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introduction

e my interpretation of “data analysis techniques” is here “doing a
data analysis”

e follow the steps from the beginning (data taking) to the end (the
result)

» the luminosity

» the trigger, from the point of view of the analysis

» the reconstruction and detector response

» the simulation

» differential cross-section measurement: a di-jet correction
» searches: the H > WW > lvlv

» multivariate techniques

thanks to the following people, for interesting discussions, for liberally
“borrowing” slides, or both: D. Benedetti, C. Bernet, T. Camporesi, G.
Cowan, K. Cranmer, K. Ellis, S. Gennai , A. Ghezzi, A. Hoecker, R. Van
Kooten, M. Nguyen, M. Paganoni, M. Pelliccioni, E. Rizvi...



RAW data

reconstruction

skimming

analysis

access to data

can be done more than
once, to profit of better
&~ features derived from
previous analyses

centralized analysis to identify
final state objects (leptons,
photons, jets...)

(centralized) copy of sub-set

of data, dedicated to Qm profit of the Igtest
. ) ; reconstruction
analyses (different final

states)
well suited to the analysis
(personal) selections on the needs (speed, bkg
skims, to have a sample Qm measurements)
which is as small as possible do not decouple from the

approved definitions



the cross-section

background
number of contamination in
observed events the sample
Nobs — Npkyg
cross section: J —
_e- [ Ldt
analysis efficiency luminosity

delivered by LHC
E =Ctr " Ereco " E€ID * €sel

1 barn = 1072 m? = 107* cm?



luminosity



luminosity

Nobs — kag
e- | Ldt

O = number of particles

¢ per beam

number of . beam transverse
revolution

colliding bunches : size
requency

1 barn = 1072 m? = 107* cm?



luminosity

Instantaneous Luminosity Updated: 19:38:52

2500

2000

1500

1000 - Ty

200

Luminosity / 1e30 cm-2s-1

0 r ’jd‘: T T T T '—
08:00 10:00 12:00 14:00 16:00 18:00

— ATLAS - AUCE — CMS — LHOb 5 may 2011




delivered luminosity

DQM: all, DCS: all on

—450
n —
2 — CMS preliminary 2011
A0 |ntegrated luminosity
- 350 f_ All rt.ms until 28 May 2011 )
= Delivered: 429.24 pb
300 Recorded: 388.58 pb™
= Certified: 348.96 pb™
250
- golden
2 - . . - .
0 certification: the
1500+ whole CMS on
1000 shape
50—
OMI|I|IIIIIIII]IIIII]IIIIIIIIIIIIIIIIIIIIIII|I|lIII||III||IIII|I|II
5 z
DQM: muon phys, DCS: muon phys
—~A450
2 oM preliminary 2011
- - preliminary J .
200 |ntegrated luminosity
- 350 f_ All rt'ms until 28 May 2011 .
= Delivered: 429.24 pb
a00F- Recorded: 388.58 pb™
= Certified: 370.72 pb™
250— o .
- |muon certification:
2951 guaranteed by a
150— sub-detector
100
50—
0_ PO e e e e e e e e e e e e e e e e e e et

01 Ap
01 May

Date

e the delivered luminosity is what
the LHC gives to an experiment

e the recorded luminosity is
different from the delivered one,
because of data taking
inefficiencies

e the certified luminosity is
different from the recorded one,
because of detector problems

e not necessarily all studies need the
same level of certification!
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instantaneous luminosity

the number of O'£
interactions per bunch- [ =
crossing is poisson- an
distributed with mean p Pk = 0) A0 -
0!

