Introduction to particle physics: experimental part

First data at LHC

Standard Model measurements

- Soft and hard QCD
- b-jets
- W and Z bosons
- Prompt photons
- Top quarks
- Tau leptons

Experiment = probing theories with data

 $-\tfrac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{aac}\partial_{\mu}g^a_{\nu}g^a_{\mu}g^c_{\nu} - \tfrac{1}{4}g^d_s f^{aac} f^{aac} g^a_{\mu}g^c_{\nu}g^a_{\mu}g^c_{\nu} +$ $\frac{1}{2} i g_s^2 (\overline{q}_i^a \gamma^\mu q_2^a) g_\mu^a + \overline{G}^a \partial^2 \overline{G}^a + g_s f^{abc} \partial_\mu \overline{G}^a \overline{G}^b g_\mu^c - \partial_\nu W_\mu^+ \partial_\nu W_\mu^-$ $\frac{1}{2}m_{h}^{2}H^{2}-\partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-}-M^{2}\phi^{+}\phi^{-}-\frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0}-\frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0}-\beta_{h}[\frac{2M^{2}}{y^{2}}+$ $\frac{2M}{2\mu}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^4}\alpha_h - igc_w[\partial_{\nu}Z^0_{\mu}(W^+_{\mu}W^-_{\nu} - \phi^+_{\nu})] + \frac{2M^4}{g^4}\alpha_h - igc_w[\partial_{\nu}Z^0_{\mu}(W^+_{\mu}W^-_{\nu} - \phi^+_{\mu})] + \frac{2M^4}{g^4}\alpha_h - igc_w[\partial_{\nu}Z^0_{\mu}(W^+_{\mu}W^-_{\nu} - \phi^+_{\mu})] + \frac{2M^4}{g^4}\alpha_h - igc_w[\partial_{\nu}Z^0_{\mu}(W^+_{\mu}W^-_{\nu} - \phi^+_{\mu})] + \frac{2M^4}{g^4}\alpha_h - igc_w[\partial_{\nu}Z^0_{\mu}(W^+_{\mu}W^-_{\nu})] + \frac{2M^4}{g^4}\alpha_h - igc_w[\partial_{\mu}Z^0_{\mu}(W^+_{\mu}W^-_{\mu})] + \frac{2M^4}{g^4}\alpha_h - igc_w[\partial_{\mu}Z^0_{\mu})] + \frac{2M^4}{g^4}\alpha_h - igc_w[\partial_{\mu}Z^0_{\mu})] + \frac{2M^4}{g^4}\alpha_h - igc_w[\partial_{\mu}Z^0_{\mu}] + \frac{2M^4}{g^4}\alpha_h - igc_$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + W^{-}_{\mu}W^{+}_{\mu}W^{-}_{\nu}W^{-}_{\mu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\nu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\nu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\nu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\nu}W^{-}_{\nu} + \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{-}_{\mu}W^{-}_{\nu}W^{-}_{\mu}W$ ${}^{1}_{\frac{1}{2}g^{2}}W^{\mu}_{\mu}W^{-}_{\nu}W^{+}_{\mu}W^{-}_{\nu} + g^{2}c^{2}_{w}(Z^{0}_{\mu}W^{+}_{\mu}Z^{0}_{\nu}W^{-}_{\nu} - Z^{0}_{\mu}Z^{0}_{\mu}W^{\mu}_{\nu}W^{-}_{\nu}) +$ $g^{2} \bar{s}_{w}^{2} (A_{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-} - A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}) + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{-} (W_{\mu}^{+} W_{\nu}^{-} - G_{\nu}^{-} A_{\mu} W_{\nu}^{-} W_{\nu}^{-}] + g^{2} \bar{s}_{w} c_{w} [A_{\mu} Z_{\nu}^{-} (W_{\mu}^{-} W_{\nu}^{-} - G_{\nu}^{-} (W_{\mu}^{-} W_{\nu}^{-} W_{\mu}^{-} - G_{\nu}^{-} (W_{\mu}^{-} W_{\mu}^{-} - G_{\nu}^{-} (W_{\mu}^{-} W_{\mu}^{-} - G_{\nu}^{-} (W_{\mu}^{-} - G_{\nu}^{-} (W_{\mu}^{-} W_{\mu}^{-} - G_{\nu}^{-} (W_{\mu}^{-} - G$ $W_{\nu}^{\mu\nu}W_{\mu}^{\mu} - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-} - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - W_{\nu}^{\mu}W_{\nu}^{+}W_{\nu}^{-} - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - W_{\nu}^{\mu}W_{\nu}^{-}W_{\nu}^{-} - W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} - W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} - W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} - W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} - W_{\nu}^{-}W_{\nu}^{-} - W_{\nu}^{-} - W_{\nu}^{-}W_{\nu}^{-} - W_{\nu}^{-} - W_$ ${\textstyle\frac{1}{8}}g^2 \alpha_{\rm h} [H^4 + (\phi^5)^4 + 4(\phi^+ \phi^-)^2 + 4(\phi^0)^2 \phi^+ \phi^- + 4H^2 \phi^+ \phi^- + 2(\phi^0)^2 H^2]$ $g_{M}W^{+}_{\mu}W^{-}_{\mu}H - \frac{1}{2}g\frac{M}{\delta_{z}}Z^{0}_{\mu}Z^{0}_{\mu}H - \frac{1}{2}ig[W^{+}_{\mu}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - g^{0}_{\mu}W^{+}_{\mu}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})]$ $W^-_\mu(\phi^0\partial_\mu\phi^+-\phi^+\partial_\mu\phi^0)]+\frac{1}{2}g[W^+_\mu(H\partial_\mu\phi^--\phi^-\partial_\mu H)-W^-_\mu(H\partial_\mu\phi^+-\phi^-\partial_\mu H)]$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + g\frac{s_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + g\frac{s_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}) + g\frac{s_{w}^{2}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}) + g\frac{s_{w}^{2}}{c_{w}}MZ$ $(gs_wMA_{\mu}(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) - ig\frac{1-2c_w}{2c_w}Z^0_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) +$ $\frac{1}{igs_{\psi}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})} - \frac{1}{4}g^{2}W_{\mu}^{+}W_{\mu}^{-}[H^{2}+(\phi^{0})^{2}+2\phi^{+}\phi^{-}] - \frac{1}{4}g^{2}W_{\mu}^{+}W_{\mu}^{+}[H^{2}+(\phi^{0})^{2}+2\phi^{+}W_{\mu}^{+}] - \frac{$ ${ {1\over 4} g^2 {1\over c_w^2} Z^0_\mu Z^0_{\mu l} H^2 + (\phi^0)^2 + 2 (2 s^2_w - 1)^2 \phi^+ \phi^-) - {1\over 2} g^2 {s^2_\omega \over c_w} Z^0_\mu \phi^0 (W^+_\mu \phi^- +$ $W^{+}_{\mu}\phi^{+}) = \frac{1}{2} i g^2 \frac{s_{\mu}^2}{c_w} Z^0_{\mu} H(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) + \frac{1}{2} g^2 s_w A_{\mu} \phi^0(W^+_{\mu}\phi^- + W^-_{\mu}\phi^+))$ $\begin{array}{c} W_{\mu} \phi^{+} & - \frac{2^{12}}{2} c_{\psi} c_{\mu} \phi^{+} \phi^{-} \\ W_{\mu} \phi^{+} + \frac{1}{2} i g^{2} s_{\omega} A_{\mu} H (W_{\mu}^{+} \phi^{-} - W_{\mu}^{-} \phi^{+}) - g^{2} c_{\psi}^{2} (2 c_{\psi}^{2} - 1) Z_{\mu}^{0} A_{\mu} \phi^{+} \phi^{-} \\ g^{+} s_{\omega}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - e^{\lambda} (\gamma \partial + m_{\psi}^{\lambda}) e^{\lambda} - p^{\lambda} \gamma \partial v^{\lambda} - u_{\gamma}^{\lambda} (\gamma \partial + m_{\psi}^{\lambda}) u_{\gamma}^{\lambda} - g^{\lambda} (\gamma \partial +$ $\frac{d_1^{\gamma}(\omega^{\mu}\mu^{\mu})}{d_1^{\gamma}(\gamma\partial+m_d^{2})d_j^{2}+igs_wA_{\mu}[-(\tilde{e}^{\lambda}\gamma^{\mu}e^{\lambda})+\frac{2}{3}(\tilde{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda})-\frac{1}{3}(d_j^{\lambda}\gamma^{\mu}d_j^{2})]+$ $\frac{ig}{4w}Z^0_\mu((\nu^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda)+(e^\lambda\gamma^\mu(4s^2_w-1-\gamma^5)e^\lambda)+(u^\lambda_1\gamma^\mu(\frac{4}{3}s^2_w-1)e^\lambda_1)$ $\frac{4c_w}{1-\gamma^5}(u_j^{\lambda}) + (d_j^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_w^2-\gamma^5)d_j^{\lambda})] + \frac{4g}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\mathbf{k}^{\lambda}) +$ $(\overline{a}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{\delta})C_{\lambda\kappa}d_{j}^{\mu})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\overline{e}^{\lambda}\gamma^{\mu}(1+\gamma^{\delta})\nu^{\lambda}) + (\overline{d}_{j}^{*}C_{\lambda\kappa}^{\lambda}\gamma^{\mu}(1+\overline{a}_{j}^{*})v^{\lambda})]$ $\gamma^5)u_j^{\lambda})]+\tfrac{ig}{2\sqrt{2}}\tfrac{m_\lambda^{\lambda}}{M}[-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})] \tfrac{\mathfrak{g}\,\mathfrak{m}^{\lambda}}{\frac{1}{2}\,M} [H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \tfrac{\mathfrak{s}\mathfrak{g}}{\frac{2M\sqrt{2}}{2M\sqrt{2}}}\phi^{+}[-m_{d}^{\mathfrak{s}}(\tilde{u}_{j}^{\lambda}C_{\lambda\mathfrak{s}}(1-\gamma^{5})d_{j}^{\mathfrak{s}}) +$ $m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{iy}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\star}(1-\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\star$ $\gamma^5)u^s_j] = \tfrac{g}{2} \tfrac{m\lambda}{M} H(\bar{u}^\lambda_j u^\lambda_j) - \tfrac{g}{2} \tfrac{m\lambda}{M} H(\bar{d}^\lambda_j d^\lambda_j) + \tfrac{ig}{2} \tfrac{m\lambda}{M} \phi^5(\bar{u}^\lambda_j \gamma^5 u^\lambda_j) \tfrac{\mathrm{i}_{3}}{2} \tfrac{m_{2}}{M} \phi^{0}(\tilde{d}_{j}^{\lambda_{1}\lambda_{3}} d_{j}^{\lambda_{1}}) + \tilde{X}^{+} (\partial^{2} - M^{2}) X^{+} + \tilde{X}^{-} (\partial^{2} - M^{2}) X^{-} + \tilde{X}^{0} (\partial^{2} - M^{2})$ $\partial_{\mu} \tilde{X}^{+} Y) + igc_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} X^{0} - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{0} X^{+}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{-}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{-}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{-}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{-}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-} Y - \partial_{\mu} \tilde{X}^{-}) + igs_{w} W^{-}_{\mu} (\partial_{\mu} \tilde{X}^{-}) + igs_{w} W^{-}_{\mu}$ $\partial_{\mu}\bar{Y}X^{+})+igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{X}^{-}X^{-})+igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+})+igs$ $\partial_{\mu} \bar{X}^{-} X^{-}) - \tfrac{1}{2} g M [\bar{X}^{+} X^{+} H + \bar{X}^{-} X^{-} H + \tfrac{1}{c_{\nu}^{2}} \bar{X}^{0} X^{0} H] +$ $\tfrac{1-2c_{\nu}^{2}}{2c_{\nu}}igM[\bar{X}^{+}X^{0}\phi^{+}-\bar{X}^{-}X^{0}\phi^{-}]+\tfrac{1}{2c_{\nu}}igM[\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-}]+$ $i_{w}^{v} gM_{Sw}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

