# Najnowsze wyniki eksperymentu ATLAS (CERN, LHC) dla 15 fb<sup>-1</sup>

Living in incredib exciting time fundamental partcile physics:



## The sucess story so far



Overall Data Taking Efficiency = 93.6% (recorded vs delivered luminosity during stable beam operation)



 $Z \rightarrow \mu \mu$  with 25 reconstructed vertices

## **Higgs-like particle: 4-th July**

We are living a privileged moment in the history of HEP.

OUR FIRST FUNDAMENTAL SCALAR (?) The discovery came at half of the design energy, much more several pile-up and one-third of integrated luminosity than was originally judged as necessary.



## **Definitions:**

## **Global signal strength factor µ**:

Scale factor on the total number of events predicted by the SM for the Higgs boson signal:

- $\mu = 0$  bgd only hypothesis
- $\mu = 1$  SM signal in addition to the bgd

Hypothesised values of  $\boldsymbol{\mu}$  tested with statistics based on profile likelihood ratio.

## Local p<sub>0</sub>:

Probability that the background can produce a fluctuation greater than or equal to the excess observed in data. Equivalent in terms of number of standard deviations is called local significance.

### **95% CLs exclusion:**

Value of  $\mu$  is regarded as excluded at 95%CL when CLs is less than 5%. A SM Higgs boson with mass  $m_{\mu}$  is conisdered excluded at 95%CL when  $\mu$ =1 is exluded at that mass.

# **Standard Model Higgs**



## Hadron Collider Physics: 12-16 November

# Great collections of new results from LHC and Tevatron exp.

>Updates on direct New Phys. searches.

->Precision measurements QCD, W/Z bosons, top physicsindirect New Phys. searches

For the SM Higgs we are entering measurement-based phase.



## ATLAS: update on sensitivity with 13fb<sup>-1</sup>





The H->ττ and H->bb channels approaching SM sensitivity, but still compatible with either bgdonly or SM hypothesis. For H->WW channel sensitivity confirmed, significance ~2.6σ

## **H->bb: Diboson production**

WZ & ZZ production with  $Z \rightarrow bb$  similar signature, but 5 times larger cross-section Perform a separate fit to search for it and to validate the analysis procedure

- Profile likelihood fit performed (with full systematics)
- All backgrounds (except diboson) subtracted

► Uses full  $p_T^{W,Z}$  range, done individually for each channel & year (see backup) Clear excess is observed in data at expected mass (all lepton channels combined) Results:  $\sigma/\sigma_{SM} = \mu_D = 1.09 \pm 0.20$  (stat)  $\pm 0.22$  (syst). The significance is 4.0 $\sigma$ 



8

## **ATLAS: update on combination**

| Higgs Boson<br>Decay                                                        | Subsequent<br>Decay                                                                                                                               | Sub-Channels                                                                                                       |     |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----|
|                                                                             | $2011 \sqrt{s} = 7 \text{ TeV}$                                                                                                                   |                                                                                                                    |     |
| $H \rightarrow ZZ^{(*)}$                                                    | 4ℓ                                                                                                                                                | $\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$                                                                                    |     |
| $H \rightarrow \gamma \gamma$                                               | -                                                                                                                                                 | 10 categories $\{p_{Tt} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$                 | 4.8 |
|                                                                             | $\tau_{\rm lep} \tau_{\rm lep}$                                                                                                                   | $\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, \text{boosted}, VH\}$ | 4.7 |
| $H \rightarrow \tau \tau$                                                   | $H \rightarrow \tau \tau$ $\tau_{\text{lep}} \tau_{\text{had}}$ $\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, \text{boosted}, 2\text{-jet}\}$ |                                                                                                                    | 4.7 |
| $\Pi \rightarrow \iota \iota$                                               | $	au_{\mathrm{had}}	au_{\mathrm{had}}$                                                                                                            | {boosted, 2-jet}                                                                                                   | 4.7 |
| $Z \to \nu \nu$ $E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 20\}$ |                                                                                                                                                   | $E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$    | 4.6 |
| $VH \rightarrow Vbb$                                                        | $W \to \ell \nu$                                                                                                                                  | $p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$                                    | 4.7 |
|                                                                             | $Z \to \ell \ell$                                                                                                                                 | $p_{\mathbf{T}}^{\hat{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$                       | 4.7 |

2012  $\sqrt{s} = 8 \text{ TeV}$ 

| $H \rightarrow ZZ^{(*)}$      | 4ℓ                                                                                                    | $\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$                                                                                 |     |
|-------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----|
| $H \rightarrow \gamma \gamma$ | - 10 categories { $p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}$ } $\oplus$ {2-jet}  |                                                                                                                 | 5.9 |
| $H \rightarrow WW^{(*)}$      | $\rightarrow WW^{(*)} \qquad e\nu\mu\nu \qquad \{e\mu,\mu e\} \otimes \{0\text{-jet}, 1\text{-jet}\}$ |                                                                                                                 | 13  |
|                               | $	au_{ m lep}	au_{ m lep}$                                                                            | $\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, \text{boosted}, VH\}$                                       |     |
| $H \rightarrow \tau \tau$     | $	au_{ m lep}	au_{ m had}$                                                                            | $\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, \text{boosted}, 2\text{-jet}\}$                               | 13  |
| $\Pi \rightarrow \ell \ell$   | $	au_{\mathrm{had}}	au_{\mathrm{had}}$                                                                | {boosted, 2-jet}                                                                                                | 13  |
|                               | $Z \rightarrow \nu \nu$                                                                               | $E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$ | 13  |
| $VH \rightarrow Vbb$          | $W \to \ell \nu$                                                                                      | $p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$                                 | 13  |
|                               | $Z \to \ell \ell$                                                                                     | $p_{\rm T}^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$                                 | 13  |