0.40 ‘
0.35| - <8
0.30

—0.25

Y

¥ 0.20

&
0.15
0.10
0.05

-+ o hard to distinguish positive countings =>
count the zeros and invert the poisson

° \=4
o A=10

.- ® already with 10 interactions per bunch-
crossing, the poisson is hard to invert
(zero starvation)

0.00 . RO
—— = Oypis define ovis
| Lo
find another process
which is linear in the .
. . lculate the lumi
luminosity and _ R(t cd :

calibrate it ,C(t) - — - as a function of a

Ovis rate



the trigger
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e the vast majority of events
are not interesting

e interesting physics happens
at low rates
(< 10 Hz)

e the final bandwidth is limited:
can store up to O(100 Hz) of
events (1 event ~ 1 MB)

e the decision has to be taken
fast enough (bunch crossing
rate = 1/25 ns)
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trigger: the CMS example

e L1 based on regional information,

Detectors _ :
I dedicated electronics
€ Digitizers
' e HLT is software-based, runs on
LV1 Front end pipelines commercial computers farm - can be
implemented by std::physicist
s
’ + e performs a first physics
reconstruction of the event, with
Readout buffers algorithms (very) similar to the ones

used in the final analysis

> Switching networks @ €xploits the expected signatures of
¢ the event

QLTD Processor farms




what to trigger

e HLT searches for interesting physics objects:
e high pT leptons
e leptons with a certain degree of identification (isolation)
e presence of many leptons
e large missing energy
e presence of many jets (+ other requirements)
e HLT is based on the topology of the analysis it aims for

e make sure that the events one is interested in are actually
triggered. If not, need to implement a new one and get it
deployed

e low pT, loose ID, few leptons are difficult to trigger

14
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trigger prescaling
e when the instantaneous luminosity increases, the triggers need to
change, since the available bandwidth does not increase
e increase thresholds
e build sophisticated triggers

e prescale the trigger = take only a fraction (1/p;) of the events
that would fire a given trigger

N o Nobs N _pi'Nobs
prod — prod —
Etr Etr




prescaling: example at CMS

e example of a trigger table

v SingleElectron

v DoubleElectron

HLT path inst. lumi (cm2st)

HLT_Ele25_CaloldL_CalolsoVL_TrkIdVL_TrkIsoVL_v1 400
HLT_Ele25_WP80_PFMT40_v1 1
WP70_PFMT40_PFMHT20_v1

HL @ aloldVL_CalolsoVL_TrkIdVL_TrkIsoVL_v2 200

g42_CaloldVL_CalolsoVL_TrkIdVL_TrkiIsoVL_v1 75
442 _CaloldVT_CalolsoT_TrkIdT_TrkIsoT_vi
HLT_Elg52_CaloldVT_TrkIdT_v2
HLT Elg65 CaloldVT TrkIdT vi1

b

HLT_DoflibleEle10_CaloldL_TrkIdVL_Elel10_v6
HLT_DoflibleEle45_CaloldL_v1
HLT_Elejl7_CaloldL_CalolsoVL_Elel5_HFL_v6
HLT_Elejl7_CaloldL_CalolsoVL_Elel5_HFT_v1
HLT_Elelt7_CaloldL_CalolsoVL_Ele8_CaloldL_CalolsoVL
HLT_Eleft 7_CaloldL_CaloIsoVL_v5 2000
HLT_Elelt7_CaloldT_TrkIdVL_CalolsoVL_TrkIsoVL_Ele8_ 1
HLT_Elell,7_CaloldVT_CalolsoVT_TrkIdT_TrkIsoVT_Ele8. 1

HLT CaloldVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8. 40
HLT(Ele32_ XaloldT_CalolsoT_TrkIdT_TrkIsoT_SC17_v2 1
C

e

HLT_Ele8_CaloldL_CalolsoVL_Jet40_v5 2
HLT_Ele8_CaloldL_CalolsoVL_v5 40
HLT_Ele8_CaloldL_TrkIdVL_v5 20
HLT_Ele8_CaloldT_TrkidVL_CalolsoVL_TrkiIsoVL_v4 20
HLT_Ele8_v5 240

HLT_Photon20_CaloldVT_IsoT_Ele8_CaloldL_CalolsovL 20
HLT_TripleEle10_CaloIdL_TrkIdVL_v6 1

