Lecture 6

Physics Program of the experiments at Large Hadron Collider

Precision measurements with W and Z bosons

12-18 November:

http://www.icepp.s.u-tokyo.ac.jp/hcp2012/ Hadron Collider Physics conference in Japan

Still count for another ~3fb⁻¹ to come during ~20 days of pp physics left to go in 2012

The Standard Model

Describes know particle and interactions

- Does not (verifiably) describe
- → Spontaneous symmetry breaking U(1)xSU(2)

->Fermion masses

The Standard Model

Describes know particle and interactions

Does not (verifiably) describe

 \rightarrow Spontaneous symmetry breaking U(1)xSU(2)

→ Fermion masses

Simple elegant solution: Higgs mechanism

→ Explains EWSB (and fermion masses)

 \rightarrow Physical manifestation is Higgs boson

Precision measurements

Z-boson line shape

W boson mass

What does the W mass tells us

- Electroweak sector of the standard model (SM) is constrained by $G_F = 1.16637(1) \times 10^{-5} \text{ GeV}^{-2}$ $\alpha_{EM}(Q^2 = M_Z^2) = 1/127.918(18)$ $m_Z = 91.1876(21) \text{ GeV}/c^2$
- These inputs give a prediction of m_W

$$m_W^2 = \frac{\pi \alpha_{em}}{\sqrt{2}G_F \sin^2 \theta_W (1 - \Delta r)} \qquad \qquad \sin \theta_W^2 = 1 - \frac{m_W^2}{m_Z^2}$$

Radiative corrections Δr dominated by top and Higgs loops

 Precision measurements of m_W and m_{top} constrain SM Higgs mass Where should the Higgs be?

Measurements of mW

- State-of-the-art (Jan 2012)
 - DØ M_W=80401±43 MeV [1 fb⁻¹, e]
 PRL 103:141801 (2009)
 - CDF M_W=80413±48 MeV [200 pb⁻¹, e+µ]
 PRL 99:151801 (2007)
 PRD 77:112001 (2008)
 - Combining with LEP $\Delta M_W = 23 \text{ MeV}$
- Achieved: exceed precision of e⁺e⁻ machine measurements with hadron collider
- *Goal:* match precision of all previous measurements with single CDF measurement

The Tevatron at Fermilab

- 1.96 TeV ppbar collider
 - Highest energy collider in the world
 - Typical inst. lumi.: 3x10³² cm⁻²s⁻¹
 - 2011 LHC: ~3x10³³ cm⁻²s⁻¹
 - Bunch spacing: 396 ns
 - 2011 LHC: 50 ns
- Ceased operations Sep 30, 2011
 - ~12 fb⁻¹ delivered to CDF and DØ
- Analysis presented utilizes 2.2 fb⁻¹

CDF(II) (2001-2011)

W and Z at Tevatron

 $\sigma(p\overline{p} \rightarrow W^{\pm} \rightarrow I_{V}) \sim 2700 \text{ pb}$

 $\sigma(p\overline{p} \rightarrow Z^0 \rightarrow I^+I^-) \sim 250 \text{ pb}$

- Probe QCD and EW interactions
 - Hard and soft gluon emission
 - Sensitive to parton distribution
- Leptonic decay used for precision measurements
 - Extract Electro-weak (EW) parameters: $sin^2\Theta_w$ and m_w
- In 1fb⁻¹/experiment: $W \rightarrow Iv = 10^6$ events, $Z \rightarrow ee = 10^5$ events
 - High statistics samples and low background

Detecting W and Z

Z→ |+|⁻

- Signature: pair of charged leptons with opposite sign charge
 - Leptons are high p₁ and isolated
- Peak in l⁺l⁻invariant mass

$$W \rightarrow |^{\pm} v^{\pm}$$

- Signature: single charged lepton and missing transverse energy (MET)
 - Leptons are high p₁ and isolated
 - MET from neutrino
 - \square p_Tv is inferred
- Peak in transverse invariant mass

W mass measurement strategy

- At hadrons colliders, rely on transverse variables: m_{τ} , p_{τ}^{+} , MET (inferred neutrino p_{τ})
 - Requires precise measure of charged lepton p_{τ} and hadronic recoil
 - Requires detailed knowledge of the detectors