(avanimental) I HC abusics

o Dalmactro

The ATLAS detector

Muon Spectrometer (| η |<2.7): air-core toroids with gas-based chambers Muon trigger and measurement with momentum resolution < 10% up to E_µ ~ TeV

Cosmic rays

Simulation proton 10¹⁴ eV

- · The most penetrating component of atmospheric showers: the muon component
- · At sea level muons represent about 80% of the cosmic ray flux
 - · averaged over all energies
 - above E ≈ 1 GeV they contribute almost 100%
- · Below 1 GeV the energy spectrum of muons is almost flat
- Above 100 GeV falls exponentially
- · It extends to extremely high energies
- The average cosmic ray muon energy is 4 GeV

Cosmic Muons in ATLAS

Real Cosmic Event

Muon impact points extrapolated to surface as measured by Muon Trigger chambers (RPC) (Calorimeter triager also

Rate ~100 m below ground: ~ O(15 Hz) crossing Inner Detector

Lectures on Line physics

2008

10 ms

HANT XINKAT NA IX I

flux

Simulated cosmics

in the ATLAS cavern

2008 Beam bunches (2x10° protons at 450 GeV) stopped by (closed) collimators upstream of experiments → "splash" events in the detectors (debris are mainly muons)

First collisions in ATLAS (2009)

CERN - Nov 26, 2009

Running jobs: 243209 Transfer rate: 7.59 GiB/sec

Worldwide LHC Computing Grid WLCG

ATLAS uses ~80 WLCG sites world-wide Performance is superb

What do we want to measure?

What do we want to measure?

Collisions at LHC

Inner structure of a proton

protons have substructures

- partons = quarks & gluons
- ✓ 3 valence (colored) quarks bound by gluons
- ✓ Gluons (colored) have self-interactions
- Virtual quark pairs can pop-up (sea-quark)
- p momentum shared among constituents
 - described by p structure functions

Parton energy not 'monochromatic'

Kinematic variables

Bjorken-x: fraction of the proton momentum carried by struck parton

× = P_{parton}/P_{proton}
 Q²: 4-momentum² transfer

Inner structure of a proton

MSTW 2008 NLO PDFs (68% C.L.) xf(x,Q²) 1.2 xf(x,Q²) $Q^2 = 10^4 \text{ GeV}^2$ $Q^2 = 10 \text{ GeV}^2$ g/10 g/10 0.8 0.8 0.6 b,b 0.6 0.4 0.4 C.C 0.2 0.2 0 n 10⁻³ 10⁻² 10⁻² 10⁻¹ 10⁻³ 10⁻¹ 10⁻⁴ 10⁻⁴ 1 1 х x

Monte Carlo model for typical pp collision

Dominant QCD processes

 Multi-parton interactions (Underlying Event)

Inelastic cross-sections

- Use only few runs: 7 TeV data (190 μb⁻¹) + 900 GeV data (7μb⁻¹) and 2.36TeV data (0.1μb⁻¹)
 - We want to study all inelastic pp interactions
 - Instantaneous luminosity very low for these runs: on average ~0.007 interactions per bunch crossing → 99.3% of crossings are empty.
 - Need to "trigger" on inelastic interactions: Minimum Bias Scintillator Trigger (MBTS)
 - \rightarrow sensitive to any charged particle 2.09< $|\eta|$ < 3.84
 - 16 counters on each side of ATLAS
- Correct for detector inefficiencies and resolution, eg. present spectrum of charge particles not tracks
- No extrapolation to regions not seen by ATLAS

MBST Trigger

How well we undrstood detector?

New J. Phys. 13 (2011) 053033

Excellent agreement between data and MC: Pixel and Silicon hits per track

Unfolding to particle level

- Bayesian iterative unfolding used to correct tracks and clusters back to particle level.
 - Use mapping of truth particles on reconstructed objects (use Monte Carlo)

particle level

detector level

Total inelastic cross-section

Underlying event

- UE = "everything" "hard scatter" = beam-beam remnants, MPI, ISR
- Study: charged particle density, transverse momentum, average p_T. Transverse region considered most sensitive to UE

Underlying event

- Define the direction of "hard scatter" as the highest p_T particle
- Study the activity (#of particles) in the region "transverse" to the hard scatter.