1.4e33 1e33 7e32

Prescaler

5e32 3e32 2e32 1.4e32 1e32

300 200 150 100 70 50 20 10
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
150 100 70 50 30 25 10 5
10 1 1 1 1 1 1 1
50 40 35 30 25 15 10 5
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1400 1000 700 500 300 200 140 100
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
30 20 15 10 7 5 3 1
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2
40 40 40 40 40 40 40 40
20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
240 240 240 240 240 240 240 240
14 10 7 5 3 2 1 1
1 1 1 1 1 1 1 1

16

L1 seed

L1_SingleEG12
L1_SingleEG12
L1_SingleEG15
L1_SingleEG20
L1_SingleEG20
L1_SingleEG20
L1_SingleEG20
L1_SingleEG20

L1 SingleEG20

L1_TripleEGS5
L1_SingleEG20
L1_SingleEG12
L1_SingleEG12
L1_SingleEG12
L1_SingleEG12
L1_SingleEG12
L1_SingleEG12
L1_SingleEG12
L1_SingleEG20
L1_SingleEG5S
L1_SingleEGS
L1_SingleEG5
L1_SingleEGS
L1_SingleEGS5
L1_SingleEG12
L1_TripleEGS5
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the trigger and the analysis

e events I am interested in (1) have to be triggered, (2) if not
prescaled, it's better

e the trigger is (usually) not 100% efficient on the analysis sample
-> measure the efficiency (from data) of the trigger for the

analysis

trigger efficiency ¢,

® offline energy

e the turn-on curve is the trigger efficiency
trend as a function of an offline selection

e the objects reconstruction at trigger level
is different from the one used in the final
analysis

e this produces an efficiency curve and a
plateau that can be less than 1



trigger efficiency measurements

e different methods available
e (by means of a software trigger emulator)
e with tag & probe methods
e compare to the efficiency of looser triggers (bootstrapping)
e from a sample defined by an orthogonal trigger
e it changes with respect to the kinematics

e perform measurements as a function of pr, n

18



an example: the tag & probe

e select the object that would fire the trigger in a way
independent of the trigger itself

e count how many times it fires the trigger

L | owsemmen.f-wp' | o under the Z peak basically
§‘°3?: dhjets Lraeongd e ] only the Z production is

N Wijets expected
e given one good lepton, use
the My constraint to

identify it

40 60 80 100 120 140
M,.. (GeV/c?)

e the result has to be corrected for combinatorial background under
the Z peak (or the counting done by fitting the shapes)

e With sufficient statistics the efficiency can be evaluated in bins of
pPT, N ,P

19
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an example: the tag & probe

| Probe muon e triggered by single

. muon trigger

e minimum pr threshold
applied

e basic object of the
muon reconstruction
(track)

e minimum pt threshold
applied

e M(tag,probe)~Mz

Tag muon

nb. of probes that fire the trigger

Emuon tr —

nb. of probes

e both muons might fire the trigger

2I'T +TP  T=Ta
P = Probe that fires a trigger

Emuon tr —
2TT ‘|‘ TP ‘|‘ TF F = probe that Fails a trigger
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bootstrapping

e ask a utility trigger with loose requirements, to check a tight one
e prescale it (it will be needed, as requirements are loose)

e within the events triggered, search the ones that survive the
offline analysis selections and match to the trigger object

e check whether these events would pass also the tight trigger
and get an efficiency

e if the utility trigger is loose enough (es. a calorimetric deposit for
electrons), it can be considered of efficiency 1 and the efficiency
obtained is the one of the tight trigger

keep an eye on the statistics: a utility trigger is given lower rate
+ prescaling => not many events will survive the offline selections

build many utility triggers for different variables, rather that a
single one with everything loose
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other techniques

e use a trigger defined on information independent of the
trigger with unknown efficiency (orthogonal)

e muon triggers to test calorimetry triggers, or vice-versa

e when implementing a trigger for an analysis, need to be sure that
also utility triggers are present, to measure the efficiency of the
main one

e they will probably be prescaled



combining triggers

e to increase the number of signal events, or increase the phase
space covered:

e different energies (with different prescales!)
e different sub-detectors (2 muons in different regions)
e different signals (electrons OR muons)

e different ways to do it

e division: one trigger per phase space region
the simplest, measure the efficiencies separately

e exclusion: one analysis per trigger, according to the one that
has the lowest prescale
better performing

e inclusion: the "OR" of all the triggers is considered
the best one, can become complicated