Precision

- · Start with clean, low-background events
 - · i.e., no taus, no hadronic decays
- Lepton p_T carries most information
 - Precision achieved: 0.01%
- Hadronic recoil affects inference of neutrino energy
 - Calibrate to ~0.5%
 - Reduce impact by requiring p_T(W) << M_W
- Need:
 - Accurate theoretical model
 - Including boson p_{T} model and QED radiation
 - Tunable fast simulation
 - Parameterized detector description for study of systematic effects
 - Large data samples of well-measured states
 - Various dimuon resonances
 - Z boson

Experimental observables

- Custom fast Monte Carlo makes smooth high-statistics templates. Perform binned maximum likelihood fits to the data
 - And provides analysis control over key ingredient of the simulation

Lepton energy/momentum scale

- Calibrate calorimeter using precisely M₂ from LEP
- Detailed corrections for uninstrumented regions

- ¹ Calibrate lepton momentum scale using Y, J/ Ψ , m_z
- Calibrate calorimeter against precision tracker (E/p), M_z

Dominant systematic uncertainty (Do: 34 MeV, CDF: 17/30 MeV e/μ)

E. Richter-Was

Recoil model

Recoil model

Recoil due to:

- QCD radiation "recoil" against W
- Underlying event
- Overlapping min bias

 Use Z→ ee (D0 and CDF) + Z→ μμ (CDF) balancing to calibrate recoil energy scale and to model resolution

Systematic uncertainty on M_W : Do: 6 MeV m_{TW}, 12 MeV p_T CDF: 9 MeV m_{TW}, 17 MeV p_T

Events generation and boson pT

- Generator level simulation from RESBOS¹
 - QCD effects, tunable parameters for nonperturbative regime (low-p_T)
- QED radiation simulated by PHOTOS²
 - FSR multiphoton simulation
- Fit parameters in boson p_T shape
 - Low p_T sensitive to g₂
 - Intermediate-high p_T sensitive to a_s
- Tuning with Z data applied to Ws

¹C Balazs and C-P Yuan, PRD **55**, 5558 (1997) ²P. Golonka and Z. Was, Eur. J. Phys. C **45**, 97 (2006) ΔΜ_W =5 MeV

Mass fit

p_T^I: electrons

m_T: muons

			CDF II	$\int L dt = 2.2 \text{ fb}^{-1}$	
Fit	Fit result (MeV)	χ²/dof	Muons: p _T	● 80406 ± 30	
W→ev (m _T)	$80408 \pm 19_{stat} \pm 18_{syst}$	52/48	Muons: p _T	80348 ± 25	
W→ev (pтl)	$80393\pm21_{stat}\pm19_{syst}$	60/62	Muons: m	80379 + 23	
<i>W→еv</i> (рт ^ν)	80431±25 _{stat} ±22 _{syst}	71/62			
<i>W→µv</i> (m _T)	$80379 \pm 16_{stat} \pm 16_{syst}$	58/48	Electrons: p_T^v	⊷ 80431 ± 33	
<i>W→µv</i> (рт ^I)	$80348 \pm 18_{stat} \pm 18_{syst}$	54/62	Electrons: p ^l _	● 80393 ± 28	
<i>W→µv</i> (pт ^v)	80406±22 _{stat} ±20 _{syst}	79/62			
			Electrons: m _T	••• 80408 ± 26	
			80100 80200 80300 8	0400 80500 80600	
			W boson mass (MeV/c ²)		

Combined results

All electron fits combined

 $M_W = 80406 \pm 25 \text{ MeV}, \chi^2/\text{dof} = 1.4/2 (49\%)$

All muon fits combined
 M_W = 80374 ± 22 MeV, χ²/dof = 4/2 (12%)

All fits combined

M_W = 80387 ± 19 MeV, χ²/dof = 6.6/5 (25%)

	Uncertainty
Source	
Lepton energy scale	7
Lepton energy resolution	2
Recoil energy scale	4
Recoil energy resolution	4
Lepton removal	2
Backgrounds	3
рт (W) model	5
PDFs	10
QED radiation	4
Total systematics	15
W statistics	12
Total	19

 $M_W = 80387 \pm 12_{\text{stat}} \pm 15_{\text{syst}} \text{ MeV}/c^2$

Combined uncertainties

	Source	Uncertainty 2.2 fb ⁻¹ (MeV)	Uncertainty 0.2 fb ⁻¹ (MeV)
Otatiatian limitad by	Lepton energy scale	7	23
control data	Lepton energy resolution	2	4
oonnor data	Recoil energy scale	4	8
	Recoil energy resolution	4	10
	Lepton removal	2	6
	Backgrounds	3	6
	p⊤ (W) model	5	4
Theory based	PDFs	10	11
(external inputs)	QED radiation	4	10
	Total systematics	15	34
	W statistics	12	34
	Total	19	48

$M_W = 80387 \pm 12_{\text{stat}} \pm 15_{\text{syst}} \text{ MeV}/c^2$

Tevatron and world combinations

Sidetrack down memory lane

Standard Model fit

Standard Model fit

Testing Standard Model

After 4th July Day...

