Lecture 3

Physics Program of the experiments at Large Hadron Collider

Hard QCD Jets Photons

News of last week

Very good week, with nice and long fills ... Delivered luminosity in the last 7 days: 1.14 fb-1 !! 38% of the time spent in stable beams.

ramp & squeeze 9%

News on the Schedule

									lons available			End physics		
	Oct		Nov					again			Dec		us:boj	
Wk	40	41	42	43	44	45	46	ſ	47	40	49	50	51	52
Mo	1		15	22	29	5	5 13	12	Scrubbing	25 os obysics		3 10	17	24
Tu				-					25 ns set-up					Xmas
We		MD 3		500+ m [24 h]										
Th										_		•	STA	
Fr								٦	MD 4				3174	
Sa							Scrubbing							
Su							(date tbc)							

Typical pp collision

The underlying event

- Transverse region particularly sensitive to multiple (parton) int's.
- All commonly used MC models predict too little transverse activity

Understanding cross-section at LHC

QCD factorisation and parton model

- Asymptotic freedom guarantees that as short distances (large transverse momenta) partons in the proton are almost free
- Sampled "one at a time" in hard collisions
 - QCD improved parton shower model

Perturbative QCD in the LHC era

Tuned event simulation (parton shower + UE) MC interfaced with LO or NLO hard scattering MEs

LO, NLO, NNLO, ... supplemented by resummed NⁿLL improvements, EW corrections

Parton distribution functions

 The QCD factorisation theorem for hard scattering (short distance) inclusive processes

$$\begin{array}{lll} & \sigma_{X} & = & \displaystyle{\sum_{\mathbf{a},\mathbf{b}} \, \int_{\mathbf{0}}^{1} d\mathbf{x}_{1} d\mathbf{x}_{2} \, \mathbf{f}_{\mathbf{a}}(\mathbf{x}_{1},\mu_{\mathrm{F}}^{2}) \, \mathbf{f}_{\mathbf{b}}(\mathbf{x}_{2},\mu_{\mathrm{F}}^{2})} \\ & \times & \hat{\sigma}_{\mathbf{a}\mathbf{b}\rightarrow X} \left(\mathbf{x}_{1},\mathbf{x}_{2},\{\mathbf{p}_{i}^{\mu}\};\alpha_{S}(\mu_{\mathrm{R}}^{2}),\alpha(\mu_{\mathrm{R}}^{2}),\frac{\mathbf{Q}^{2}}{\mu_{\mathrm{F}}^{2}},\frac{\mathbf{Q}^{2}}{\mu_{\mathrm{F}}^{2}}\right) \end{array}$$

The impact of NLO

Shown only scale variation μ_{R} and μ_{F}

Parton distribution functions

10°

How PDF's are obtained?

- Choose a factorisation scheme (e.g. MSbar), and an order of perturbation theory (LO, NLO, NNLO) and a starting scale Q₀ where pQCD applies (e.g. 1-2 GeV).
- Parametrise quark and gluon distributions at Q₀, e.g.

$$f_i(x, Q_0^2) = A_i x^{a_i} [1 + b_i \sqrt{x} + c_i x] (1 - x)^{d_i}$$

- Solve DGLAP equations to obtain the pdfs at any x and $Q>Q_0$; fit data for parameters (A_i , a_i , ... α_s)
- Approximate the exact solutions (e.g. interpolation grids, expansions in polynomials etc), just output "global fit" is available for users

SUBROUTINE PDF(X,Q,U,UBAR,D,DBAR,...,BBAR,GLU)

output

Anatomy of global PDF fit

HERA + ATLAS global PDF fits

Different centre-of-mass energies probe different x and Q^2 values for the same p_T and rapidity ranges.