Combining Triggers in HEP Data Analysis, arXiv:0901.4118

23
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different energies

e choose the trigger as a function of jet energy (division method)
e choose the trigger with lowest prescale (exclusion method)

e select events if they fire any triggers (inclusion method)

Observed numbers of jets Corrected for prescales
n O 10°f .1 e
il | i 1 e — L=1.13fb Midpoint (R=0.7)
= - ® F
° ool fL 1.13 b Midpoint (R=0.7) S ol f
. — Jet20 (prescale=808 &4
O 10® Jet50 Ep = ) - 1085 u Jet20 (prescale=808)
& oF prescale=35) el J lom
D Jet70 (prescale=8) S F et50 (prescale=35)
= —— Jet100 (prescale=1) n 10°F Jet70 (prescale=8)
S 10° L 1055 —— Jet100 (prescale=1)
= =
10° = 1045
13: 3 10°k
1 |
2 10
10 e \— | e 0.1<1Y1<0.7 =
S| 01<YI<0.7 | S 10
CDF Run Il Preliminary | 1 1 = CDF RU.” I Prellmm?ry 1 1 |
wrt © 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
pe : Pgncorrected (GeV/c) P_lIJ_ncorrected (GeV/c)
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the inclusion method

e the "OR" of all the triggers is considered:

no triggers
triggers ~  firad
Pii(evt)=1— ][] (1-Pi(evt))
=1

e for two triggers:

Piot(evt) = Pi(evt) + Pi(evt) — Pyja(evt) Py (evt)
e for the uncorrelated case:

Pioi(evt) = Py(evt) + Pi(evt) — Py(evt) P (evt)
e in general, correlations need to be considered

e instrumental (common inefficient elements, common
electronics, same level 1 trigger)

e physical (jets and track triggers might be correlated)
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a toy comparison

W (7]
e I @ 4000
e 1 3 ' original statistics
-g - - ! [events: 10753)
‘ﬁ | A= 3500 - —~ (= exclusion method
qh) o 8 |5 3 - : [sum: 10912 + 637]
& E 3000
= - - —v— inclusion method
= - [sum: 10898 + 569]
¥ 2500 —
0.6/ s
2000
= = : I
0.4 1500 |7
1000
0.2 C
i 500 —
a) 0— l—"’l“’ o Llllllllll) 1 lllllll 1 1
1 2 3 4 T 2 3 4 § & 7 & 9 1 m

e keep the trigger simple

e the price payed in systematics might not be worth the effort of
combining in the most sophisticated way, or sitting on the turn-on
part of the efficiency curve



physics objects reconstruction
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physics objects reconstruction

e obtain physics objects from the detector response
e hits in the tracker and muon detectors
e energy deposits in the calorimeters

e two ways are available in CMS

e single objects reconstruction: build final objects (e.g. muons,
electrons, jets) from the detector response

e particle-flow reconstruction: build a coherent list of stable
particles and produce the analysis objects on top of them



the cms detector

N electromagnetic

TRACKER”

PIXEL

Jcalorimeter (ECAL)

hadronic
calorimeter
(HCAL)

MUONS

~detectors

29



the particle flow

hits in the cells in the hits in muon
tracker calorimeter detectors
tracker tracks calorimetric clusters muon tracks

!

link the single bjects with geometrical requirements on

the extrapolated trajectories and create blocks

30
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the particle flow

blocks
g the charged energy
A contribution is
identify muons, promote the block measured well from the
DY tracker
“% 1 identify electrons, promote the block K

b match the remaining tracks to clusters, define charged
hadrons and neutrals from calorimetric excess