E. Richter-Was

## **Channels entering HCP combination**

Best—fit Higgs mass m<sub>H</sub> : 126.0 ± 0.4 (stat) ± 0.4 (syst) GeV

Best-fit signal strength: μ = 1.3 ± 0.3

Couplings measurement not updated for HCP: uncertainies of 20-30%



# **Higgs couplings workshop**

#### 🖗 mass

- 🗣 spin and parity ( J<sup>P</sup> )
- CP (even, odd, or admixture?)
- couplings to vector bosons: is this boson related to EWSB, and how much does it contribute to restoring unitarity in W<sub>L</sub>W<sub>L</sub> scattering
- couplings to fermions
  - is Yukawa interaction at work?
  - contribution to restoring unitarity?
- couplings proportional to mass ?
- is there only one such state, or more?
- elementary or composite?
- self-interaction



Higgs bosons couple proportional to particle masses:



 $\Rightarrow$  Higgs production via couplings to W/Z bosons or top-quarks

Production at hadron colliders ( $p\bar{p}/pp$ ):



Decay channels for Higgs bosons of moderate mass ( $M_{\rm H} \lesssim 300 \, {\rm GeV}$ ):







EW corrections significant in predictions for  $\Gamma_{H\to X}$  and  $BR_{H\to X}$ 

For each coupling  $g_i$ , measure strength in "units" of SM value:  $\kappa_i = g_i/g_{i,SM}$ 

– Defined in analogy to signal strength  $\mu = \sigma / \sigma_{_{SM}}$ 

Production rate is proportional to squared coupling,  $g^2$ 

- Scaled each production mode *i* by factor  $\kappa_i^2$ 





• Example:  $(\sigma \cdot BR)(gg \to H \to \gamma\gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma\gamma) \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$ 

## **HIGGS** landscape

Higgs-landscape: asking the right questions takes as much skill as giving the right answers