Transverse region particle density

- All tunes underestimate particle density by 10%-15% in the plateau region
- There is factor of ~2 increase in activities between 900 GeV and 7 TeV
- In the plateau region the measured density corrsponds to ~
 2.5 per unit n at 900 GeV and 5 particle at 7 TeV

Particle density angular correlations

- Define the event orientation by the azimuthal angle on the track with the highest p_T.
- MC tunes only reproduce the general features, disagreement in rates both in the transverse region (UE) and in the away region (MPI/Hard Core)

Cross-sections at LHC

Proton-proton scattering at LHC

- Hard interaction: qq, gg, qg fusion
- Initial and final state radiation (ISR,FSR)
- Secondary interaction ["underlying event"]

QCD hard scattering processes

- Measuring those processes test our understanding of:
 - Partonic structure of protons
 - QCD scattering via calculations of N(NLO)
 - Hadronisation/underlying event
 - What makes a good jet algorithm
 - Data driven background estimates for rare processes

Proton-proton scattering at LHC

Year 2010: Retracing history of particle physics

2010

Data corresponding to ~40 pb⁻¹ collected → re-discovery of the Standard Model

The di-muon spectrum recalls a long period of particle physics: Well known quark-antiquark resonances (bound states) appear "online"

Bosons at hadron colliders

2010

The primary decay chanel is through leptonic decays:

- □ BR(W→e v) ~ 10%
- □ BR(Z→ ee) ~ 3%
- It means that we are probing σ x BR values orders of magnitude smaller
- At LHC cross-section 5-10 x higher than at Tevatron at Fermilab.

Bosons and top quark at LHC

- Well measured by previous experiments
- Still educational at LHC
 - Cross-sections
 - New PDF constraints
- "Standard candles" for high p_T analyses
 - Calibration, alignment
 - Independent luminosity measurements

W and Z boson decays

Leptonic decays (e/µ): very clean, but small(ish) branching fractions Hadronic decays: two-jet final states; large QCD dijet background Tau decays: somewhere in between...

Example: Drell-Yan process

W and Z boson signatures

Additional hadronic activity → recoil, not as clean as e⁺e⁻ Precision measurements: only leptonic decays

Lepton identification

Electron:

- Compact electromagnetic cluster in calorimeter
- Matched to track

Muons:

- Track in the muon chambers
- Matched to track

Taus:

- Narrow jet
- Matched to one or three tracks

Neutrinos

- Imbalanse in transverse momentum
- Inferred from total transverse energy in detector

Electrons and jets

- Jets can look like electrons
 - Photon conversion from π^{0} 's
 - Early showering charged pions
- And there is lot of jets
- Difficult to model in Monte Carlo
 - Detailed simulation in tracking _____ and calorimeter volume

There is also lot of true electrons from semileptonic decays inside jets

DATA: loose electron ID

W selection (2010)

Electrons:

- $E_T > 20 \ GeV$
- Tight ID
- Missing $E_T > 25 \text{ GeV}$
- $m_T > 40 \ GeV$
- > 1069 Candidates

Muons:

- p_T > 20 GeV
- Track isolation
- Missing $E_T > 25 \text{ GeV}$
- $m_T > 40 \ GeV$
- > 1181 Candidates

Z selection (2010)

2 Electrons :

- $E_T > 20 \ GeV$ \mathbf{O}
- **Opposite** charge 0
- Medium ID 0

2 Muons :

 \mathbf{O}

 \mathbf{O}

0

0

- $66 < m_{ee} < 116 \; GeV$ 0
- 70 Candidates \succ

p, [GeV]

50 g

109 Candidates \geq

 $p_T > 20 \ GeV$

Track isolation

Opposite charge

 $66 < m_{\mu\mu} < 116 \ GeV$

m_{uu} [GeV]

W backgrounds

Electrons:

• EW + top background: $W \rightarrow \tau \nu + Z \rightarrow e^+e^- + t\bar{t}$

 $N_{EW+TOP} = 33.5 \pm 0.2(stat) \pm 3.0(syst)$

• QCD background is estimated with the template method using the missing energy distribution.

 $N_{\text{QCD}} = 28.0 \pm 3.0(\text{stat}) \pm 10.0(\text{syst})$

Muons:

• EW + top background: $Z \rightarrow \mu^+ \mu^- + W \rightarrow \tau \nu^- + t\bar{t}$

 $N_{\text{EW+TOP}} = 77.6 \pm 0.3 (\text{stat}) \pm 5.4 (\text{syst})$

• QCD background estimated from comparison of events seen in data after the full selection to number of events observed if the isolation is not applied.

