

Physics Program of the experiments at Large Hadron Collider

Outline of this course

- > 10.10 Introduction: accelerator, detectors, basic info
- 17.10 soft QCD
- 24.10 hard QCD
- 7.11 W, Z bosons: inclus. cross-sections, W/Z+jets
- > 14.11 W, Z bosons:precise measurements
- 21.11 Top: xsection, mass
- \geq 28.11 Dibosons and anomalous couplings
- ≻ 5.12, 12.12 **Higgs**
- > 19.12 **SUSY**
- 9.1 other searches for New Physics
- 16.1 B-physics programme
- 23.1 heavy ion programme

LHC at CERN laboratory

CERN: the world's largest particle physics laboratory

- international organisation created in 1953/1954, initial membership: 12 countries
- Poland is a member starting from year 1991
- About 10 000 active physicists, computing scientists, engineers

situated between Jura mountains and Geneva (France/Swiss)

http://public.web.cern.ch

Accelerator complex

- Accelerator complex is a **succession of particle accelerators** that can reach increasingly higher energies. Each boosts the speed of beam of particles before injecting it into the next one in the sequence
- Protons are obtained by removing electrons from hydrogen atoms. They are injected from the linear accelerator
 (LINAC2) into the PS Booster, then the Proton
 Synchrotron (PS), followed by the Super Proton
 Synchrotron (SPS), before finally reaching the Large
 Hadron Collider (LHC). Protons will circulate in the LHC for 20 minutes before reaching the maximum speed and energy.
- Lead ions for the LHC start from a source of vaporised lead and enter LINAC3 before being collected and accelerated in the Low Energy Ion Ring (LEIR). Then they follow the same route to maximum acceleration as the protons.

Accelerator complex

The full LHC accelerator complex

Experiments

- At the lowest energies, the Proton-Synchrotron Booster supplies beam to **ISOLDE**, a unique source of **radioactive isotopes** for experiments with applications that range from astrophysics to industry and medicine.
- The **Proton Synchrotron (PS)** delivers higher energy protons to two contrasting experiments. **DIRAC** is testing ideas about the strong fundamental force, while **CLOUD** is finding out how natural high-energy particles might influence the formation of clouds. The PS also provides the protons that create the antiprotons for the **Antiproton Decelerator** (AD), where physicists are learning more about antimatter in the **ALPHA, ASACUSA** and **ATRAP** experiments. The **ACE** experiment also uses antiprotons, in this case to assess their suitability for cancer therapy.

Experiments

- The next largest accelerator is the **Super Proton Synchrotron (SPS)**, where **COMPASS** focuses on investigating hadrons - particles made of quarks, including the nucleons (protons and neutrons) of ordinary matter. **NA61/SHINE** is studying properties of the production of hadrons. **NA62** uses protons from the SPS to study rare kaon decays.
- The Large Hadron Collider (LHC), CERN's most powerful accelerator, hosts six experiments designed to find out how the particles of matter behave at a new high energy frontier.
- There is also one experiment that uses none of the beams from CERN. **CAST** looks at the Sun for hypothesised particles called 'axions'.

LHC experiments

- Six experiments at the LHC, all run by international collaborations.
 - The two large experiments, ATLAS and CMS, are based on general-purpose detectors, designed to investigate the largest range of physics possible. Having two independently designed detectors is vital for cross-confirmation of any new discoveries made.
 - Two medium-size experiments, ALICE and LHCb, have specialised detectors for analysing the LHC collisions in relation to specific phenomena.
 - Two further experiments, TOTEM and LHCf, are much smaller in size. They are designed to focus on "forward particles" (protons or heavy ions). The detectors used by the TOTEM experiment are positioned near the CMS detector, whereas those used by LHCf are near the ATLAS detector.

ATLAS Collaboration

Over 3000 collaborators from 174 Institutes and 38 countries.

General purpose detectors

ATLAS Detector

ATLAS Detector

THE ATLAS DETECTOR IS REALLY BIG!