| Probing up-type and down-type fermion symmetry assuming no invisible or undetectable widths                                                            |                                                                                                                                                         |                                                                             |                                                                                                                                               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Free                                                                                                                                                   | Free parameters: $\kappa_V (= \kappa_Z = \kappa_W)$ , $\lambda_{du} (= \kappa_d / \kappa_u)$ , $\kappa_u (= \kappa_t)$ .                                |                                                                             |                                                                                                                                               |  |  |
|                                                                                                                                                        | $H \to \gamma \gamma$                                                                                                                                   | $H \rightarrow ZZ^{(*)}$ $H \rightarrow WW^{(*)}$                           | $H \rightarrow b\overline{b} \qquad H \rightarrow \tau^- \tau^+$                                                                              |  |  |
| σσΗ                                                                                                                                                    | $\kappa_g^2(\kappa_u\lambda_{du},\kappa_u)\cdot\kappa_\gamma^2(\kappa_u\lambda_{du},\kappa_u,\kappa_u\lambda_{du},\kappa_V)$                            | $\kappa_{g}^{2}(\kappa_{u}\lambda_{du},\kappa_{u})\cdot\kappa_{V}^{2}$      | $\frac{\kappa_g^2(\kappa_u\lambda_{du},\kappa_u)\cdot(\kappa_u\lambda_{du})^2}{(\kappa_u\lambda_{du},\kappa_u)\cdot(\kappa_u\lambda_{du})^2}$ |  |  |
| ggII                                                                                                                                                   | $\kappa_{\rm H}^2(\kappa_j)$                                                                                                                            | $\kappa_{\rm H}^2(\kappa_i)$                                                | $\kappa_{\rm H}^2(\kappa_j)$                                                                                                                  |  |  |
| +∓U                                                                                                                                                    | $\kappa_{u}^{2} \cdot \kappa_{\gamma}^{2}(\kappa_{u}\lambda_{du},\kappa_{u},\kappa_{u}\lambda_{du},\kappa_{V})$                                         | κ <mark>2</mark> ·κ <mark>2</mark>                                          | $\kappa_{u}^{2} \cdot (\kappa_{u} \lambda_{du})^{2}$                                                                                          |  |  |
| шп                                                                                                                                                     | $\frac{\mathbf{k}_{\mathrm{H}}^{2}(\mathbf{k}_{j})}{\mathbf{k}_{\mathrm{H}}^{2}(\mathbf{k}_{j})}$                                                       | $\overline{\kappa_{\mathrm{H}}^{2}(\kappa_{j})}$                            | $\kappa_{\rm H}^2(\kappa_j)$                                                                                                                  |  |  |
| VBF                                                                                                                                                    | $\kappa_{\mathbf{V}}^{2}$ · $\kappa_{\mathbf{Y}}^{2}$ (κ <sub>u</sub> λ <sub>du</sub> ,κ <sub>u</sub> ,κ <sub>u</sub> λ <sub>du</sub> ,κ <sub>V</sub> ) | κ <mark>2</mark> ·κ <mark>2</mark>                                          | $(\kappa_{\rm V}^2 \cdot (\kappa_{\rm u} \lambda_{\rm du})^2)$                                                                                |  |  |
| WH<br>ZH                                                                                                                                               | $\frac{\kappa_{\rm H}^2(\kappa_j)}{\kappa_{\rm H}^2(\kappa_j)}$                                                                                         | $\frac{1}{\kappa_{\rm H}^2(\kappa_i)}$                                      | $\frac{1}{\kappa_{\rm H}^2(\kappa_i)}$                                                                                                        |  |  |
| Drobin                                                                                                                                                 |                                                                                                                                                         |                                                                             |                                                                                                                                               |  |  |
| Probing up-type and down-type fermion symmetry without assumptions on the total width                                                                  |                                                                                                                                                         |                                                                             |                                                                                                                                               |  |  |
| Free parameters. $\kappa_{uu} (= \kappa_u \cdot \kappa_u / \kappa_H), \ \lambda_{du} (= \kappa_d / \kappa_u), \ \lambda_{Vu} (= \kappa_V / \kappa_u).$ |                                                                                                                                                         |                                                                             |                                                                                                                                               |  |  |
|                                                                                                                                                        | $H\to\gamma\gamma$                                                                                                                                      | $H \rightarrow ZZ^{(*)}$ $H \rightarrow WW^{(*)}$                           | $H \rightarrow b\overline{b}$ $H \rightarrow \tau^{-}\tau^{+}$                                                                                |  |  |
| ggH                                                                                                                                                    | $\kappa_{uu}^2 \kappa_g^2(\lambda_{du}, 1) \cdot \kappa_{\gamma}^2(\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$                                        | $\kappa_{uu}^2 \kappa_g^2(\lambda_{du}, 1) \cdot \lambda_{Vu}^2$            | $\kappa_{uu}^2 \kappa_g^2(\lambda_{du}, 1) \cdot \lambda_{du}^2$                                                                              |  |  |
| tīH                                                                                                                                                    | $\kappa_{uu}^2 \cdot \kappa_{\gamma}^2(\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$                                                                    | $\kappa_{uu}^2 \cdot \lambda_{Vu}^2$                                        | $\kappa_{uu}^2 \cdot \lambda_{du}^2$                                                                                                          |  |  |
| VBF                                                                                                                                                    | 2 . 2 2 (2                                                                                                                                              | 2 . 2 . 2                                                                   | 2 . 2 . 2                                                                                                                                     |  |  |
| WH<br>7H                                                                                                                                               | $\kappa_{uu} \lambda_{Vu} \cdot \kappa_{\gamma} (\lambda_{du}, 1, \lambda_{du}, \lambda_{Vu})$                                                          | $\kappa_{u}^{-\lambda} \tilde{\nabla}_{u} \cdot \lambda \tilde{\nabla}_{u}$ | κūuλyu·λdu                                                                                                                                    |  |  |
| 2.11                                                                                                                                                   |                                                                                                                                                         |                                                                             |                                                                                                                                               |  |  |





Supersymmetry common in many SM extensions Strong motivation for TeV-scale SUSY:





#### SUSY is not just one model Many possible variations

- SUSY breaking mechanism gravity-, gauge-, anomaly-mediated, ...
- Beyond MSSM
- R-parity = (-1)<sup>2S</sup>(-1)<sup>3B+L</sup> conserved? If not, lifetime of lightest sparticle

## No signs of SUSY yet

#### Allowed phase space is getting squeezed

- Flavor physics remains in good agreement with SM
- Light Higgs-like boson discovered, but at high end of (MSSM) preference
- Either large stop mixing
- Very heavy squarks
- Or beyond MSSM









 $egin{aligned} & \mathbf{m}_{\widetilde{\mathbf{q}}} \gtrsim 1400 \; ext{TeV}, \ & \mathbf{m}_{\widetilde{\mathbf{g}}} \gtrsim 900 \; ext{TeV} \; \; ext{OR} \ & \mathbf{m}_{\widetilde{\mathbf{q}}} \sim \mathbf{m}_{\widetilde{\mathbf{g}}} \gtrsim 1400 \; ext{TeV} \end{aligned}$ 

Inclusive searches constrain  $1^{st}/2^{nd}$  generation squarks and gluinos to be  $\gtrsim$  TeV, unless  $\chi^0_1$  is heavy



#### Multiple dedicated searches Target different stop mass & decay

■ High stop mass,  $\tilde{t}_1 \rightarrow t \chi^0_1$ ■ m( $\tilde{t}_1$ )~m(t)