If we use the measured mass of the Higgs-like boson (125.7±0.5 GeV) to constrain the W boson mass based on SM, we get:

 $m_W = 80.360 \pm 0.011 \text{ GeV}$

Comparing with the current world average directly measured value: $m_w = 80.385 \pm 0.015 \text{ GeV}$

This is a way to precisely test the SM, and the observed Higgs-like boson.

Gfitter, arXiv:1209.2716

But we need to improve the precision on the W mass measurement.

Uncertainty projection

- Projection assumes PDF+QED errors (11 MeV) fixed
 - Become limiting uncertainty for measurements with full Tevatron dataset

Systematics

	10 MeV full stat		
CDF and DØ in progress toward full stat	: 10 fb-1	7	
Uncertainty	DO	CDF	5 MeV
Lepton energy scale/resn/modelling	17	7	Full stat
Hadronic recoil energy scale and resolution	5	8	
Backgrounds	2	3	
Parton distributions	(11)	10	
QED radiation	Y	4	
$p_T(W)$ model	2	5	
Total systematic uncertainty	22	15	8
W-boson statistics	13	12	
Total uncertainty	26 MeV	19 MeV	

CDF 2.3 fb⁻¹ $m_W = 80 387 \pm 19 \text{ MeV } e/\mu : m_T, p_T^{-1}, p_T^{-\nu}$ combined DØ 4.3 fb⁻¹ $m_W = 80 367 \pm 26 \text{ MeV } e : m_T, p_T^{-1}$ combined DØ 5.3 fb⁻¹ $m_W = 80 375 \pm 23 \text{ MeV}$ combined with 1 fb⁻¹

World combination

A lot of progress at Tevatron !!

Conclusions on m_w measurement

- CDF has performed the most precise measurement of the W boson mass
 - *M_W* = 80387±19 MeV [*Phys. Rev. Lett.* **105**, 158103]
 - More precise than all previous measurements combined
 - Improves world average uncertainty from 23 MeV to 16 MeV
- New combinations (including DØ [Phys. Rev. Lett. 105, 158104])
 - **Tevatron:** $M_W = 80387 \pm 16$ MeV (TeVEWWG, preliminary)
 - World: M_W = 80385±15 MeV (TeVEWWG, preliminary)
- Results in SM fits of $M_H < 152 \text{ GeV} @ 95\% \text{ CL}$
 - Previously *M_H* < 161 GeV @ 95% CL
 - M_W still is the limiting factor in M_H prediction
- Full Tevatron dataset (~10 fb⁻¹) on hand
 - $\Delta M_W < 15$ MeV per experiment achievable

Is this precision good enough?

W mass is a key parameter in the Standard Model (SM). The model does not predict the value of the W mass but its relation with other experimental values

$$\mathsf{m}_{\mathsf{W}} = \sqrt{\frac{\pi \alpha}{\sqrt{2}G_F}} \frac{1}{\sin \theta_W \sqrt{1 - \Delta r}}$$

radiative corrections (Δr) depend on $m_t \sim m_t^2$ and on $m_H \sim log(m_H)$. They include diagrams like these:

Precise measurement of the m_w and m_t constrains SM Higgs mass

For equal contribution on the Higgs mass uncertainty need: $\Delta m_W \sim 0.006 \Delta m_t$ $m_t = 173.2 \pm 0.9 \text{ GeV} \text{ (world average)} \rightarrow \Delta m_W \sim 5 \text{ MeV}$ actual world accuracy is: $\Delta m_W = 15 \text{ MeV} \rightarrow \text{the limiting factor here is } m_W \text{ and not } m_t$