- Length : $\sim 46 \text{ m}$
- Radius : ~ 12 m
- Weight : ~ 7000 tons
- $\sim 10^8$ electronic channels
- 3000 km of cables

Transverse momentum

(in the plane perpendicular to the beam)

 $p_{T} = p \sin\theta$

$$\eta = -\log\left(\operatorname{tg}\frac{\sigma}{2}\right)$$

$$\begin{array}{l} \theta = 90^{\circ} \quad \rightarrow \ \eta = 0 \\ \theta = 10^{\circ} \quad \rightarrow \ \eta \cong 2.4 \\ \theta = 170^{\circ} \quad \rightarrow \ \eta \cong -2.4 \end{array}$$

Energy and momentum resolution

Calorimetry:

 $\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$

- a the stochastic term accounts for Poisson-like fluctuations
- naturally small for homogeneous calorimeters
- takes into account sampling fluctuations for sampling calorimeters
- b the noise term (hits at low energy)
- mainly the energy equivalent of the electronics noise
- at LHC in particular: includes fluctuation from non primary interaction (pile-up noise)
- c the constant term (hits at high energy)
- Essentially detector non homogeneities like intrinsic geometry, calibration but also energy leakage

Kinematical constraints

Transverse momentum, p_T

- Particles that escape detection (θ<3°) have p_T≈0
- Visible transverse momentum conserved Σ_i p_Tⁱ≈0
 - Very useful variable!

Longitudinal momentum and energy, p_z and E

- Particles that escape detection have large p_z
- Visible p_z is not conserved
 - Not a useful variable

Polar angle θ

- Polar angle θ is not Lorentz invariant
- Rapidity: y
- Pseudorapidity: η

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$$

For M=0

 \mathbf{p}_{z}

$$y = \eta = -\ln(\tan\frac{\theta}{2})$$

Collisions at LHC

Prof. dr hab. Elżbieta Richter-Wąs

1 1 1

Luminosity

Single most important quantity

Drives our ability to detect new processes

$$= \frac{f_{\text{rev}} n_{\text{bunch}} N_{\text{p}}^2}{4 \pi \sigma_x \sigma_y}$$

LHC: f=c/26.7 km revolving frequency: f_{rev} =11245.5/s #bunches: n_{bunch} =2808 #protons / bunch: N_p = 1.15 x 10¹¹ Area of beams: $4\pi\sigma_x\sigma_v$ ~40 µm

Rate of physics processes per unit time directly related:

17 Ability to observe something depends on N_{obs}

T

Units of cross-section

Originally introduced to express areas of nuclei and nuclear reactions.

Conversion to SI units			
Unit	Symbol	m ²	cm ²
megabarn	Mb	10^{-22}	10-18
kilobarn	kb	10^{-25}	10-21
barn	b	10^{-28}	10^{-24}
millibarn	mb	10 ⁻³¹	10 ⁻²⁷
microbarn	μb	10 ⁻³⁴	10-30
nanobarn	nb	10 ⁻³⁷	10-33
picobarn	pb	10^{-40}	10-36
femtobarn	fb	10 ⁻⁴³	10-39
attobarn	ab	10^{-46}	10^{-42}
zeptobarn	zb	10^{-49}	10^{-45}
yoctobarn	yb [6][7]	10 ⁻⁵²	10 ⁻⁴⁸

- "inverse femtobarn (fb⁻¹)": is a measurement of particle collision events per femtobarn of target crosssection (area) and is conventional unit for integrated luminosity
- "integrated luminosity: an indication of particle collider productivity
 - eg. Tevatron: 1fb⁻¹ in 4 years
 - ATLAS: 5 fb⁻¹ in 2011

Typical pp collision

Calculating a cross-section

Cross-section is convolution of pdf's and matrix element

Calculations are done in perturbative QCD

- Possible thanks to factorisation of hard ME and pdf's
 - Can be treated independently
- > Strong couplings (α_s) is large
 - Higher orders needed
 - Calculations complicated