Increased sensitivity to PDFs expected when both sets of jet cross section data are analyzed together

After inclusion of the ATLAS jet data:

- \Rightarrow gluon distribution (xg) tends to be harder with a reduction in the uncertainty
- \Rightarrow sea quark distribution (xS) tends to be softer for high x resulting in a larger uncertainty

Short-distance cross-section in perturbation theory

$$\hat{\sigma}(\alpha_s, \mu_F, \mu_R) = [\alpha_s(\mu_R)]^{n_\alpha} \left[\hat{\sigma}^{(0)} + \frac{\alpha_s}{2\pi} \hat{\sigma}^{(1)}(\mu_F, \mu_R) + \left(\frac{\alpha_s}{2\pi}\right)^2 \hat{\sigma}^{(2)}(\mu_F, \mu_R) + \cdots \right]$$

$$LO \qquad NLO \qquad NNLO$$

$$Leading-log predictions only qualitative due to poor convergence of the expansion in $\alpha_s(\mu)$

$$Traditional estimate error bands by varying combined renormalisation and factorisation scales $\mu_R = \mu_F = \mu$
from ½ to 2 times the typical scale$$$$

Elzbieta Richter-Was

Lectures on LHC physicu

10

Q [GeV]

1

100

QCD hard scattering processes

- Measuring those processes test our understanding of:
 - Partonic structure of protons
 - QCD scattering via calculations of N(NLO)
 - Hadronisation/underlying event
 - What makes a good jet algorithm
 - Data driven background estimates for rare processes

Available predictions

- Accurate predictions for dijet production, W/Z/gamma + jets production at the LHC are available
 - Monte Carlo event generators
 - NLO + parton shower (MC@NLO, POWHEG)
 - LO (many legs) + parton shower (Alpgen, MadGraph, Sherpa)
 - Parton level codes for distributions at NLO
- Modern parton distribution functions

Inclusive jet production

Jet reconstruction in ATLAS

 Jet finding: from partons/particles/energy deposits to jet

Energy deposits \rightarrow noise-suppressed **3D clusters**: exploit transverse and longitudinal calorimeter segmentation

Jet inputs clustered with anti- k_T algorithm:

- Infrared safe, collinear safe (\Rightarrow NLO comparisons)
- Regular, cone-like jets in calorimeters
- Distance parameter 0.4, 0.6

Jet reconstruction in ATLAS

Jet calibration:restore the jet energy scale (JES) starting from the EM energy scale

Transitions between separate calorimeters evident. η -dependent jet calib corrects for response diffs in η

Calorimeter jet response needs to be corrected for :

- Non-compensating calorimeters
- Inactive material
- Out-of-cone effects

 \Rightarrow calibrate the jet kinematics to the hadronic scale

Jet energy calibration

- Jet measurements require calibration of the jet energy scale
 - Derives a calibration which restores average JES with (η,E)dependent calibration constants from MC

Central region ($|\eta| < 0.8$), $60 < p_T < 800$ GeV < 2.5%Forward region ($3.6 < |\eta| < 4.5$), $p_T > 20$ GeV < 12%

Jet energy calibration

- In-situ techniques used to validate JES and its uncertainty
 - Use well calibrated objects as reference for jet p_{τ}
 - Compare calibrated JES in data and Monte Carlo simulation

Techniques used in ATLAS:

- Balance high p_T jet with recoil system (*Multi-jet / MJB*)
- γ -jet direct p_T balance
- Missing-E_T projection fraction (MPF)
- Compare calorimeter jets to track-jets
- $Z \rightarrow ee$ -jet p_T balance (2011 only)

ATLAS goal for jet energy scale uncertainty: 1%

Achieved with 2011 data in central region !!!

Inclusive jet cross-section

Using 37 pb^{-1} pb of data, increasing the kinematic range of

Comparison of data to NLO pQCD predictions with CTEQ 6.6.

10²

uncertainties

Non-pert. corr.