 $N_{\text{QCD}} = 22.8 \pm 4.6 (\text{stat}) \pm 8.7 (\text{syst})$

$$N_{loose} = N_{nonQCD} + N_{QCD}$$
$$N_{iso} = \epsilon_{nonQCD}^{iso} N_{nonQCD} + \epsilon_{QCD}^{iso} N_{QCD}$$

Cross-section & Luminosity

Number of observed events just count ...

Background

measured from data or calculated from theory

$$\sigma = \frac{N^{\text{obs}} - N^{\text{bkg}}}{\int \mathcal{L} dt \cdot \varepsilon}$$

Luminosity determined by accelerator, triggers, ...

Efficiency many factors, optimized by experimentalist

W cross-section measurement

The total cross section for each lepton channel can be obtained by:

$$\sigma_W imes BR(W o l
u) = rac{N_W^{obs} - N^{bkg}}{A_W C_W L_{int}}$$

 A_W is the geometrical acceptance calculated at generator level:

$$A_W = \left(\frac{N^{acc}}{N^{all}}\right)_{gen}$$

MC	A_W	A_W	A_W	A_W	A_W	A_W
	$W^+ \rightarrow e^+ \gamma$	$W^- \rightarrow e^- \nu$	$W \rightarrow ev$	$W^+ \rightarrow \mu^+ \nu$	$W^- \rightarrow \mu^- \nu$	$W \rightarrow \mu \nu$
PYTHIA MRST LO*	0.466	0.457	0.462	0.484	0.475	0.480
PYTHIA CTEQ6.6	0.479	0.458	0.471	0.499	0.477	0.490
PYTHIA HERAPDF1.0	0.477	0.461	0.470	0.496	0.479	0.489
MC@NLO HERAPDF1.0	0.475	0.454	0.465	0.494	0.472	0.483
MC@NLO CTEQ6.6	0.478	0.452	0.465	0.496	0.470	0.483

W cross-section measurement

The total cross section for each lepton channel can be obtained by:

$$\sigma_W imes BR(W o l
u) = rac{N_W^{obs} - N^{bkg}}{A_W C_W L_{int}}$$

 A_W is the geometrical acceptance calculated at generator level:

$$A_W = \left(\frac{N^{acc}}{N^{all}}\right)_{gen}$$

MC	A_W	A_W	A_W	A_W	A_W	A_W
	$W^+ \rightarrow e^+ \gamma$	$W^- \rightarrow e^- \nu$	$W \rightarrow ev$	$W^+ \rightarrow \mu^+ \nu$	$W^- \rightarrow \mu^- \nu$	$W \rightarrow \mu \nu$
PYTHIA MRST LO*	0.466	0.457	0.462	0.484	0.475	0.480
PYTHIA CTEQ6.6	0.479	0.458	0.471	0.499	0.477	0.490
PYTHIA HERAPDF1.0	0.477	0.461	0.470	0.496	0.479	0.489
MC@NLO HERAPDF1.0	0.475	0.454	0.465	0.494	0.472	0.483
MC@NLO CTEQ6.6	0.478	0.452	0.465	0.496	0.470	0.483

C_w correction factor and uncertainties

$$\sigma_W imes BR(W
ightarrow l
u) = rac{N_W^{obs} - N^{bkg}}{A_W C_W L_{int}}$$

• C_W is a factor correcting for reconstruction, identification and trigger efficiencies of the lepton.

	W ightarrow e u	$W o \mu u$
C_W	0.66	0.76

• Components to systematic uncertainties, are summarized below:

Parameter	$\delta C_w/C_w(\%)$		
Trigger efficiency	< 0.2	Parameter	$\delta C_W/C_W(\%)$
Material effects, reconstruction and identification	5.6	Trigger efficiency	1.9
Energy scale and resolution	3.3	Reconstruction efficiency	2.5
$E_{\rm T}^{\rm miss}$ scale and resolution	2.0	Momentum scale	1.2
Problematic regions in the calorimeter	1.4	Momentum resolution	0.2
Pile-up	0.5	$E_{\rm T}^{\rm miss}$ scale and resolution	2.0
Charge misidentification	0.5	Isolation efficiency	1.0
FSR modelling	0.3	Theoretical uncertainty (PDFs)	0.3
Theoretical uncertainty (PDFs)	0.3	Theoretical uncertainty (1 D1 3)	0.5
Total uncertainty	7.0	Total uncertainty	4.0

