Nori

¼

ffiffiffiffiffi
d1

p
ffiffiffiffi
w
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

d1

d2
�

1

d2

s
. (16)

The maximum ratio of �
ffiffiffi
2
p

is reached if both downscale factors
are large and d2 ¼ d1 (note d2Xd1 in this example). For Nitems

trigger items the maximum ratio is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nitems

p
.

4.3. Additional corrections for trigger inefficiencies

In the general case of not fully efficient trigger combinations
additional corrections must be performed. Basically, two concep-
tually different approaches are possible. One approach is based on
the determination of a single global efficiency for the combination
of all involved trigger items in the whole phase space. This
approach has however several drawbacks:
�
 Since different trigger items depend in general on different
event properties, a global correction will typically be non-
universal but specific for the given data sample with given
selection cuts. Therefore any change of the analysis selection
requires a new determination of the global efficiency correc-
tion, as the mixture of data samples taken by different trigger
items may vary both with cuts and from run to run.

�
 The efficiency correction is applied on top of the correction for

downscaling, and therefore must be determined for the
combination of not downscaled trigger items. If the efficiency
is determined from data, a proper event subsample must be
selected in which the relative contributions of subsamples
collected by different trigger items are the same as for the
combination of the not downscaled items.

�
 A determination of the global efficiency from data may be

unfeasible if no trigger item exists which is orthogonal to all
involved trigger items and provides sufficient statistics.

For these reasons the determination of a global trigger efficiency
is in many cases only possible using Monte Carlo simulations. This
implies a high level of understanding of the detector and of the
trigger system to be available in such simulations, which, if at all,
is usually reached only after several years of data taking.

An alternative approach for efficiency corrections is based on a
separate determination of the efficiency for each trigger item. This
requires modifications of the procedures of weight calculation, as
described in the following. For the further discussion we assume
7 Statistical fluctuations and end-of-run corrections are neglected.
the efficiency correction function �ikðqÞ to be known for each
trigger item i in run k.

4.3.1. Efficiency correlations

For the modification of the trigger combination methods with
separate efficiency functions, correlations between trigger effi-
ciencies must be considered. Contrary to the downscaling, trigger
efficiencies are not a priori independent, i.e. the efficiency �ijmðqÞ
of the trigger item i for events in which a different raw trigger
item m has fired is not necessarily the same as the efficiency �iðqÞ
for all events. Correlations can result from technical/instrumental
effects or physical/kinematic event properties.

Example of technical effects. The efficiencies are certainly
correlated if the trigger items include the same inefficient trigger
element. They can be correlated if trigger elements of different
trigger items are implemented in the same electronics. For
instance, several trigger items which include elements triggering
on the jet energy differ in the energy thresholds or in the required
number of jets.

Example of kinematic effects. For a trigger item 1 requiring a
certain value of energy in a calorimeter and a trigger item 2
demanding a certain number of tracks in a tracking chamber, an
efficiency correlation arises from the physical correlation between
the number of tracks and the energy. In such cases the efficiencies
can often be defined in an independent way if they are determined
as functions of proper kinematic variables. In this example, the
efficiencies determined as a function of the calorimeter energy E

for the first trigger item and as a function of the number of tracks
N for the second one may be uncorrelated, such that
�1j2ðEÞ ¼ �1ðEÞ, �2j1ðNÞ ¼ �2ðNÞ. The first relation holds if the
efficiency of the calorimeter trigger depends solely on the energy
but is independent of the type of particles depositing the energy.
In this case the efficiency in each energy bin is independent of
the fraction of charged particles in the signal and therefore on the
number of tracks. Similarly, the second relation holds if the
efficiency of the track trigger is a function of the track multiplicity
only and is unaffected by the track momenta.

4.3.2. Expected trigger item bit

In Eq. (1) the trigger efficiency is defined with respect to the
offline selection. For each trigger item we introduce the expected

trigger item bit which is set to one if the offline reconstructed
event falls into a specifically chosen region of phase space with
significant trigger efficiency, i.e. for which the trigger item is
expected to fire with sufficiently high probability

xij ¼

1 if event j lies inside the chosen phase space region

for trigger item i;

0 otherwise.

8><
>:

Example. A trigger item i is designed to fire if the energy in a
calorimeter exceeds a certain threshold Ei. Due to the coarse
determination of the energy in the trigger, the efficiency
measured as a function of the offline reconstructed energy is
not a step function at Ei but a smoothly rising Fermi function as
shown in Fig. 3. Since the usage of a trigger item in phase space
regions where its efficiency is very small may lead to large event
weights (Eq. (3) or (4)), one might decide to use this trigger item
only at energies E4E0 where its efficiency exceeds a certain value,
e.g. 10%. The expected trigger bit xij is thus set to one for events
with E4E0 and to zero otherwise.

