Collisions at LHC

Prof. dr hab. Elżbieta Richter-Wąs

1111

Typical pp collision

Retracing history of particle physics

- With up to 1pb⁻¹ (public results) we made it up to 80's
- Results at sumer conferences 2010
- Onia(J/Psi,
 Constant Y,...) + first
 hundreds of W,Z in the
 leptonic channels

Bosons at LHC

- Well measured by previous experiment:
 - Inclusive cross sections, $R(W^+/W^-)$, R(W/Z)
 - Differential distributions, associated je multiplicity, A_{FB}, etc.
 - Yet still educational at the LHC
 - Cross sections bet
 - New pdf constraints possible
- "Standard candles" for high-p_T analyse:
 - Calibration, alignment
 - Independent luminosity measurements

Just departure point for high-p_T Beyond Standard Model analyses

QCD factorisation and parton model

- Asymptotic freedom guarantees that as short distances (large transverse momenta) partons in the proton are almost free
- Sampled "one at a time" in hard collisions
 - QCD improved parton shower model

Altarelli-Parisi splitting functions

Prof. dr hab. Elzbieta Richter-Wąs

W and Z production

Cross sections for on-shell W and Z production (in narrow width limit) given

$$\begin{aligned} \hat{\sigma}^{q\bar{q}' \to W} &= \frac{\pi}{3} \sqrt{2} G_F M_W^2 |V_{qq'}|^2 \delta(\hat{s} - M_W^2), \\ \hat{\sigma}^{q\bar{q} \to Z} &= \frac{\pi}{3} \sqrt{2} G_F M_Z^2 (v_q^2 + a_q^2) \delta(\hat{s} - M_Z^2), \end{aligned}$$

$$\hat{s} = (\mathbf{p}_1 + \mathbf{p}_1)^2$$
$$\hat{\mathbf{t}} = (\mathbf{p}_1 + \mathbf{p}_3)^2$$

Mandalatamm vaniahlaa

$$\hat{u} = (p_1 + p_4)^2 p_4$$

 $p \frac{p_1}{p_3} p_2 p_3$

Where V_{qq'} is appropriate CKM matrix element and v_q and a_q are the vector and axial couplings of the Z to quarks

- At LO there is no \mathfrak{S}_{s} dependence; EW vertex only
- NLO contribution to the cross section is proportional to S; NNLO to S; ...

Prof. dr hab. Elzbieta Richter-Wąs

W and Z $p_{\rm T}$ distributions

 Most of W/Z produced at low p_T but can be produced at non-zero p_T due to the diagrams with emitted gluon

$$\begin{split} \sum |\mathcal{M}^{q\bar{q}' \to Wg}|^2 &= \pi \alpha_S \sqrt{2} G_F M_W^2 |V_{qq'}|^2 \frac{8}{9} \frac{\hat{t}^2 + \hat{u}^2 + 2M_W^2 \hat{s}}{\hat{t}\hat{u}} ,\\ \sum |\mathcal{M}^{gq \to Wq'}|^2 &= \pi \alpha_S \sqrt{2} G_F M_W^2 |V_{qq'}|^2 \frac{1}{3} \frac{\hat{s}^2 + \hat{u}^2 + 2\hat{t}M_W^2}{-\hat{s}\hat{u}} , \end{split}$$

- Sum over colors and spins in initial states and average over same in final states
- Transverse momentum distribution obtained by convoluting these matrix elements with pdf's in usual way

W and Z $p_{\rm T}$ distributions

- Back to 2->2 subprocess, where Q² is virtuality of the W $|\mathcal{M}^{u\bar{d}} \rightarrow W+g|^2 \sim \left(\frac{\hat{t}^2 + \hat{u}^2 + 2Q^2 \hat{s}}{\hat{t}\hat{u}}\right)$
- Convolute with pdf's

$$\sigma = \int dx_1 dx_2 f_u(x_1, Q^2) f_{\bar{d}}(x_2, Q^2) \frac{|\mathcal{M}|^2}{32\pi^2 \hat{s}} \frac{d^3 p_W}{E_W} \frac{d^3 p_g}{E_g} \delta(p_u + p_{\bar{d}} - p_g - p_W)$$

Transform into differential cross-section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\mathrm{d}y\mathrm{d}p_T^2} \sim \frac{1}{s} \int \mathrm{d}y_g f_u(x_1, Q^2) f_{\bar{\mathrm{d}}}(x_2, Q^2) \frac{|\mathcal{M}|^2}{\hat{s}}$$

Prof. dr hab. Elzbieta Richter-Wąs

W and Z $p_{\rm T}$ distributions

Shortcomings of fixed order calculations

Divergent, without cut on p_{T}^{min} , cannot describe the data

QCD resummation

- Resummation: reorganise calculations in terms of large Logs L(Q²/p_T²); regularised at low p_T range;
- Different schemes: CSS which includes also non-perturbative effects; Sudakov form factors; exponentation;

Monte Carlo approach example: Parton Shower

The shape of $q_T(w)$ is generated. But, the integrated rate remains the same as at Born level (finite virtual correction is not included).

Recently, there are efforts to include part of higher order effect in the event generator.