|              |                                                                                                                                                                     | ATLAS SUSY Searches* - 95% CL Lower Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | its (Status: HCP 2012)                                                              |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|              | DECORACIÓN A LA COMPANY                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                               |
|              | MSUGRA/CMSSM: 0 lep + J'S + E <sub>T,miss</sub>                                                                                                                     | L=5.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-109] 1.50 TeV q = g ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ass                                                                                 |
|              | MSUGRA/CMSSIVI : T lep + J S + $E_{T,miss}$                                                                                                                         | L=5.8 fb <sup>+</sup> , 8 TeV [ATLAS-CONF-2012-104] 1.24 TeV   q = g mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATI AS                                                                              |
| es           | Pheno model $\cdot$ 0 lop $+$ 15 + E <sub>T,miss</sub>                                                                                                              | L=5.8 fb , 8 lev [AILAS-CONF-2012-109] 1.18 lev g IIIdSS (m(d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\chi$ = 2 lev, light $\chi_1$ Preliminary                                          |
| rch          | Chips mod $\tilde{x}^{\pm}$ ( $\tilde{a} + d\tilde{x}^{\pm}$ ) + 1 lop + i's + E                                                                                    | L=5.8 ID , 8 IEV [AILAS-CUNF-2012-109] 1.38 IEV [411055 (/<br>1.4.7 fb <sup>-1</sup> 7 Tol/ [1209 4099] 000 Col/ [410855 (m <sup>6</sup> ) - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n(g) < 2  IeV, light  (1)                                                           |
| ea           | Gluino med. $\chi$ ( $g \rightarrow qq\chi$ ). Thep + J S + $E_{T,miss}$                                                                                            | L=4.7 fb <sup>-1</sup> , 7 feV [1208.4686] 900 GEV G HIG35 (In(t <sub>1</sub> ) < 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $r_{100}(\text{GeV}, m(\chi)) = \frac{1}{2}(m(\chi)) + m(\text{g}))$                |
| es           | GMSB ( $\tau$ NI SP) : 1-2 $\tau$ + 0-1 len + i's + $F^{T,miss}$                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (b < 20)                                                                            |
| Siv          | GGM (bino NLSP) : $\gamma\gamma + E^{T,miss}$                                                                                                                       | $I = 4.8 \text{ fb}^{-1} \text{ 7 TeV} [1209.0753]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50 GeV                                                                              |
| Iclu         | GGM (wino NLSP) : $\gamma$ + lep + $E^{T,miss}$                                                                                                                     | L=4.8 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-144] 619 GeV [] [] [] [] [] [] [] [] [] [] [] [] []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ldt = (2.1 - 13.0) ID                                                               |
| IL I         | GGM (higgsino-bino NLSP) : $\gamma + b + E^{T,miss}$                                                                                                                | L=4.8 fb <sup>-1</sup> , 7 TeV [1211.1167] 900 GeV $\tilde{Q}$ mass $(m\tilde{\chi}^0) > 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 220 GeV) (S = 7, 8 TeV                                                              |
|              | GGM (higgsino NLSP) : Z + jets + $E_{T miss}^{T,miss}$                                                                                                              | L=5.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-152] 690 GeV Q Mass (m(H) > 200 Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eV)                                                                                 |
|              | Gravitino LSP : 'monojet' + ET miss                                                                                                                                 | L=10.5 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-147] 645 GeV F <sup>1/2</sup> Scale (m(G) > 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4 eV)                                                                              |
| iti          | $\tilde{q} \rightarrow b \tilde{p} \tilde{\gamma}^{0}$ (virtual $\tilde{b}$ ) : 0 lep + 3 b-i's + $E_{\pm}$                                                         | L=12.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-145] 1.24 TeV Q Mass (m(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(\tilde{\chi}^{0}) < 200 \text{ GeV})$                                             |
| neu su       | $\tilde{q} \rightarrow t \tilde{\chi}^{01}$ (virtual $\tilde{t}$ ) : 2 lep (SS) + j's + $E_T$ miss                                                                  | L=5.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-105] 850 GeV $\tilde{g}$ mass $(m(\tilde{\chi}_{s}^{0}) < 30)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00 GeV)                                                                             |
| 101          | $\tilde{q} \rightarrow t \tilde{\chi}^{0}$ (virtual $\tilde{t}$ ) : 3 lep + j's + $E_{T miss}$                                                                      | L=13.0 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-151] 860 GeV $\tilde{\tilde{g}}$ mass $(m(\tilde{\chi}^{b}_{,}) < 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00 GeV) 8 TeV results                                                               |
| d g          | $\tilde{q} \rightarrow t \tilde{\chi}^{0}$ (virtual $\tilde{t}$ ) : 0 lep + multi-j's + $E_{T miss}$                                                                | L=5.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-103] 1.00 TeV g mass (m(x <sup>0</sup> ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 300 GeV) 7 TeV results                                                            |
| 9            | $\tilde{q} \rightarrow t \tilde{\chi}^{0}$ (virtual $\tilde{t}$ ) : 0 lep + 3 b-j's + $E_{T,miss}$                                                                  | L=12.8 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-145] 1.15 TeV g mass (m( $\tilde{\chi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0) < 200 GeV)                                                                       |
|              | $\tilde{b}\tilde{b}, \tilde{b}_1 \rightarrow b\tilde{\chi}_1$ : 0 lep + 2-b-jets + $E_T$ miss                                                                       | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-106] 480 GeV b mass $(m(\tilde{\chi}_1^0) < 150 \text{ GeV})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |
| ion          | $\widetilde{bb}, \widetilde{b}_1 \rightarrow t \widetilde{\chi}_1^{\pm}: 3 \text{ lep } + j's + E_{T,miss}$                                                         | L=13.0 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-151] 405 GeV b mass $(m \tilde{\chi}_1^{\pm}) = 2 m \tilde{\chi}_1^{0})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |
| luct         | tt (very light), t $\rightarrow$ b $\tilde{\chi}_{1}^{\pm}$ : 2 lep + $E_{T,miss}$                                                                                  | L=4.7 fb <sup>-1</sup> , 7 TeV [1208.4305] 130 GeV t mass $(m(\tilde{\chi}_1^0) < 70 \text{ GeV})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |
| od           | tt (light), t $\rightarrow$ b $\tilde{\chi}_{1\sim0}^{+}$ : 1/2 lep + b-jet + $E_{T,miss}$                                                                          | L=4.7 fb <sup>-1</sup> , 7 TeV [1209.2102] 123-167 GeV t mass $(m\tilde{\chi}_{1}^{2}) = 55 \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |
| tpi          | tt (medium), $t \rightarrow t \chi_0^*$ : 2 lep + b-jet + $E_{T,miss}$                                                                                              | L=4.7 fb <sup>-1</sup> , 7 TeV [1209.4186] 298-305 GeV t mass $(m(\chi_1) = 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |
| d g          | tt (heavy), $t \rightarrow t\chi_0^*$ : 1 lep + b-jet + $E_{T,miss}$                                                                                                | L=4.7 fb <sup>-1</sup> , 7 TeV [1208.2590] 230-440 GeV t mass $(m(\chi_1) = 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |
| 3r           | tt (heavy), t $\rightarrow$ tx : 0 lep + b-jet + E <sub>T,miss</sub>                                                                                                | L=4.7 fb <sup>-,</sup> , 7 TeV [1208.1447] 370-465 GeV [ mass $(m(\chi)) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |
|              | It (natural GMSB) : $Z(\rightarrow II) + D$ -Jet + E                                                                                                                | L=2.1 fb <sup>-,</sup> , 7 TeV [1204.6736] 310 GeV [ Mass $(115 < m(\chi^2)) < 230$ GeV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |
| 1            | $I_{L}I_{L}, I \rightarrow I\chi$ : 2 lep + $E_{T, miss}$                                                                                                           | L=4.7 fb , 7 leV [1208.2884] <b>85-195 GeV</b> I III as $(m(\chi_1) = 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1. ~± ~0                                                                            |
| FW           | $\approx^{\pm} \alpha^{\chi} \chi, \chi \rightarrow W(W) \rightarrow W\chi$ ; 2 lep + E <sub>T,miss</sub>                                                           | L=4.7 fb , 7 lev [1208.2884] 110-340 GeV $\chi_1$ [IIdSS ( $m(\chi_1) < 10$ GeV, $m(l,v) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\binom{m(\chi_{1}) + m(\chi_{1})}{2}$                                              |
| D            | $\chi_1 \chi_2 \rightarrow I_L V I_L (VV), IV I_L (VV) : 3 Iep + E_{T,miss}$                                                                                        | $L = 13.0 \text{ fb}, 8 \text{ fev [A1 LAS-CONF-2012-154]} = 580 \text{ GeV}  \chi_1 \text{ IIIdSS}  (m(\chi_1) = m(\chi_2), \chi_2 = 1000 \text{ GeV}  \chi_2 = 1000 $                                                                                                                                                     | $m(\chi_1) = 0, m(I,V)$ as above)                                                   |
|              | $\chi_{\chi} \rightarrow W \chi_{\chi} \gamma : 3 \text{ iep } + E_{T, \text{miss}}$                                                                                | L=13.0 ID, 8 TeV [A1LAS-CONF-2012-154] [140-295 GeV $\chi_1$ [11d35 ( $m\chi_1$ ) = $m\chi_2$ ), $m\chi_1$ ) = 0, Set<br>L=4.7 fb <sup>-1</sup> 7 TeV [1210.2852] 220 CeV $\tilde{\chi}^{\pm}$ [200 CeV $\tilde{\chi}^{\pm}$ [200 CeV ] [200 CeV ] $\tilde{\chi}^{\pm}$ [200 CeV ] $\tilde{\chi}^{\pm}$ [200 CeV ] [200 CeV ] $\tilde{\chi}^{\pm}$ [200 CeV ] [200 CeV ] ] [200 CeV ] ] [200 CeV ] ] [200 CeV ] [200 CeV ] ] [200 CeV ] ] [200 CeV ] [200 CeV ] ] [200 CeV | eptons decoupled)                                                                   |
| ed 'ed       | Stable $\tilde{a}$ D hadrons : low $\beta_1 \beta_2$ (full detector)                                                                                                | L=4.7 fb <sup>-1</sup> 7 TeV [1211 1597]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |
| -liv<br>icle | Stable f D hadrons I low P, Py (full detector)                                                                                                                      | 1-47 fb <sup>-1</sup> 7 TeV [1211 1597] 683 CeV 1 mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |
| art          | CMSR - stable ?                                                                                                                                                     | $L=4.7 \text{ fb}^{-1}$ , 7 TeV [1211.1597] 300 GeV $\tilde{T}$ mass (5 < tan $\beta$ < 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |
| PLC          | $\tilde{\chi}^0 \rightarrow qqu$ (RPV) $\cdot u + heavy displaced vertex$                                                                                           | L=4.4 fb <sup>-1</sup> , 7 TeV [1210,7451] 700 GeV Q MASS (0.3×10 <sup>-5</sup> < \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ < 1.5 \times 10^{-5}$ , 1 mm < ct < 1 m. a decoupled)                             |
|              | $I FV \cdot pp \rightarrow v + X v \rightarrow e+u$ resonance                                                                                                       | $L=4.6 \text{ fb}^{-1}$ , 7 TeV [Preliminary] 1.61 TeV $\widetilde{V}$ mas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S = (\lambda_{-1} = 0.10, \lambda_{-1} = 0.05)$                                    |
|              | LFV : $pp \rightarrow \tilde{v} + X, \tilde{v} \rightarrow e(u) + \tau$ resonance                                                                                   | L=4.6 fb <sup>-1</sup> , 7 TeV [Preliminary] 1.10 TeV $\tilde{V}_{z}$ mass ( $\lambda_{z}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $_{11}=0.10, \lambda_{1/2022}=0.05)$                                                |
| 1            | Bilinear RPV CMSSM : 1 lep + 7 j's + ET miss                                                                                                                        | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-140] 1.2 TeV $\tilde{q} = \tilde{q}$ mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(c\tau_{LSD} < 1 \text{ mm})$                                                      |
| RP           | $\tilde{\chi}^{\dagger}\tilde{\chi}^{\dagger}, \tilde{\chi}^{\dagger} \rightarrow W \tilde{\chi}^{0}, \tilde{\chi}^{0} \rightarrow eev_{u}, e\mu v : 4 lep + E_{T}$ | L=13.0 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-153] 700 GeV $\tilde{\chi}^+$ mass $(m(\tilde{\chi}^0) > 30)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $00 \text{ GeV}, \lambda_{121} \text{ or } \lambda_{122} > 0)$                      |
|              | $1, 1, 1, 1 \rightarrow \tilde{\gamma}, \tilde{\gamma} \rightarrow eev, euv : 4 lep + E_{T}$                                                                        | L=13.0 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-153] 430 GeV I Mass (m(x)) > 100 GeV, m(ie)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $=m(\tilde{l}_{11})=m(\tilde{l}_{2}), \lambda_{121} \text{ or } \lambda_{122} > 0)$ |
|              | $\tilde{q} \rightarrow qqq$ ; 3-jet resonance pair                                                                                                                  | L=4.6 fb <sup>-1</sup> , 7 TeV [1210.4813] 666 GeV g mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |
|              | Scalar gluon : 2-jet resonance pair                                                                                                                                 | L=4.6 fb <sup>-1</sup> , 7 TeV [1210.4826] 100-287 GeV Sgluon mass (incl. limit from 1110.2693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3)                                                                                  |
| WIN          | IP interaction (D5, Dirac $\chi$ ) : 'monojet' + E T <sub>miss</sub>                                                                                                | L=10.5 fb <sup>-1</sup> , 8 TeV [ATLAS-CONF-2012-1147] 704 GeV M <sup>*</sup> 6Cale (m <sub>\chi</sub> < 80 Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V, limit of < 687 GeV for D8)                                                       |
|              |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |
|              |                                                                                                                                                                     | 10 <sup>-1</sup> <b>1 TeV</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                  |
| *On          | ly a selection of the available mass limits on new sta                                                                                                              | tes or phenomena shown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mass scale [TeV]                                                                    |