In practice, a trigger item may consist of a number of trigger
elements which are fully efficient for the analysed signal and of
one or a few trigger elements for which efficiency corrections are
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Fig. 4. Efficiency correction functions divided by the respective downscale factors

for two example trigger items based on the calorimeter energy.
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determined as functions of some kinematic variables. The trigger
item is expected to fire if the fully efficient trigger requirements
are fulfilled and the kinematic variables lie in the range for which
the efficiency correction functions are applied in the analysis.

The introduction of the expected trigger bit xij allows rather
straightforward extensions of the trigger combination methods,
where the raw trigger bit rij plays nearly the same role with
respect to xij as the actual trigger bit aij with respect to rij.
However, while the rij and aij bits are set by the trigger system, the
xij bits are defined in the physics analysis. As a result, it can
happen that the raw and actual trigger bits rij and aij are set, while
xij is not. Therefore, instead of rij and aij, one must use xij and xijaij,
respectively. In the above example this means artificially setting
aij ¼ 0 for all events with EoE0.

4.3.3. Exclusion method for combinations of trigger items with

inefficiencies

With the above definitions the Exclusion Method is easily
modified to take efficiencies into account. The run-dependent
weight factor of event j in run k for each chosen trigger item i, for
which the expected bit xij is set, is given by

w0ij ¼
dik

�ikðqjÞ
. (17)

Then the trigger item i� with the smallest weight factor is chosen
and this factor is assigned as the weight to the event if the actual
bit ai� j for the trigger item is set

i� : w0i�j ¼min
xij¼1

w0ij

wj ¼ w0i� jai�j. (18)

If the actual bit is not set, the event is rejected. For weights
averaged over runs the expression

w0ij ¼

PNruns

k¼1 LkPNruns

k¼1 Lk

�ikðqjÞ

dik

(19)
is used instead of Eq. (17). Contrary to the original Exclusion
Method (Eq. (8)), the averaged weights must be calculated for
each event since the efficiency �ik is in general a function of event
properties qj. Furthermore, the modified method allows the usage
of the averaged weights even if the definitions of the chosen
trigger items change during the run range, provided the defini-
tions of the expected bits remain unchanged.

In many cases the modified Exclusion Method is a variant of
the Division Method since it divides the phase space into
kinematic regions in each of which one trigger item is used.

Example. The analysed data sample is collected by two trigger
items based on the energy E in a calorimeter with different
thresholds. The trigger item with the higher threshold has a
smaller downscaling factor. In Fig. 4 the assumed efficiency
functions for both trigger items divided by the respective
downscaling factors are shown. The expected bits for both
trigger items are set to one in the whole energy range depicted
in the figure. The crossing point Ec of the two curves divides
the phase space, such that for events with E4Ec ðEoEcÞ only the
trigger item with the higher (lower) threshold is used. Since the
downscale factors and the efficiencies may vary from run to run,
the Ec value may also vary.

For this method, possible kinematic correlations of the
efficiencies must be taken into account. In particular, it might be
necessary to redetermine the efficiency functions for the indivi-
dual phase space regions, if the efficiencies of the respective
trigger items depend on other variables than those used for the
phase space division.

Example. Two trigger items, as given in the example of kinematic
effects from Section 4.3.1, are used in the analysis. As a result of
the comparison of the ratios �1ðEÞ=d1 and �2ðNÞ=d2, the phase
space is split into two energy intervals, such that for energies
above (below) a certain value Ec , only events selected by the
calorimeter (tracker) trigger item are used. Due to a possible
kinematic correlation between the calorimeter energy and the
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number of tracks, the efficiency of the tracker trigger item may
have to be redetermined for the energy range EoEc . Thus for this
trigger item, one efficiency function �2ðNÞ is used to determine the
boundary Ec and another one �2jEoEc

ðNÞ to calculate the event
weight. The procedure might be improved by iterative redetermi-
nation of the boundary and of the efficiency. Ideally, no
redetermination is needed if the efficiencies for both trigger
items are determined as a two-dimensional function of both E

and N.