NLO pQCD (CTEQ 6.6)

[\] 10²⁴ 10²¹ 10¹⁸ 10¹⁵

^d/_d^{10¹²} ^d/_p/₂^{10⁹}

 10^{6}

10³

10⁻³

10⁻⁶

10⁻⁹

 $0.3 < |v| < 0.8 (\times 10^{5})$

10³

p_T[GeV]

ATLAS Preliminary

Inclusive jet cross-section

 $\label{eq:prediction w.r.t NLOJet++ MC} \end{tabular}$

 $AMBT1,\,AUET1$ are different detector tunes

Powheg predictions are consistent with data and NLOJet++, with present uncertainties Trend for Powheg to predict different slope to cross section

Elzbieta Richter-Was

Inclusive jet cross-section

Ratio of inclusive jet cross section measurement in data and MC, with various PDFs

Dijet cross-section

R = 0.4

Observing masses up to 4.1 TeV, new energy range!

Powheg systematically predicts higher cross sections at low mass, and lower prediction at high mass, than NLOJet++

ATLAS high mass dijet event

2011 data event with dijet mass of 4040 GeV $\,$

ATLAS high E_T jets

Multi jet cross-section

- Fundamental and direct test of QCD
- Main systematics: JES and "close-by jets" effect

Find ALPGEN better describes data

Ratio $\sigma(3-jet)/\sigma(2-jet)$ much smaller uncertainties

Studies of higher order QCD radiation

- Azimuthal decorrelations in dijet events and distribution of energy within jets sensitive to QCD radiation structures
 - Probing higher order QCD radiation
 - Main systematics: cluster energy scale (separate from JES) and unfolding

Azimuthal decorrelations

- Complementary to multi-jet cross section measurement.
- Pure di-jets have azimutal angle
 Φ between jets equal to π.
- With additional hard radiation, i.e. extra jets, phi becomes smaller.

• Requiring additional jets flattens distribution.

Elzbieta Richter-Was

Jet substructure

- Jets are both complete 4-vectors and complex composite objects.
- At LHC energy decays of top, W, etc decays can be collimated into one jet
- Knowledge of the internal jet substructure is important in distinguishing these decays from gluon or quark initiated jets
- Internal structure of energetic jets is mainly dictated by emission of multiple gluons from primary parton
 - Calculable in pQCD

Differential jet shape

$$\rho(r) = \frac{1}{\Delta r} \frac{1}{N_{jet}} \sum_{jets} \frac{p_T(r - \Delta r/2, r + \Delta r/2)}{p_T(0, R)}, \Delta r/2 \le r \le R - \Delta r/2$$
(1)

Integral jet shape

$$\Psi(r) = \frac{1}{N_{jet}} \sum_{jet} \frac{p_T(0, r)}{p_T(0, R)}, 0 \le r \le R$$
(2)

Jet substructure

Differential jet shapes vs jet p_T , integrated over |y| < 2.8

- As expected, jet narrows with increasing p_T
- Data compared to various MC predictions
 - PYTHIA-Perugia2010
 - PYTHIA-MC09
 - \bullet Herwig++
 - Alpgen (with Herwig+Jimmy)
- General agreement, although Herwig++ predicts jets too narrow

Jet substructure studies have matured well beyond comparisons of quark- and gluon-initiated jets in event generators:

b-jet cross-section

b-jet tagger "SV0"

- Iterative secondary vertex seeding from track pairs
- separation power from decay length significance

Also tag b-jets with muon decay

- Determine the relative distance between jet axis and muon
- Fit templates for *b*-jet contribution

b-jet cross-section

• MC@NLO+Herwig predicts too few central jets, too many forward jets

Inclusive bb-jet cross-section

- PYTHIA MC10 and Powheg show good agreement
- MC@NLO does not model the data, especially at high dijet mass

Why measure prompt photons?