Prof. dr hab. Elzbieta Kichter-Was

Transverse momenta of charged lepton

Cross-section at LHC (7TeV)

 $\sigma(W^+) \neq \sigma(W^-)$

 W^+ production: $u\bar{d} + c\bar{s}$ W^- production: $d\bar{u} + s\bar{c}$ Z production: $u\bar{u} + d\bar{d} + s\bar{s} + c\bar{c} + b\bar{b}$ Test QCD (up to NNLO) in production Hard and soft gluon emission Sensitive to parton distribution functions Extract electroweak parameters $sin \rightarrow_w, m_w,$ quark-boson couplings

Monte Carlo simulations

Base-line generators:

- Pythia, Herwig (LO),
- MCatNLO (NLO)
- POWHEG (NLO)
- Used as components of for cross-checks
 - FEWZ: complete NLO, NNLL
 - ResBos: NNLL resumation
 - Horace: full 1-loop electroweak
 - PHOTOS:final state QED (exponentiated)

Event selection

• One e/μ with $p_{\rm T} > 20~{\rm GeV}$ • $E_{\rm T}^{\rm miss} > 25 \,\,{\rm GeV}$ • $m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) > 40 \,\,{\rm GeV}$ 9000F Events / 2.5 GeV Data 2010 (√S = 7 TeV) 8000 L dt = 36 pb⁻¹ $W \rightarrow ev$ ATLAS Preliminary e^+ 7000 OCD 6000 $W \rightarrow \tau v$ 5000 4000E 3000E 2000 1000È 80 50 60 70 90 100 110 120 40 m_⊤ [GeV]

 $W \to \ell \nu$

$$Z \to \ell \ell$$

Two e/µ with p_T > 20 GeV
m_{ℓℓ} = 66−116 GeV

Event selection

19

Z boson p_T measurement

- Important for modeling high-p_T lepton kinematics.
- ${\ \, \bullet \ \, }$ At leading order, $p_{\rm T}^{W/Z}=0$
- Non-zero p_T^{W/Z} is generated through the hadronic recoil of ISR, p_T^R.
- p_{T}^{Z} reconstructed directly from $p_{\mathrm{T}}(\mu_{1}) + p_{\mathrm{T}}(\mu_{2})$, while p_{T}^{W} reconstructs p_{T}^{R} .
- Detector and FSR effects removed with a bin-by-bin unfolding.
- 3-4% precision per bin.

20

Z differential

- Inclusive production as a function of the Z pseudorapidity
- Lepton flavours combined together taking into account all correlations.
- Z rapidity reaches |y|<3.5 with special electron reconstruction outside tracking volume (|y|<2.5)

DY forward-backward asymmetry

• Direct access to vector and axial couplings $g_v^f = I_3^f - 2q_f \sin^2 \theta_W$ both γ^* -f and Z-f couplings $g_a^f = I_3^f$ Z-f only coupling

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*} \sim \frac{3}{8} (1 + \cos^2\theta^*) + \mathbf{A_{FB}} \cos\theta^*$$

- $\cos\theta^* > (<) \mathbf{0} \rightarrow \text{forward} (backward)$ events
- θ^* is the angle of the negative lepton relative the quark momentum in the dilepton centre-of-mass frame
- Minimize the effect of unknown p_T of incoming quark by measuring θ^* in the **Collins-Soper** frame

DY forward-backward asymmetry

• Direct access to vector and axial couplings $g_v^f = I_3^f - 2q_f \sin^2 \theta_W$ both γ^* -f and Z-f couplings $g_a^f = I_3^f$ Z-f only coupling

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*} \sim \frac{3}{8} (1 + \cos^2\theta^*) + \mathbf{A_{FB}} \cos\theta^*$$

- $\cos\theta^* > (<) \mathbf{0} \rightarrow \text{forward} (backward)$ events
- θ^* is the angle of the negative lepton relative the quark momentum in the dilepton centre-of-mass frame
- Minimize the effect of unknown p_T of incoming quark by measuring θ^* in the **Collins-Soper** frame

Collins-Soper frame

Collins-Soper frame : the center of mass frame of dilepton

***All higher order terms are zero at Pt=0

Prof. dr hab. Elzbieta Richter-Wąs

Z/g* Angular Coefficients

- First measurement of the $p\overline{p} \rightarrow Z/\gamma^* + X \rightarrow e^+e^- + X$ angular distributions with 2.1 fb⁻¹
- Angular distributions of the lepton decay in the Collins-Soper frame are:

 $\frac{d\sigma}{d\cos\theta} \propto (1+\cos^2\theta) + \frac{1}{2}A_0(1-3\cos^2\theta) + A_4\cos\theta$

$$\frac{d\sigma}{d\varphi} \propto 1 + \frac{3\pi}{16} A_3 \cos \varphi + \frac{1}{4} A_2 \cos 2\varphi$$

PRL 106, 241801

 \cdot Perturbative QCD makes definite predictions on $A_{0,2,3,4}$ depending on the dilepton p_{T}

- \cdot At order $\alpha_{{}_{\!\!s}}$ the Z/ $\!\gamma^*$ boson can be produced via annihilation or Compton scattering
- Probe the contribution of different productions
 mechanisms contributions

Z/γ_{0} * Angular Coefficients ($A_{0,2}$)

- At order α_s , both A_0 and A_2 should be the same for Z and γ^* , but they have distinct Z p_T dependencies for annihilation or Compton scattering
- The A_{0,2} trends as a function of Z p_T reveals the two Z production processes contributions, e.g. in Z +1 Jet PYTHIA simulation a significant Compton scattering contribution is expected (~30%)
- Lam-Tung relation predicts A₀=A₂ at LO and nearly the same at all orders
- · Lam-Tung relation is valid for spin-1 gluons, but it is broken for scalar gluons
- First measurement of the Lam-Tung relation at large dilepton mass and high transverse dilepton p_T
- Fundamental test of the vector nature of gluons