4.3.4. Inclusion method for combinations of trigger items with

inefficiencies

For the Inclusion Method the cases of uncorrelated and
correlated trigger item efficiencies must be distinguished. For
the former the original procedure can easily be extended. For each
event j in the sample, it is required that from the chosen list of
trigger items, at least one expected trigger item bit xij and its
corresponding actual trigger item bit aij are set, i.e. xijaij ¼ 1.

The probability that at least one of Nitems trigger items accepts
the event is given by

Pjk ¼ 1�
YNitems

i¼1

1�
xij�ikðqjÞ

dik

� �
. (20)

The run-dependent and run-averaged weights are then calculated
using Eqs. (12) and (13), respectively. The method for correlated
efficiencies is more involved. For the case of only two trigger items
Eq. (20) reads

Pjk ¼ 1�
Y2

i¼1

1�
xij�ij

dik

� �
¼

x1j�1j

d1k
þ

x2j�2j

d2k
�

x1j�1j

d1k

x2j�2j

d2k
(21)

where we use the short-hand notation �ij ¼ �ikðqjÞ. The first two
terms correspond to the respective probabilities for each of the
two trigger items to accept the event. The last term gives the
overlap probability that both trigger items accept the event. This
term must be modified to correct for a possible correlation of the
efficiencies

Pjk ¼
x1j�1j

d1k
þ

x2j�2j

d2k
�

x1j�1j

d1k

x2j�2j1j

d2k
(22)

where �2j1j is the efficiency of trigger item 2 in event j provided
that (raw or actual) trigger item 1 accepted the event. Note, that
according to Bayes’ rule �1j�2j1j ¼ �2j�1j2j.

Example. Two trigger items with downscale factors d1 and d2

have the same efficiency � and the expected bits of both items are
set for all events in the analysed data sample. For uncorrelated
efficiencies Eq. (21) results in Pjk ¼ �ðð1=d1Þ þ ð1=d2Þ � ð�=d1d2ÞÞ.
For fully correlated efficiencies, which would occur if both trigger
items include the same trigger element with efficiency �, the
result of Eq. (22) is Pjk ¼ �ðð1=d1Þ þ ð1=d2Þ � ð1=d1d2ÞÞ, since in this
case �1j2j ¼ �2j1j ¼ 1 obviously holds. As expected for the latter
case, the weight calculation factorises into the correction for
downscaling (Eq. (11)) and the global efficiency correction.

With a dedicated treatment of the overlap probabilities for
correlated efficiencies, the recipe can easily be extended to any
number of trigger items.

4.4. Comparison of methods with and without efficiency corrections

Though not strictly needed, the recipes including efficiency
corrections can also be used for trigger item combinations with
full efficiency. This introduces an additional systematic error due
to the limited precision of each efficiency correction, while for the
methods without efficiency corrections, it is sufficient to include
only the uncertainty of the efficiency of one trigger item which is
assumed to be fully efficient. However, if this additional
uncertainty is small, the methods with efficiency corrections
may provide a significant gain of statistical precision.

Example. An analysis using the Inclusion Method is based on
data samples collected by two trigger items with the downscale
factors d1 ¼ 10 and d2 ¼ 1, respectively. The first trigger item is
fully efficient; i.e. each event in the analysed phase space has its
raw bit set, while the second one has an efficiency � ¼ 0:5. In
practice, such a trigger setup may appear if two trigger items are
based on the same event property with different thresholds. The
trigger item with the lower threshold is more efficient but has a
higher prescale factor.

In the Inclusion Method without efficiency corrections, Na

events which are accepted only by the actual trigger item 1 and

rejected by the raw trigger item 2 obtain the weight wa ¼ d1,

while Nb events which have both raw trigger item bits set and are

accepted by at least one of the actual trigger items obtain the

weight wb ¼ 1=ðð1=d1Þ þ ð1=d2Þ � ð1=d1d2ÞÞ. The statistical uncer-

tainty on the original number of events Nori is then given by

dincl
nocorr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Naw2

a þ Nbw2
b

q
� 2:35

ffiffiffiffiffiffiffiffiffi
Nori

p
(23)

where for this particular example, Na and Nb have been estimated

using their expectation values, Na ¼ Norið1� �Þ=d1 and

Nb ¼ Nori�ðð1=d1Þ þ ð1=d2Þ � ð1=d1d2ÞÞ.

On the other hand, if the efficiency corrections are included into

the weight calculation, the expected bits can be set to one for all

Nc analysed events, Nc ¼ Na þ Nb, and thus all events obtain the

same weight wc ¼ 1=ðð1=d1Þ þ ð�=d2Þ � ð�=d1d2ÞÞ. The statistical

uncertainty is then given by

dincl
corr ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ncw2

c

q
� 1:35

ffiffiffiffiffiffiffiffiffi
Nori

p
. (24)

The statistical precision is thus improved by a factor of 1.74.