Prompt and isolated photons

- Prompt:
 - Direct from the hard scattering
 - Parton fragmentation more important at low E₁

Isolated:

- Isolation criteria to reduce bgd from QCD jets
 - Photons from neutral meson decay in jets
- Reduced fragmentation component:
 - ~30% reduction at 15 GeV
 - <10% above 35 GeV</p>

Measuring photons with ATLAS

Photon identification

for unconverted and converted photons

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R

'n

0.1

ratio

0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9

Ε

Elzbieta Richter-Was

Photon isolation

- Define isolated photon comparable to theory
- Isolation corrected event-by-event for leakage, pile-up, underlying event. Average 450-550 MeV

Photon identification efficiency

From MC, corrected for Data/MC discrepancies

- Separately for converted and non-converted γ
- Combined in $\gamma\gamma$ spectrum according to $\gamma\gamma$ E_T spectrum and conversion composition

Inclusive cross-section

- Measured in 4 rapidity ranges
- Here example for central barrel

Diphoton cross-section

- Background estimated with two methods:
 - ABCD method: extrapolate from the bgd enriched control regions
 - here shown example of 2D template fit

ABCD method

 $N^A - N^B \frac{M^A}{M^B}$ $N^B M^A$ Р

- Signal purity > 90% for E₁>50 GeV
- Main systematic uncertainties:
 - MC inputs (corrections to isolation definition)
 - Bgd control region definition

Isolated di-photon cross-section

- Measured with 2010 data (35pb-1) production cross-section for isolated photons and isolated diphotons
 - Isolation energy corrected eventby-event for pileup and UE
 - Data driven background subtraction
- Results in good agreement with TH pQCD predictions, some differences observed
 - □ Inclusive production at low ET (fragmentation, k_{T} factorisation)
 - Azimuth separation for diphoton production (resummation)

Isolated di-photon cross-section

Elzbieta Richter-Was

- The LHC era allowed us to verify QCD in new kinematic regimes, good testing ground for predictions
- Current understanding of detectors allows to do precision QCD measurements.
- Already now data allows to discriminate between different MC predictions (theoretical models)

Next topics

- 7.11 W, Z bosons: inclus. cross-sections, W/Z+jets
- > 14.11 W, Z bosons:precise measurements
- > 21.11 Top: xsection, mass
- \geq 28.11 Dibosons and anomalous couplings
- ▶ 5.12, 12.12 Higgs
- > 19.12 **SUSY**
- 9.1 other searches for New Physics
- 16.1 B-physics programme
- > 23.1 heavy ion programme

ATLAS Detector

THE ATLAS DETECTOR IS REALLY BIG!

- Length : $\sim 46~{\rm m}$
- Radius : \sim 12 m
- Weight : ~ 7000 tons
- $\sim 10^8$ electronic channels
- 3000 km of cables

Transverse momentum

(in the plane perpendicular to the beam)

 $p_T = p \sin\theta$

$$\begin{array}{l} \theta = 90^{\circ} \quad \rightarrow \ \eta = 0 \\ \theta = 10^{\circ} \quad \rightarrow \ \eta \cong 2.4 \\ \theta = 170^{\circ} \quad \rightarrow \ \eta \cong -2.4 \end{array}$$

ATLAS Inner Detector

The inner detector $|\eta| < 2.5$ consists of • Pixel detectors, semi-conductor

- Pixel detectors, semi-conductor tracker (SCT), transition radiation tracker
 - ≈ 87 million readout channels
 - Immersed in 2T solenoidal magnetic field

• Resolution of $\sigma/p_T = 5 \times 10^{-4} \oplus 0.015$

ATLAS Calorimeters

Electromagnetic and hadronic calorimeters

- Subsystem technology and granularity \leftrightarrow shower characteristics
- Transverse and longitudinal sampling \approx 200000 readout cells up to $|\eta| < 4.9$

Electromagnetic Calorimeters:

- Fine granularity $\Delta \eta \times \Delta \phi =$ 0.025×0.025 in central region
- Energy resolution $10\%/\sqrt{E}$

Hadronic Calorimeters:

- Granularity $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ in central region, less segmented in forward region
- Energy resolution $50\%/\sqrt{E} \oplus 0.03$