The proton composition

It's complicated:

- Valence quarks, gluons, sea quarks
- Exact mixture depends on:
- Bjorked-x: fraction of momentum caried by a parton

$$\hat{s} = x_p \cdot x_{ar{p}} \cdot s$$

 $\mathbf{M}_{\mathbf{X}} = \sqrt{\hat{s}}$

Parton kinematics

- Partons densities rise dramatically towards low x
- Larger cross-sections at LHC than in previous experiments (Tevatron).

Cross-sections at LHC

- A lot more "uninteresting" than "interesting" processes at design luminosity $(L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1})$
 - Any event: 10⁹/sec
 - > W boson: 150/sec
 - Top quark: 8/sec
 - Higgs (125GeV): 0.2/sec
- Interesting events gets selected:
 - I. trigger (decision!)
 - II. physics analysis (selection)

Every event is complicated

- "Underlying event":
 - Initial state radiation
 - Interactions of other partons in proton
- Additional pp interactions
 - LHC: ~1.5 (~23 at design values)
 - Tevatron: ~10

Many forward particles escape detection

- Transverse momentum ~0
- Longitudinal momentum >>0

H →**ZZ**→μ⁺μ⁻μ⁺μ⁻)

Even >30 with present operation conditions

Particle identication

Inner Detector

Inner Detector

Transition Radiation Tracker

Inner Detector

Barrel Electromagnetic Calorimeter

Hadronic and EM calorimeters

A hadronic shower consists of

- EM energy (e.g. $\pi^0 \rightarrow \gamma\gamma$) O(50%)
- visible non-EM energy (e.g. dE/dx from π^{\pm}, μ^{\pm} , etc.) O(25%)
- invisible energy (e.g. breakup of nuclei and nuclear excitation) O(25 %)
- escaped energy (e.g. ν) O(2%)

each fraction is energy dependent and subject to large fluctuations

invisible energy is the main source of the non-compensating nature of hadron calorimeters

hadronic calibration has to account for the invisible and escaped energy and deposits in dead material and ignored calorimeter parts 50 GeV showers of electron (left) and pion (right) in iron

Measuring electrons and photons

Last three years

- Years of constructions and test beams: prototypes or parts of detectors tested at SPS beamline
- September 2008 first beam, first collisions, few first days of collecting data
- After few days accident with accelerator long months of repair
- Restarting fall in 2009: first collisions with sqrt(s) = 900 GeV
- Long run in **2010**: 36pb⁻¹ / experiment, sqrt(s) = 7 TeV
- Long run in 2011: 5fb⁻¹/experiment, sqrt(s) = 7 TeV
 - Ongoing run in **2012**: 13fb⁻¹ /experiment so far
 - Ongoing run till Xmass, sqrt(s) = 8 TeV

First beams - September 10, 2008

September 2008

First beams - in ATLAS ...

After Sept 10

Successful continuation of commissioning with beam

(low intensity, 10⁹ protons)

Sept 11:

Switched on RF for beam 2 circulating beam for 10 min

Many tests (orbit, dump,...)

Sept 12:

Measure horizontal beam profile with wire scanner

Evening: transformer failure pt8 replacement + recovery

Continue with machine checkout (without beam)

CH1 INVERTED !!!
CHI WYCK (ED):: CHI WYCK (ED):: CHI CHI CHI CHI CHI CHI CHI CHI CHI CHI
With RF

LHC damages

Problem in Sector 34

Friday, Sept 19

- Commissioning without beam of final sector for 5 TeV operation
- Faulty electrical connection between two magnets
- Leading to large helium leak into the tunnel
- Sector has to be warmed up (started, takes several weeks) before diagnosis and repair can start, then cool down again (several weeks)
- ightarrow runs into winter shutdown
- Restart of accelerators spring 2009 LHC beams to follow

QQBI.27R3 M3 line

Cosmic Muons in ATLAS (2009) 10 ms LAYNT NH IA Simulated cosmics flux in the ATLAS cavern

Real Cosmic Event

(Calorimeter trigger also

Rate ~100 m below ground: Lect ~ O(15 Hz) crossing Inner Detector

37

S.Myers The LHC repairs in deta... CERN November 2009

Single beam, two beams, two synchronised beams, colliding beams, collisions ?