The reason for the improved performance of the Inclusion
Method is the assignment of equal weights to all events, leading to
the minimisation of the statistical error, as discussed in Section 3.

For the Exclusion Method, the introduction of the efficiency
corrections may lead to a gain or loss of statistical precision
depending on the trigger setup.

Example. In the above example, the Exclusion Method without
efficiency corrections provides a statistical uncertainty of

dexcl
nocorr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nbd2

2 þ Nad2
1

q
� 2:35

ffiffiffiffiffiffiffiffiffi
Nori

p
(25)

while the application of the efficiency corrections gives a smaller
uncertainty

dexcl
corr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nori

d2

�

r
� 1:41

ffiffiffiffiffiffiffiffiffi
Nori

p
. (26)

However, for d1 ¼ 2 instead of 10, the uncertainty dexcl
corr would be

larger than dexcl
nocorr.

The impact on the statistical precision of the Exclusion Method
depends on the interplay of two opposite effects. On the one hand,
the inclusion of the efficiency corrections increases the weights
for individual trigger items and reduces the statistics. On the other
hand, the rejected events may have had even bigger weights in the
calculation without the corrections.

The recipes including efficiency corrections do not require the
knowledge of raw trigger bits and hence might be the only
solutions in case the raw trigger bits are inaccessible in the data
analysis. However this should not be considered as a motivation
for skipping the raw trigger bits in the data acquisition or offline
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reprocessing steps, since the efficiency corrections determined
from data can become significantly less accurate (see Section 2).
5. Combination of trigger items in multi-level systems

In multi-level trigger systems each trigger item on a particular
trigger level uses as input events accepted by certain trigger items
of the previous level. In the most general case, each lower level
trigger item provides accepted events as input to a number of
trigger items on the subsequent trigger level, and each higher
level trigger item accepts events from several trigger items on the
lower level. In the following, a sequence of trigger items with
exactly one item on each trigger level is referred to as a chain.8 The
general case then corresponds to a collection of many chains, with
potentially large overlap between incorporated trigger items.

All methods described above can be extended to multi-level
trigger systems provided all bits are known at the analysis step for
all chosen trigger items at all trigger levels. This is not necessarily
guaranteed in modern trigger systems where higher trigger levels
run as filter processes on computer farms. For a better use of the
available computing power and a faster execution on the filter
farms, the following mechanisms are often used:
�
 Early-reject mechanism. Chains are evaluated in parallel, and
the processing of a chain is stopped as soon as it is clear that
the event cannot be accepted by this chain. In particular, the
corresponding algorithms of the chain on the higher levels are
not run if an actual trigger item bit is not set on a lower trigger
level.

�
 Early-accept mechanism. At the last trigger level, trigger items

are processed sequentially, and as soon as the decision to
accept the event by one item is reached, the remaining part of
the code is not executed. The downscaling is then either not
performed at the last level or the trigger items are checked in
the order of increasing downscale factors.

In such systems the state of the raw and actual bits at the higher
levels remains unknown. Therefore for early-accept systems the
missing trigger information must be calculated in the offline data
processing, where the selection code, the event parameters and
conditions data, such as the alignment and calibration constants
used in the online processing of the event filter, must be available.
For early-reject systems, the information must be calculated
either in the trigger system after a positive trigger decision or
likewise in the offline data processing.

5.1. Division Method

The Division Method can easily be extended to multi-level
trigger systems. The analysed phase space is divided into distinct
regions in each of which events are selected by a single trigger
chain. The phase space regions should be chosen such that the
highest statistical significance is reached. Weight factors for each
of the levels involved can be calculated using Eq. (4). The total
event weight is then given by the product of the weight factors for
all trigger levels.