Electrons

Muons

W cross-section measurement

 $L \approx 310 \cdot 315 \text{ nb}^{-1}$

Theory prediction : 10.46 ± 0.42 nb $\sigma_W \times BR(W \to e\nu) = [10.51 \pm 0.34(stat) \pm 0.81(sys) \pm 1.16(lumi)] nb$ $\sigma_W \times BR(W \to \mu\nu) = [9.58 \pm 0.30(stat) \pm 0.50(sys) \pm 1.05(lumi)] nb$

47

Z cross-section measurement

 $L \approx 310 \cdot 315 \text{ nb}^{-1}$

Theory prediction : 0.96 ± 0.04 nb for [66 - 116] GeV mass window $\sigma_Z \times BR(Z \to e^+e^-) = [0.75 \pm 0.09(stat) \pm 0.08(sys) \pm 0.08(lumi)] nb$ $\sigma_Z \times BR(Z \to \mu^+\mu^-) = [0.87 \pm 0.08(stat) \pm 0.06(sys) \pm 0.10(lumi)] nb$

Production cross-sections

Standard Model Total Production Cross Section Measurements Status: March 2015

Confinement, hadronisation, jets....

Inclusive jet production

Jet reconstruction

 Jet finding: from partons/particles/energy deposits to jet

Energy deposits \rightarrow noise-suppressed 3D clusters: exploit transverse and longitudinal calorimeter segmentation

Jet inputs clustered with anti- k_T algorithm:

- Infrared safe, collinear safe (\Rightarrow NLO comparisons)
- Regular, cone-like jets in calorimeters
- Distance parameter 0.4, 0.6

Di-jet cross-section

Multi-jet events

- Azimuthal decorrelations in dijet events and distribution of energy within jets sensitive to QCD radiation structures
 - Probing higher order QCD radiation
 - Main systematics: cluster energy scale (separate from JES) and unfolding

Azimuthal decorrelations

- Complementary to multi-jet cross section measurement.
- Pure di-jets have azimutal angle
 Φ between jets equal to π.
- With additional hard radiation, i.e. extra jets, phi becomes smaller.

• Requiring additional jets flattens distribution.

Confinement, hadronisation, jets....

B-tagging

- When a b quark is produced, the associated jet will very likely contain at least one B meson or hadron
- B mesons/hadrons have relatively long lifetime
 - They will travel away form collision point before decaying
- Identifying a secondary decay vertex in a jet allow to tag its quark content
- Similar procedure for c quark...

b-jet cross-sections

- Good agreement with Powheg+PYTHIA
- MC@NLO+Herwig predicts too few central jets, too many forward jets

Why measure prompt photons

Prompt and isolated photons

Prompt:

- Direct from the hard scattering
- Parton fragmentation more important at low E₁
- Isolated:
 - Isolation criteria to reduce bgd from QCD jets
 - Photons from neutral meson decay in jets
 - Reduced fragmentation component:
 - ~30% reduction at 15 GeV
 - <10% above 35 GeV</p>

Measuring photons with ATLAS

Photon identification

- loose and tight selection
- optimised separately for unconverted and converted photons

Photon isolation and background estimate

- Background estimated with two methods:
 - ABCD method: extrapolate from the bgd enriched control regions
 - here shown example of 2D template fit

Isolated di-photon cross-section

Complicated topologies....

tt candidate event

e + µ + 2 jets (b-tagged) +ETmiss

Mass of the top quark

Tevatron combination November 2012 May 2013 LHC combination July 2012 September 2013 World combination March 2014 arXiv:1403.4427

Combination using **BLUE**

Highest precision in I+jet channel Dilepton channel good precision Fully hadronic channel respectable

precision on M_m 0.44%

Complicated topologies....

Tau

- Tau are heavy enough that they can decay in several final states
 - Several of them with hadrons
 - Sometimes neutral hadrons
- Lifetime = 0.29 ps
 - ✓ 10 GeV tau flies ~ 0.5 mm
 - Typically too short to be directly seen in the detectors
- Tau needs to be identifies by their decay products
- Accurate vertex detectors can detect that they do not come exactly from the interaction point

Complicated topologies....

Electroweak measurements at LHC

Standard Model Production Cross Section Measurements

Status: March 2015