\* the remaining calorimetric deposits define neutrals

“top projection”

N particles

=0

/the list of particles obtained
* (candidates) is used for high
level objects classification
and reconstruction, to be
used in the analysis

The list of PFCandidates
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muons reconstruction
e high purity = fit with hits in both tracker and muon

e high efficiency = fit in the tracker + confirmation
in the muon detector

e momentum determination from both tracker and
muons information: best resolution from the tracker
for pr < 200 GeV, from the muons above (effect of
multiple scattering)

e above 1 TeV, the bremsstrahlung is significant

CMS preliminary 2010 \s =7 TeV
> % > - | T 1 T 1 | 1 T T 1 | T 1 T 1 E
S E P0O Jy [ P
S10°E ¢ 0) i L dt=35pb"' ]
§ F N 10°E =
w10’ = -~ - - data
‘:% E % B E ZO_>u+“- :
°E - EWK
104:5 <I>J 102k I
g R C () E
- e 1 Y—
8 1 3 5
93 g3 = = 5
c;»%. éb 102_5 8 E
X = CMS Preliminary c E
£8 10 =R
(] = -
- — - \s=7TeV, L_=40pb"
EEU? ET;: C 1 1 lIII 1 1 1 1 llIII 1 1 1 1 llIII 10-1
NIk 1 10 ,10° ) 50 100 150 200
§ | I L mass (GeVIc ) M(H+H-) [GeV]
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electron reconstruction

from ECAL clusters

Tl ) Seeding or tracks:
electron tracking: GSF NN

Brem CF.USt:éf » ..‘;_,':':_

cleaning of GSF track ;::

duplicates

Eleetr?m prack ;/“

i<

| _- ”9 I

Identification of all the
electron energy deposits

in the ECAL , from ECAL footprint or

2% tracks extra polation:

P ECAL
electron 4-mom Pw\  GSF Track [ surface
determination.
ElectronCluster
‘JO.OQ:—” |IRAAAS I I I I I I I I_£| :
/,’ DE o.oeg—',' b) —é ﬂ | ~ ‘
007~ = Extrapolated
- ' ] BremCIuster\\'~ track tangents
0.06:— 'v v ECAL E
Identification against charged- 005 1 .« Combined | 3
particles interacting in the ECAL 0.0~ 3
VE “e.. 1 use ECAL at high pr,
noz 'El,““1lo““115““2|o““2|5 '3|o 315 4|o 4|5 slov‘ tracker at IOW pT

E® (GeV)



Events/0.1 GeV/c?
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electron reconstruction

140 - CMS Preliminary 2010

120
100
80
60
40

20

- 7-TeV data, f L=57.5nb"

Il 1 I Il 1 L 1 l L L 1

Nsig =240+ 19
M = 3.07 = 0.01 GeV/c?
o =93 = 8 MeV/c?

+

hllllllllllllll'lllllll

3.5 4 4.5
m..[GeV/c?]

search for the decay:

J/U — ete”

contamination sources:

e real electrons, either from
photon conversions or from
semi-leptonic b-hadron
decays,

e mis-identified charged
hadrons.

e at most one hit missing in the pixel detector (reduce conversions)

e electrons originate from the same vertex (reduce the b-decay

background)

e quality cuts to reject charged hadrons contamination

e opposite charge
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photons reconstruction

e ECAL clusters not associated to a
track, nor a deposit in the hadronic
calorimeter

e ECAL detector response is calibrated,

to account for the effect of the noise
cut on the single crystals readout

e check the photons energy scale
calibration with 2010 data, by looking
at the n® peak position

e pair all photons with at least 400 MeV
energy

e determine the peak position with a
combined fit of signal + background

Number of photon pairs

Number of photon pairs

20000(-
15000
100001

5000}

2000
1500
1000

500/

mf! = 135.2 = 0.1 MeV/ ¢?
O, =13.2+ 0.1 MeV/ ¢?