5.2. Exclusion method

5.2.1. Exclusion method for fully efficient combinations

In the Exclusion Method for fully efficient configurations the
run-dependent weight factors for each chain I in event j in run k
8 In the nomenclature of some experiments, chains are termed trigger paths.
are given by

w0Ij ¼
YNlevels

l¼1

dl
ikrl

ijði 2 IÞ (27)

where Nlevels is the number of trigger levels, and rl
ij and dl

ik are the
raw bits and downscale factors for the trigger item i on trigger
level l belonging to the chain I, respectively. The chain I� with the
smallest non-zero weight factor is chosen, and this factor is
assigned as the weight to the event, if all actual bits al

i�j
belonging

to this chain are set

I� : w0I�j ¼ min
w0

Ij
a0

w0Ij,

wj ¼ w0I� j
YNlevels

l¼1

ai� jði
�
2 I�Þ. (28)

The event is rejected if one of the actual bits al
i� j

is not set. For
weight factors averaged over runs, Eq. (27) is replaced by

w0Ij ¼

PNruns

k¼1 LkPNruns

k¼1 Lk

QNlevels

l¼1

1

dl
ik

YNlevels

l¼1

rl
ijði 2 IÞ. (29)

While the raw trigger item bits are set separately for each event,
the ratio in front of the product can be calculated once for the
whole run range.

As in the one-level case, frequent redefinitions of trigger items
at all trigger levels should be avoided. In particular, changes of the
setups at different levels should be done simultaneously in order
to keep the number of different run ranges considered in the
analysis as small as possible.

5.2.2. Exclusion method for combinations with inefficiencies

For an extension of the Exclusion Method with limited
efficiencies, efficiency correlations between trigger items not only
within one trigger level but also between different levels must be
taken into account. For example, algorithms on a higher level may
not use the full detector information, but only ‘‘regions of interest’’
in the detector identified by the lower trigger level. For such
correlations we introduce the conditional efficiency �l

ikjLðqjÞ which
is the efficiency of the trigger item i in run k on level l under the
condition that the actual trigger items on certain lower levels L

forming the given chain are set.
The run-dependent weight factor for each chain I is then

calculated using

w0Ij ¼
YNlevels

l¼1

dl
ik

�l
ikjðl�1Þ:::1ðqjÞ

xl
ijði 2 IÞ (30)

where xl
ij is the expected bit for the trigger item i at level l, while

�l
ikjðl�1Þ:::1 indicates the efficiency under the condition that

all corresponding actual trigger items from the lower levels
ðl� 1Þ . . .1 fired. Weight factors averaged over runs are given by

w0Ij ¼

PNruns

k¼1 LkPNruns

k¼1 Lk

QNlevels

l¼1

�l
ikjðl�1Þ...1ðqjÞ

dl
ik

YNlevels

l¼1

xl
ijði 2 IÞ. (31)

With the chain weight factors defined according to Eq. (30) or
(31), the event weight is then calculated using Eq. (28).

Example. In the simplest non-trivial example depicted in
Fig. 5, events in one run are selected by two trigger items sL1

1

and sL1
2 on level 1 (L1) and subsequently by two trigger items sL2

1

and sL2
2 on level 2 (L2). Events accepted by the actual trigger

items sL1
1 and sL1

2 are processed by sL2
1 , while sL2

2 processes only
events accepted by sL1

2 .Depending on the products of the
respective expected bits xL1

1 , xL1
2 , xL2

1 , xL2
2 , the setup can be
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Fig. 5. Example trigger setup of two levels with two trigger items on each level,

forming three chains.
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considered as three chains: I1 ¼ fs
L1
1 sL2

1 g, I2 ¼ fs
L1
2 sL2

2 g, and

I3 ¼ fs
L1
2 sL2

1 g. The weight factors for these chains are given by

the respective downscale factors and conditional probabilities

with obvious notation: w1 ¼ ðd
L1
1 dL2

1 Þ=ð�
L1
1 �

L2
1jL1�1Þ, w2 ¼ ðd

L1
2 dL2

2 Þ=

ð�L1
2 �

L2
2jL1�2Þ, and w3 ¼ ðd

L1
2 dL2

1 Þ= ð�
L1
2 �

L2
1jL1�2Þ. Events with xL1

1 xL2
1 ¼ 1

and with the other products xL1
2 xL2

2 ¼ xL1
2 xL2

1 ¼ 0 get the weight w1.

Similarly, events with only xL1
2 xL2

2 ¼ 1 get the weight w2, and

events with only xL1
2 xL2

1 ¼ 1obtain the weight w3. Events with only

xL1
1 xL2

2 ¼ 1 are excluded from the analysis, since the corresponding

chain is not defined. For events with xL1
1 xL2

1 xL1
2 ¼ 1 and xL2

2 ¼ 0, the
weight factors w1 and w3 are compared. The smallest weight
factor is chosen as the event weight, and only events with the
proper combination of actual trigger items (aL1

1 aL2
1 for w1ow3, or

aL1
2 aL2

1 for w3ow1) remain in the analysis sample. In a similar way,
events with xL1

1 xL2
1 xL1

2 xL2
2 ¼ 1 are selected or rejected based on the

smallest of all three weight factors.