\*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus  $1\sigma$  theoretical signal cross section uncertainty.

## **Rare decays**



First observation of  $B_s^0 \rightarrow \mu^+ \mu^-$ 

• In 
$$1 \text{ fb}^{-1}$$
 ( $\sqrt{s} = 7 \text{ TeV}$ ) +  $1.1 \text{ fb}^{-1}$   
( $\sqrt{s} = 8 \text{ TeV}$ ) of data, LHCb observes a  
signal for  $B_s^0 \rightarrow \mu^+ \mu^-$  that is  
incompatible with the background  
only hypothesis at  $3.5 \sigma$ . With:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 3.2 \, {}^{+1.5}_{-1.2} \times 10^{-9}$$

c.f. a time integrated SM expectation of:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.54 \pm 0.30) \times 10^{-9}$$
  
[arXiv:1208.0934], [arXiv:1204.1735]

#### LHCb-PAPER-2012-043



In general a SM-like  $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ rules out CMSSM points with large tan  $\beta$ .

Direct search results (CMS 5 fb<sup>-1</sup>), Charged LSP,  $B \rightarrow \tau \nu$ ,  $B_s^0 \rightarrow \mu^+ \mu^-$ , Allowed region.

At lower  $tan\beta$  the relative importance of direct searches increases.