+7-TeV Data, 0.1 nb™

CMS Preliminary 2010

02 025 03 035 04 045 05
Mass (GeV/c?)

- .
p e b b by by v by v s b v v b g by ay

mf! = 136.9 = 0.2 MeV/ c?
O, =12.8+ 0.2 MeV/ ¢

<+ Simulation

CMS Preliminary 2010

0.05 0.1

015 02 025 03 035 04 045 05

Mass (GeV/c?)



jet reconstruction

e jets are reconstructed with the AKT5 algorithm

e for the single object reconstruction: with calorimetric deposits

e for the particle-flow: with particle flow candidates

| CMS Preliminary |

500
450
400
350
300
250
200
150
100

50

Number of jets

0

c 03[
= "§ - CMS Preliminary 2010 Inl<1.1
- = i _ _ -1 .
3 | PR § 0.25 Ns=7TeV,L=34pb DiJet Asymmetry
- (1 . 4 Photon+Jet
- ~—— Particle-Flow Jets &" 02k
= = Jet1
= g - A — (pT B pT
= p, =40 - 60 GeV/c K Jetl 4+
— 0<hi<15 0.151- ‘ (pT Pr
C i T
3 [4 o4, 1 4]
= 0.1:— I : i
= 0.05
= [ Anti-k_ 0.5 PFJets
C TR - PRI e L B 1 1 oo 1 ! ] 1
i -08 -06 -04 -0.2 0 02 04 06 0.8 0 40 50 100 200 300 400
A p /p Transverse Momentum [GeV/c]
T 7T

the jet energy resolution measured from 2010 data
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tau reconstruction

e reconstructed as narrow jets in the standard case, as the sum of
the particles compatible with the tau decay in a narrow cone in the
particle flow case

PF objects
algorithm

CMS Preliminary

3000
2500 - “— PFlowTaus
E — CaloTaus
20008~ ~one-based
1500/~  algorithm ml<1.4
1000 S i
500
B L

930 -20 -10 0 10 20 30

AE, [GeV]

reconstructed taus Er compared to the expected one,
test performed on a simulated Z > 1T sample
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missing energy reconstruction

e derived from (minus) the sum of “all the rest”
e sensitive to uncertainties in all the other physics objects

e noise effects, mis-calibrations, etc. generate fake missing energy
in events without missing energy

e perform a test on a di-jet sample

'CMS Preliminary 2010

10* 3000

. CMS Preliminary 2010

Simulation, PF
........ . 7-TeV data, 7.5 nb", PF |
% % : i Simulation, calo
7-TeV data, 7.5 nb™, calo |

= Simulation

2500

103 ........................... ™ 7-TeV data, 7.5 nb'1 ...............

T T T T T TTTTT

2000

.................... data and
~ expectations well
| agree 1000

L |, ....... ,+l ....... 1 ....... l ....... l .............. , ............... i) . 4‘\ l 5 I o

1 1 1 1 1 I 1 | - ol T N W | I Ll 1l I Ll 1l I Ll
20 40 60 80 100 120 0 . . 04 05 06 07 08 0.9 1
EM*S [GeV] EMS/YE,

-
(=
N

cIIII T IIIIIIII T IIIIIIII TTTTT

1500 ..... ..............................

Number of events

-
o

—
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reconstruction: in summary

e the reconstruction obtains from the detector measurements the
physics objects in the final state

e in @ coherent way, to close the kinematics (as much as possible)
e making use of the most precise sub-detector

e reconstruction and identification are not (always) disentangled, for
example electrons need to be separated from jets

e data-driven techniques necessary to assess the performances

-
N

| CMS Preliminary 2010 Anti-k; R=0.5
- \s=7TeV, DATA (6.2 nb") Py >25GeVic

T

B Charged Hadrons

jet composition:
B Photons

only for neutral
hadrons one cannot

profit of tracker

measurements

Neutral Hadrons

© .
[=2]
T T T 1

Electrons

Mean Fraction of Jet Energy
o
T

HF Hadrons
B HF EM particles

S
>
L T

o
N
L T

o
T




detector response

e the detector response is not perfect

e the output of the reconstruction needs to be calibrated for the
detector response

e use known physics processes to get the calibrations and the
relative uncertainty

e for example
e resonances for leptons (energy scale, tag&probe)
e cosmic rays (alignments)
e transverse momentum balances