For the treatment of kinematic correlations, considerations similar
to those discussed in Section 4.3.3 apply. For each chain the
efficiencies �l

ikjðl�1Þ...1ðqjÞ may have to be redetermined for the
corresponding phase space regions.

5.3. Inclusion method

5.3.1. Inclusion method for fully efficient combinations

The Inclusion Method for fully efficient combinations of chains
is described here following Ref. [11] for the case of only two
trigger levels. It can be extended to any number of levels in a
straightforward way.

In general, the definition of chains between two trigger levels,
L1 and L2, can be described by the following matrix:

Mim ¼
1 if L1 trigger item i forms a chain with L2 trigger item m;

0 otherwise.

(

Event j is accepted by the trigger system, if at least one of the
products aL1

ij MimaL2
mj is equal to one. The probability for the event to

be accepted by the downscaling procedure then depends on the
combination of the fired raw trigger items rL1

ij MimrL2
mj. Before

discussing the general case of an arbitrary number of items on
each level, we begin with two simple, often occurring and
instructive configurations:
�
 All-to-1 configuration. In an analysis based on a single L2 trigger
item m the probability for an event j in run k to be accepted by
L2 trigger item m is given by

PL2
mjk ¼

rL2
mj

dL2
mk

(32)

where rL2
mj is the raw bit and dL2

mk the downscaling factor for the
L2 trigger item m. The probability for the system to select the
event is given by the product of PL2

mjk and the probability of at
least one actual L1 trigger item having fired, which forms a
chain with the L2 trigger item in question (cf. Eq. (11))

PL12
mjk ¼ 1�

YNL1

i¼1

1�
rL1

ij Mim

dL1
ik

 !" #
rL2

mj

dL2
mk

(33)

where rL1
ij and dL1

ik are the raw bit and the downscale factor for
the L1 trigger item i, respectively, and NL1 is the number of L1
trigger items.

�
 1-to-all configuration. In an analysis based on a single L1 trigger

item i forming chains with several L2 trigger items, the
triggering probability factorises in a similar manner as in
Eq. (33):

PL12
ijk ¼

rL1
ij

dL1
ik

1�
YNL2

m¼1

1�
MimrL2

mj

dL2
mk

 !" #
(34)

with NL2 representing the number of L2 trigger items.

In the most general case of trigger items entering several chains
on both levels, the calculation becomes rather involved, since the
weight is calculated based on the raw trigger item bits
independently of the actual trigger item which accepted the
event. However, with the definition of chains (according to the
matrix Mim), the actual L1 trigger item bits after downscaling
influence the decision to accept the event via an L2 trigger item,
and therefore the selection probabilities of L1 and L2 are
correlated and do not factorise. The total probability is given by
the sum of probabilities for all combinations (patterns) SL1 of
actual L1 trigger item bits that are possible for the raw L1 trigger
item setting of the event j

PL12
jk ¼

X
SL1

Y
i2SL1

rL1
ij

dL1
ik

 ! Y
ieSL1

1�
rL1

ij

dL1
ik

 !2
4

3
5

� 1�
YNL2

m¼1

1� 1�
Y
i2SL1

ð1�MimÞ

 !
rL2

mj

dL2
mk

" #( )
. (35)

Here, the expression inside the curly braces gives the probability
that an event with a given L1 actual trigger item bit pattern is kept
by L2, while the two products in front give the probability that
this L1 actual bit pattern occurs. In general, the sum runs over
2NL1 � 1 terms, which may be a large number. However, in
practice, individual analyses use only a small number of trigger
items at each level which makes the usage of Eq. (35) feasible. In
addition Eq. (35) is simplified for the following two configura-
tions:
�
 All-to-all configuration. If several L2 trigger items form chains
with the same set of L1 trigger items (i.e. Mim ¼ Mi indepen-
dent on m) the probabilities factorise

PL12
jk ¼ 1�

YNL1

i¼1

1�
rL1

ij

dL1
ik

 !" #
1�

YNL2

m¼1

1�
rL2

mj

dL2
mk

 !" #
. (36)
�
 All-1-to-1-only configuration. For parallel chains, having one
separate trigger item on each trigger level, the matrix Mim can
be expressed as an identity matrix and Eq. (35) simplifies to

PL12
jk ¼ 1�

YNitems

i¼1

1�
rL1

ij

dL1
ik

rL2
ij

dL2
ik

 !
(37)

which is similar to Eq. (11) for one-level systems.