Additional contributions to Δr arise in various extension of the SM e.g in SUSY

W width

Internal consistency check of SM

W width

W width

Relatively to m_w it is a straightforward measurement (i.e. 2 years instead of 5 years) It is a counting experiment and LHC has a lot of statistics

DY forward-backward asymmetry

• Direct access to vector and axial couplings $g_v^f = I_3^f - 2q_f \sin^2 \theta_W$ both γ^* -f and Z-f couplings $g_a^f = I_3^f$ Z-f only coupling

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*} \sim \frac{3}{8} (1 + \cos^2\theta^*) + \mathbf{A_{FB}} \cos\theta^*$$

- $\cos\theta^* > (<) \mathbf{0} \rightarrow \text{forward} (backward)$ events
- θ^* is the angle of the negative lepton relative the quark momentum in the dilepton centre-of-mass frame
- Minimize the effect of unknown p_T of incoming quark by measuring θ^* in the **Collins-Soper** frame

Coulings

DY forward-backward asymmetry

- Asymmetries at the Z pole dominated by lepton couplings \rightarrow sensitivity to $\sin^2 \theta_{eff}^l$
- Deviations from SM may indicate presence of new particles (Z' at high masses)

DY forward-backward asymmetry

{qq}→Z→{e⁺e⁻} PRD 84, 012007 (2011)

Effective weak mixing angle

In the vicinity of the Z pole, A_{FB} is sensitive to the effective weak mixing angle

Phys.Rev.D84 (2011) 112002

First measurement at LHC by CMS 0.229 +/-0.020+/-0.025 using 1 fb⁻¹ of data

DY forward-backward asymmetry

arXiv:12-7.3973, submitted to PLB

Collins-Soper frame

• Collins-Soper frame : the center of mass frame of dilepton

***All higher order terms are zero at Pt=0

14 November 2012

Z/g* Angular Coefficients

- First measurement of the $p\overline{p} \rightarrow Z/\gamma^* + X \rightarrow e^+e^- + X$ angular distributions with 2.1 fb⁻¹
- Angular distributions of the lepton decay in the Collins-Soper frame are:

 $\frac{d\sigma}{d\cos\theta} \propto (1+\cos^2\theta) + \frac{1}{2}A_0(1-3\cos^2\theta) + A_4\cos\theta$

 $\frac{d\sigma}{d\varphi} \propto 1 + \frac{3\pi}{16} A_3 \cos \varphi + \frac{1}{4} A_2 \cos 2\varphi$

PRL 106, 241801

- \cdot Perturbative QCD makes definite predictions on $A_{0,2,3,4}$ depending on the dilepton p_{T}
- \cdot At order $\alpha_{{}_{\!\!s}}$ the Z/ $\!\gamma^*$ boson can be produced via annihilation or Compton scattering
- Probe the contribution of different productions
 mechanisms contributions

A_4 vs A_{FB}

A₄ has a direct relation with A_{fb}

- A₄ is sensitive to weak mixing angle, sin²θ_W
- A_{fb} has the mass, P_T, and y dependence
 - P_T and y dependence is much smaller than the mass dependence
 - A_{fb} in mass gives more sensitivity to extract the physics quantities
 - Physics quantities : sin²θ_W, quark couplings

Z/γ^* Angular Coefficients (A_{0.2})

- At order α_s , both A_0 and A_2 should be the same for Z and γ^* , but they have distinct Z p_T dependencies for annihilation or Compton scattering
- The A_{0,2} trends as a function of Z p_T reveals the two Z production processes contributions, e.g. in Z +1 Jet PYTHIA simulation a significant Compton scattering contribution is expected (~30%)
- Lam-Tung relation predicts A₀=A₂ at LO and nearly the same at all orders
- · Lam-Tung relation is valid for spin-1 gluons, but it is broken for scalar gluons
- First measurement of the Lam-Tung relation at large dilepton mass and high transverse dilepton p_T
- Fundamental test of the vector nature of gluons

Z/γ^* Angular Coefficients (A_{3.4})

The Standard Model at LHC

SM measurements are the foundations of all searches (summer 2012)

The Standard Model at LHC

SM measurements are the foundations of all searches (summer 2012)

Next topics

- 21.11 Top: xsection, mass
- \geq 28.11 Dibosons and anomalous couplings
- 5.12, 12.12 Higgs
- > 19.12 **SUSY**
- 9.1 other searches for New Physics
- 16.1 B-physics programme
- 23.1 heavy ion programme