40
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ECAL calibration

e cach ECAL channel needs a calibration factor to equalize the
response of all detector elements

e for electrons, the energy is measured in the tracker and in the ECAL

e find the calibration coefficients by minimizing a X? of:

energy insingle g |€ X C_— P| 44— electrons momenta
elements © | .
~“unknown coefficients
N - g 3\ 1 ECALB'arreI____; 1400} h
. Eecal/prx I ke ' 0 ideal
. - E %2'5? \Qifferent detector 1000 W 7
] ; § 2f | regions o} calibrated
%1.5;. \ i : IR LR _ 600> 7
O i N [ ] - E
} 1__ J\‘\TQ = 200l LL Il ted
NG ] : not calibrate
| 0-5¢ ”\i\*\\'\\« o \ .
SPTTUTRN TN N0V I obiii R \\'N\. T T T
Tzl S.':Z,t.',slPln4 10 107 10° Higgs Mass (GeV/c?)
HLT events per crystal
select good statistical trend with effect on H-YY

isolated electrons luminosity invariant mass
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jet energy corrections

e the jet energy scale needs to be calibrated, as a function of various
variables

Mandatory Optional

L1: L2: n L3: pr L4: L5: L6: L7:
Offset ]| Relative | Absolute | “EMF” Flavor UE Parton

-y Tjet balance in the
transverse plane

. tag&probe like: di-jets \\ //
detECtOr n0|se g p J Pret \Jetenergyscale
effects, pile-up events assumed to be P

! balanced, get a relative /'\
correction L
Barrel Jet [ e pETO%e  phorrel e Wt
: pT - 2 J @ radiation
p%arrel > — — L Photon parton v
_ Pr . —DPf
"""""""""""""""""""""""""""" B = pdijet Photon particle
T
robe ; < OM/
p?} : . 2+ < B > \_/
PrObe Jet "= 2— < B> reco:Photon |~ Photon energy scale




the simulation
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the simulation

Nobs — kag

0O —

& = &tr "Ereco - EIDf Esel '

e calculate what fraction of events from a given decay falls within
the detector acceptance and the selections of the analysis

e need a forecast of how the event develops in space, after the
interaction

e the simulations are necessary both for known physics objects (Z,
W production) and, of course, to build searches for new physics

e the uncertainty in the input parameters is source of systematics
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the simulation

e calculate inclusive cross-sections

e calculate differential cross sections as a function of variables of
interest in the analysis

e provide simulated events, that mimic Physics, and have on
average the behaviour foreseen by the theoretical model

v, W, Z, etc.

Underlying
LHC Hard Scatter Event detector

P Distributio

parton probability Jet

distribution in the i,
proton radiation in the
process

activity due to the
proton remnants
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the physics event generation

add the underlying
event

2,

let hadronic decay

hadronize partons

2

add the parton
showers

add initial and final
state radiations

2,

generate hard process

Decay

Hadronization

Parton
Shower

Hard
SubProcess

Parton
Distributions

detector

7 Minimum Bias
+ . .
Collisions

f(x,Q?) f(x,Q%)

LHC




the simulation of the detector

e ecach experiment creates a simulation of the detector

e the GEANT program uses generator output (4-vectors) and
simulates the interaction of particles within the detector
volume (need a good description of the geometry):

e particle ionization in trackers
e energy deposition in calorimeters
e intermediate particle decays/radiation

e the GEANT code is merged with (experiment specific) detector
simulation

e final output: the response of the electronics readout

e MC events are in the same format as real raw data
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the samples processing