Using the total probability from one of the Eqs. (33)–(37), the
event weight is calculated similarly to the case of one-level
systems (cf. Eq. (12) or (13)). The weight is assigned to the event j

if at least one product aL1
ij MimaL2

mj for the considered trigger items is
equal to one. Otherwise the event is rejected.
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For the Inclusion Method with fully efficient trigger config-
urations the algorithm of an L2 trigger item must not make use of
the actual L1 trigger item bits, since otherwise the L1 downscaling
enters as an inefficiency of the L2 trigger item and the
configuration is not fully efficient. In particular, in trigger systems
with early-reject mechanism, one may be tempted to set the
higher level raw trigger bit to zero if the corresponding actual bits
at the lower level are unset. This leads however to wrong weight
calculation since this is equivalent to the inclusion of the lower
level actual bits into the algorithm of the higher level. On the
contrary, the usage of the raw L1 trigger item bits in L2 algorithms
is allowed.
5.3.2. Inclusion method for combinations with inefficiencies

Uncorrelated inefficiencies can be included in the same way as
for the one-level system. In Eqs. (33)–(37) the L1 and L2 raw
trigger bits must be replaced by the products of the respective
expected bits and efficiencies. E.g. the general expression (35) is
modified to

PL12
jk ¼

X
SL1

Y
i2SL1

xL1
ij �

L1
ik ðqjÞ

dL1
ik

 ! Y
ieSL1

1�
xL1

ij �
L1
ik ðqjÞ

dL1
ik

 !2
4

3
5

� 1�
YNL2

m¼1

1� 1�
Y
i2SL1

ð1�MimÞ

 !
xL2

mj�
L2
mkðqjÞ

dL2
mk

" #( )
(38)

where xL1
ij , xL2

mj are the expected trigger item bits, and �L1
ik ðqjÞ, �L2

mkðqjÞ

are the efficiency correction functions for L1 trigger item i and L2
trigger item m, respectively. Only such events are selected for the
analysis in which at least one of the products xL1

ij aL1
ij MimxL2

mja
L2
mj is

equal to one.
Efficiencies correlated between trigger items of one level and

between different levels can be treated in a way similar to Section
4.3.4. However, the treatment of correlations between different
levels must take into account, whether the conditional efficiencies
depend on the raw or actual trigger items from lower levels. In
case of a dependence on the raw bits, each pattern of actual
trigger items has to be split into the sum of subpatterns with all
possible raw trigger item configurations and conditional efficien-
cies specific for each subpattern have to be applied.
Example. The example setup of 2� 2 trigger items forming three
chains discussed in Section 5.2.2 and depicted in Fig. 5 cannot be
reduced to an all-to-1, 1-to-all, all-to-all or all-1-to-1-only
configuration. Hence, Eq. (38) has to be applied giving the
probability
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. (39)

The first summand gives the probability that the L1 actual trigger
item sL1

1 accepts the event, while the L1 actual trigger item sL1
2

rejects it, and multiplied by the probability that the event is then
accepted by the L2 actual trigger item sL2

1 . If the efficiencies of the
items sL1

1 and sL1
2 on level 1 are correlated, �L1

2 in this summand
must be replaced by the correlated efficiency �L1

2j1 for the L1 trigger
item sL1

2 to accept the event, provided the L1 trigger item sL1
1 also

accepts the event. If the efficiency of the L2 trigger item sL2
1 is

conditional and depends on the raw trigger item bits rL1
1 and rL1

2 ,
then this summand has to be split into two terms corresponding
to the cases that the L1 raw trigger item sL2

1 should or should not
have fired in the event
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In the first summand the efficiency �L2
1 has to be replaced by the

conditional efficiency �L2
1jL1�12 of the L2 trigger item sL2

1 for the case
that both L1 raw trigger items fired. Similarly in the second
summand, �L2

1 has to be replaced by the conditional efficiency
�L2

1jL1�12 of the L2 trigger item sL2
1 for the case that only the L1 raw

trigger item sL1
1 fired.

The second summand in Eq. (39) can be treated similarly. It

gives the probability that the L1 actual trigger item sL1
2 and

subsequently at least one of the two L2 actual trigger items accept

the event. If the efficiencies of the L2 trigger items depend on the

raw trigger item bit rL1
1 , this summand again has to be split into

two terms corresponding to the probabilities that this bit is set or

not set in the event
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In each term of the sum the efficiencies of the L2 trigger items

have to be replaced by the respective conditional ones. If the L2

trigger item efficiencies are correlated to each other, the

expressions in parentheses have to be modified, as shown in

Eq. (22).