## **Exotics**

#### ATLAS Exotics Searches\* - 95% CL Lower Limits (Status: HCP 2012)

|            | Large ED (ADD) : monojet + $E_{T miss}$                                     | L=4.7 fb <sup>-1</sup> , 7 TeV [1210.4491]               | 4.37 TeV M <sub>D</sub>                                                                             | (δ=2)                                       |
|------------|-----------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------|
|            | Large ED (ADD) : monophoton + $E_{T miss}$                                  | L=4.6 fb <sup>-1</sup> , 7 TeV [1209.4625]               | 1.93 TeV M <sub>D</sub> (δ=2)                                                                       |                                             |
| JS         | Large ED (ADD) : diphoton & dilepton, m., (1)                               | L=4.7 fb <sup>-1</sup> , 7 TeV [1211.1150]               | 4.18 TeV M <sub>S</sub>                                                                             | (HLZ $\delta$ =3, NLO) AILAS                |
| 0          | UED : diphoton + $E_{T miss}^{TT}$                                          | L=4.8 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-072]     | 1.41 TeV Compact, scale R-1                                                                         | Preliminary                                 |
| JSI        | $S^{1}/Z_{-}$ ED : dilepton, m.                                             | L=4.9-5.0 fb <sup>-1</sup> , 7 TeV [1209.2535]           | 4.71 TeV                                                                                            | $\alpha \sim R^{-1}$                        |
| Iel        | RS1 : diphoton & dilepton, m                                                | L=4.7-5.0 fb <sup>-1</sup> , 7 TeV [1210.8389]           | 2.23 TeV Graviton mas                                                                               | $s_{\rm S}(k/M_{\rm pl}=0.1)$               |
| lin        | RS1 : ZZ resonance, $m_{\rm max}$                                           | L=1.0 fb <sup>-1</sup> , 7 TeV [1203.0718]               | <b>845 GeV</b> Graviton mass $(k/M_{\rm Pl} = 0.1)$                                                 |                                             |
| 06         | RS1: WW resonance, $m_{T,LL}$                                               | $I = 4.7 \text{ fb}^{-1}$ , 7 TeV [1208.2880]            | 1.23 TeV Graviton mass (k/M                                                                         | $Ldt = (1.0 - 13.0) \text{ fb}^{-1}$        |
| trá        | RS q $\rightarrow$ tt (BR=0.925) : tt $\rightarrow$ I+jets, m               | L=4.7 fb <sup>-1</sup> , 7 TeV [ATLAS-CONF-2012-136]     | 1.9 TeV Q Mass                                                                                      | J t                                         |
| Ĕ          | ADD BH $(M_{TU}/M_{D}=3)$ : SS dimuon, $N_{D}$                              | /=1.3 fb <sup>-1</sup> , 7 TeV [1111.0080]               | 1.25 TeV $M_{\rm p}$ ( $\delta$ =6)                                                                 | (s = 7, 8 TeV                               |
|            | ADD BH $(M_{TH}/M_{p}=3)$ : leptons + jets, $\Sigma p$                      | / = 1.0 fb <sup>-1</sup> . 7 TeV [1204.4646]             | 1.5 TeV $M_{\rm p}$ ( $\delta$ =6)                                                                  |                                             |
|            | Quantum black hole : dijet. F $(m_{*})$                                     | $I = 4.7 \text{ fb}^{-1}$ , 7 TeV [1210.1718]            | 4 11 TeV Ma                                                                                         | (8=6)                                       |
|            | gggg contact interaction : $\hat{\gamma}(m)$                                | / =4.8 fb <sup>-1</sup> . 7 TeV [ATLAS-CONF-2012-038]    | 78                                                                                                  |                                             |
| 5          | aall CI : ee & uu, m                                                        | $I = 4.9.5 \text{ of } \text{fb}^{-1}$ 7 TeV [1211 1150] | 7.0                                                                                                 | 13.9 TeV $\Lambda$ (constructive int.)      |
| $\bigcirc$ | uutt CI : SS dilepton + jets + $F_{T}$                                      | $l = 1.0 \text{ fb}^{-1}$ 7 TeV [1202 5520]              | 1 7 TeV                                                                                             | 13.3 100 11 (001151 40410 114)              |
|            | 7' (SSM) : m                                                                | / =5.9-6.1 fb <sup>-1</sup> .8 TeV [ATLAS-CONE-2012-129  | 2 49 TeV 7' mass                                                                                    |                                             |
|            | Z' (SSM) : m                                                                | $L = 4.7 \text{ fb}^{-1}$ 7 TeV [1210 6604]              |                                                                                                     |                                             |
| -          | W' (SSM) : m_                                                               | $I = 4.7 \text{ fb}^{-1}$ 7 TeV [1219.4446]              | 2.55 TeV W' mass                                                                                    |                                             |
| $\geq$     | W' ( $\rightarrow$ ta, a =1); m                                             | $L = 4.7 \text{ fb}^{-1}$ 7 ToV [1209.6593]              | A30 GeV W' mass                                                                                     |                                             |
|            | $W'_{p} (\rightarrow tb, SSM) : m'_{q}$                                     | $L = 4.7 \text{ fb}^{-1}$ , 7 feV [1205.0333]            | 1 12 TeV W' mass                                                                                    |                                             |
|            | $W^* \cdot m$                                                               | $L = 4.7 \text{ fb}^{-1}$ 7 TeV [1209.4446]              | 2 42 TeV W* mass                                                                                    |                                             |
|            | Scalar I O pair (8–1) : kin vars in eeii evii                               | $L = 1.0 \text{ fb}^{-1}$ 7 ToV [1112 4020]              | 660 CeV 1 <sup>st</sup> den LO mass                                                                 |                                             |
| 0          | Scalar LO pair $(B-1)$ kin vars in uuii uvii                                | $L = 1.0 \text{ fb}^{-1}$ 7 TeV [112.3626]               | get cov 2 <sup>nd</sup> gen LO mass                                                                 |                                             |