Reality MC (Virtual Reality)
\ / Generates 4-vectors for the
particles, resonances, ang.
Events (beam) Event Generator dist., decays, etc.
(PYTHIA, HERWIG,
l +MC "truth" l ALPGEN, Sherpa...)
Data Acquisition Detector Simulation ~ ©enerates detector
relevant quantities
\ +MC "truth” / (GEANT 4)
Reconstruction, Event Selection Apply boundary conditions
Acceptance

l l+MC "truth”
Inv. mass, efficiency, purity

Physics Analysis backgrounds, any dist.
1 l +MC "truth" Y
Result Precision ~ 1/V.V

usually:
MC Data
signal > signal

NME <« NP2 ey

R. Van Kooten, Experimental Techniques backg backg
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levels of simulation

Three typical levels of MC simulation:

* Full

Particle — Energy  Detector Electronics —- Analog

Deposit  Response Signal
Time consuming, smaller samples

— Digitization

 "Fast" or parameterized
Intelligently smeared 4-vectors, effiiciencies, noise (from data and full MC)
And/or calorimeter shower libraries
Larger samples

* Toy
Only throw from the handful of prob. dist. functions that you care about
(with correlations)

"Roll your own", usually write (easy in root!) and run yourself
Crazy-large samples, quickly
To determine probability of fluctuations, checks for systematic effects, etc..

R. Van Kooten, Experimental Techniques



comparison with data

e the simulation is a multi-dimensional parametrization of the
knowledge of the detector and standard model predictions

e is the theoretical simulation correct for the analysis?

e additional jets production is crucial for analyses that apply a
jet veto

e spin correlations in the Higgs decay need to be treated
correctly

e is the behaviour of the simulation in agreement with data, in
the phase space of interest for the analysis?
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the pile-up
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the pile-up
e At LHC, the interaction rate is higher than the bunch crossing rate
e Within a bunch crossing in LHC, more interactions happen

e An event of interesting physics will be recorded together with
other events overlapped, that are proton-proton interactions
with low physics interest

e they are equivalent to a non-interesting event (minimum bias)

0.40

0351 7% o \=1 e given an average number of

030 e \=1 interactions, the number of PU
. 0.25 ° A=10 events per bunch-crossing is
1620 | pa expected to have roughly a
So1sl 4 poissonian distribution

0.10 o o

0.05 P o , Ce . o

000, 2cn0nnn RaaaaaaaRons |
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measure the pile-up

e multiply the luminosity (per bunch) by the minimum bias cross-
section (71.3 mb) gets the expected rate per bunch:

Ratepiteupy 1« = Lrings * Orminimum bias
PHEUPxing Is ~xing.ls T Yminimum bias

e divide by the revolution frequency of a bunch to get the number of
PU events:
.

L xing.ls ° Ominimum bias

xXing.ls cirulation rate

v bi leup

e calculate average distributions over longer periods, weighting by
the luminosities



effects of pile-up

e fill in the detector with deposits:
e jet reconstruction algorithms incorporate pile-up deposits
e lepton isolation cones are filled in with pile-up deposits
e hew jets might appear in the event
e more hits in the tracker appear
e the trigger is affected

e MET resolution worsens
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how to deal with it

e apply strict requirements on the
vertexing of tracks - need a precise
vertex reconstruction algorithm i S

_._.
(=2 L=
[
~

&

Reco Vertices
~ =
T T

L

-
=l

L J

-

=
?
¢

e measure the pile-up density event by
event, and use it to subtract from the
jets energy a pile-up term (Fastlet) £ &

e do the same with isolation cones ¥

Mean
Meany 6.
6.

RMSy

RMS

0 5 10 15 20

1251
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Pileup Interactions

e subtract in the isolation cone the contribution of tracks that do

not aim at the same vertex of the lepton

e reconstruct the MET only with particles that aim at a given
vertex

M. Cacciari, G. Salam and G. Soyez, Fastlet http://www.lIpthe.jussieu.fr/~salam/fastjet/
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