Candidate Collision Event

CERN - Nov 26, 2009

ATLAS – Beams and first collisions

ATLAS Beams and first collisions

Andreas Hoecker (CERN) on behalf of the ATLAS Collaboration

CERN seminar "LHC, week 1", Nov 26, 2009

Status for first collision

After a vast multi-year programme of cosmic ray data taking and system commissioning ...

- Pixel off (no stable beam)
- SCT standby
 - Standby V is 20 V → ~50% hit efficiency (increases with incidence angle)
 - Barrel and endcap increased to 50V for short stable beam periods during collisions
 - Barrel voltage sometimes lower than 20V for beam set up (eg. splash events)
- All other systems (Muon system, Calorimeters, TRT, Forward detectors) on
- Trigger and DAQ ready
- Solenoid off, toroids on
- Waiting for beam ...

2009-11-23, 14:22 CET Run 140541, Event 171897

Candidate Collision Event

CERN - Nov 26, 2009

Lumi recorded with 900 GeV and 2.36 TeV

Tracking

Particle identification in Inner Detector

$p_{\scriptscriptstyle T}$ (track) > 100~MeV MC signal and background normalized independently

Identifying Kaons

Figure 11: The measured and simulated mass spectra of K^+K^- pairs. The ϕ peak is fitted with a Breit-Wigner with a fixed width convoluted with a Gaussian. Both kaons must be identified through the dE/dx measurement.

Figure 10: The dE/dx measured in data as a function of momentum.

• Charge particles with 200 < p_T < 800 MeV with dE/dx tag.

Mass in agreement with PDG value.

$\gamma \rightarrow e^+e^-$ conversions

γ→ e+e- conversions

2 photon candidates with $E_{T}(\gamma) > 300 \text{ MeV}$ $E_{T}(\gamma\gamma) > 900 \text{ MeV}$ Shower shapes compatible with photons No corrections for upstream material

Uncalibrated EM scale

Elzbieta Richter-Was

^I Monte Carlo normalized to number of jets or events in data

Missing transverse energy

Sensitive to calorimeter performance (noise, coherent noise, dead cells, mis-calibrations,

cracks, etc.) and backgrounds from cosmics, beams, ...

Measurement over full calorimeter coverage (360° in φ , $|\eta| < 5$, ~ 200000 cells)

Missing transverse energy

Elzbieta Richter-Was

Collision Event with Muon Track

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Muon detector

One more view of the first installed TGC Big Wheel

Summary

- Based on the 2009 datasets ATLAS has published
 - XX conference notes (winter conferences)
 - Performance paper:
 - arXiv:1005.5254 ; CERN-PH-EP-2010-015
 - Physics paper: "Charged-particle multiplicities in pp interactions at s = 900 GeV measured with the ATLAS detector at the LHC"
 - arXiv:1003.3124; CERN-PH-EP-2010-004
 Phys. Lett. B 688 (2010) 21-42

```
Then...more data and publications came very quickly...
```

Next topics

- 17.10 soft QCD
- > 24.10 hard QCD
- 7.11 W, Z bosons: inclus. cross-sections, W/Z+jets
- > 14.11 W, Z bosons:precise measurements
- > 21.11 Top: xsection, mass
- \geq 28.11 Dibosons and anomalous couplings
- ≻ 5.12, 12.12 **Higgs**
- > 19.12 **SUSY**
- 9.1 other searches for New Physics
- 16.1 B-physics programme
- 23.1 heavy ion programme