In general, if the efficiencies are correlated both within one level
and between different levels, a significant number of different
correction functions may have to be determined for each trigger
item. One should note that even if some of the used trigger items
from different trigger levels are not combined into a chain, their
decisions may be correlated and hence conditional efficiencies
may have to be used. For instance, the trigger items sL1

1 and sL2
2 in

the above example may be correlated and thus the conditional
efficiencies �L2

2jL1�12 and �L2
2jL1�12 may differ.
6. Implications for design and operation of trigger systems

The various methods presented in this paper have conse-
quences for the design and operation of trigger systems. Some
non-trivial rules are summarised in the following:
1.
 The raw trigger item bits should be stored in the event record
available for the data analysis (i) to reduce the statistical
uncertainty of the efficiency determination (Section 2) and (ii)
to allow the weight calculation for fully efficient trigger
combinations (Section 4.2).
2.
 The optimum downscaling procedure should select events on a
random basis, to avoid end-of-run uncertainties (Section 3)
and statistical dependencies of (quasi-)identical trigger items
(Section 4.2.2).
3.
 For deterministic downscaling systems, several options to
minimise the end-of-run correction exist: (i) the status of the
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downscale counters at the end-of-run should be recorded; (ii)
a randomly chosen position should be used for the selection
in all downscale intervals of one run; and (iii) the event in
the middle of the downscale interval should be selected
(Section 3).
4.
 The Inclusion Method assumes no correlation of the down-
scaling decisions of different trigger items. For deterministic
downscaling systems, configurations with several (quasi-)
identical trigger items should be avoided. Alternatively the
downscaling factors must fulfill certain constraints (Section
4.2.2).
5.
 While downscale factors can be changed arbitrarily, frequent
redefinitions of trigger items should be avoided. Every
redefinition limits the run range in which the efficiency
correction for the respective trigger item must be determined
(Section 2) and in which weight averaging for fully efficient
combinations of trigger items can be applied (Section 4.2).
6.
 For an optimised trigger selection of events, sophisticated
definitions of trigger items combining many trigger elements
might seem to be advantageous. However, very complex
definitions should be avoided since the determination of their
efficiency corrections and correlations with other trigger items
may be challenging (Section 4.3).
7.
 For multi-level trigger systems, the simplest configuration for
data analysis consists of parallel 1-to-1 chains (all-1-to-1-
only). If the assignment of several trigger items on one level to
the same trigger item on another level is unavoidable, it should
be restricted to separate 1-to-all, all-to-1 or all-to-all config-
urations (Section 5, especially 5.3.1).
8.
 Although the final trigger decisions are based on the products
of actual trigger bits from different trigger levels, the
algorithms determining the raw trigger bits at higher levels
must not use the actual trigger bits from lower levels;
otherwise the Exclusion and Inclusion Methods for fully
efficient trigger combinations which involve raw trigger bits
are inapplicable (Section 5).
9.
 On all trigger levels the raw and actual bits of all trigger items
used to select the analysed events should be available for the
analysis (see also Item 1). For early-accept systems this implies
that the trigger information should be calculated in the offline
data processing where the selection code and the event
parameters must be accessible to reproduce all trigger
decisions. For early-reject systems the information should be
calculated either in the trigger system after a positive trigger
decision or likewise in the offline data processing (Section 5).
7. Summary and conclusions

We have presented calculation methods for offline corrections
of event losses in trigger systems of particle collider experiments.
Emphasis has been put on the corrections of prescale factors and
trigger inefficiencies for combinations of event samples collected
by different trigger items. Each method provides event weights,
the sum of which reproduces the original number of events that
occurred in the detector. The methods have been discussed both
for single-level and multi-level trigger systems with and without
considering uncorrelated and correlated trigger inefficiencies. We
have studied the statistical performance of all methods and
considered implications for design and operation of trigger
systems.

In detail, three conceptually different methods with increasing
complexity have been studied. The Division Method can provide
sufficient statistical precision if the individual trigger items have
low downscale factors and high efficiencies in their respective
phase space regions. The accuracy can be improved using the
Exclusion Method which is adequate for many analyses. The
optimum performance is however provided by the more compli-
cated Inclusion Method which alone makes use of all selected
events in the combined sample. For all methods the application of
event weights averaged over run ranges can yield a significant
gain in the statistical precision of the result.
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