|            | Scalar LO pair ( $\beta$ =1) · kin vars in $\tau\tau$ ii $\tau$ vii         | $L = 1.0 \text{ fb}^{-1}$ 7 TeV [1203.3172]              | sa Cav 3 <sup>rd</sup> den LO mass                                                                  |                                             |
|            | Ath generation + tt - WhWh                                                  | $L = 4.7 \text{ fb}^{-1}$ 7 ToV [1210 5469]              | ere Cov t' mass                                                                                     |                                             |
| LK.        | $4^{\text{th}}$ generation : h'b'(T T) $\rightarrow$ WtWt                   | $L = 4.7 \text{ fb}^{-1}$ 7 ToV [ATLAS_CONE 2012 130]    | ero Cov h' (T ) mass                                                                                |                                             |
| Ia         | New quark b' : b'b' $\rightarrow$ 7b+X. m                                   | L 2.0 fb <sup>-1</sup> 7 ToV [1204 1265]                 | 670 GeV b' mass                                                                                     |                                             |
| Ъ          | Top partner : $TT \rightarrow tt + A A_{a}$ (dilepton, M <sup>2b</sup> )    | L=2.0 ID , 7 16V [1204.1205] 4                           | mass $m(A) < 100 GeV)$                                                                              |                                             |
| M          | Vector-like quark : CC $m$                                                  | L 4 6 65 <sup>-1</sup> 7 Toy LATLAS CONF 2012 127        | 112  TeV VI O mass (charge 1/3                                                                      | $coupling \kappa = -y/m$ )                  |
| Ne         | Vector-like quark : $OC_{m_{ivq}}$                                          | L=4.6 fb <sup>-1</sup> 7 ToV [ATLAS-CONF-2012-137]       | 1 or Toy VLO mass (charge 2/3                                                                       | $r_{qQ} = v/m_Q$                            |
|            | Excited quarks : v-let resonance. m                                         | L 2 1 6-1 7 Toy [1112 2500]                              |                                                                                                     | coupling k <sub>qQ</sub> = + m <sub>Q</sub> |
| cit.       | Excited quarks : dijet resonance m                                          | L=2.11D, 7 16V [1112.3380]                               | 2.40 TeV y Hidss                                                                                    | 255                                         |
| ਸ਼ੁੱਚ      | Excited lepton : I-v resonance m                                            | L 12.0 fb <sup>-1</sup> .0 ToV (ATLAS-CONF-2012-146)     |                                                                                                     | m(l*))                                      |
|            | Techni-hadrons (I STC) : dilepton m                                         | L=13.010 , 8 10V [ATEA3-CONF-2012-140]                   | 2.2  lev 1 mass $(m = 1)$                                                                           | (1)                                         |
|            | Techni-hadrons (LSTC) : WZ resonance (vIII), $m$                            | L=4.5-5.0 ID , 7 IEV [1205.2535]                         | $p_{T} \omega_{T} m_{T} m_{T} \omega_{T} m_{T} \omega_{T} m_{T} \omega_{T} m_{T} \omega_{T}$        | = 1.1 m(0)                                  |
| -          | Major poutr (LDSM, no mixing) + 2 lop + jots                                | L = 1.0  ID, 7 TeV [1204.1046]                           | $\mu_{T}$ $\mu_{T}$ $\mu_{T}$ $\mu_{T}$ $\mu_{T}$ $\mu_{W}$ $\mu_{W}$ $\mu_{W}$ $\mu_{W}$ $\mu_{W}$ | 2  TeV                                      |
| he         | $W_{-}$ (LRSM no mixing) · 2-lep + jets                                     | $L = 2.1 \text{ fb}^{-1}$ 7 ToV [1203.5420]              | $1.3 \text{ IeV}$ in index $(m(W_R) = 2$                                                            | p(N) < 1.4  TeV                             |
| Oth        | $H^{\pm}_{e}$ (DY prod BR( $H^{\pm} \rightarrow II$ )=1) · SS ee () m       | L=4.7 fb <sup>-1</sup> .7 ToV [1210.5070]                | LA LEV W <sub>R</sub> mass (limit at 308 GeV for)                                                   |                                             |
| ~          | $H^{\pm}$ (DY prod., BR( $H^{\pm} \rightarrow e\mu$ )=1): SS $e\mu m^{\pm}$ | L 4.7 $\Theta^{-1}$ 7 TeV [1210.5070]                    | $H^{\pm\pm}$ mass (minical 350 GeV for $\mu\mu$ )                                                   |                                             |
|            | Color octet scalar $\cdot$ dijet resonance $m$                              | L=4.9 fb <sup>-1</sup> 7 ToV [1210.3070] 31              | 1 PE TAU Scalar resonand                                                                            | ce mass                                     |
|            |                                                                             |                                                          |                                                                                                     |                                             |
|            |                                                                             | 101                                                      | 1 T ~ \/                                                                                            | 10                                          |
|            |                                                                             | 10"                                                      | LIEV                                                                                                | 10 10                                       |
|            |                                                                             |                                                          |                                                                                                     | Mass scale [Te\/]                           |
| * 0        |                                                                             | - I I                                                    |                                                                                                     |                                             |

## **Parton luminosity**



## **Parton luminosity**



## **Global fit to the Standard Model**



## W and Z boson physics



# **Drell-Yan production at high masses**

## **Starting to challenge NNLO predictions**

- Measurement of absolute differential cross-section in range [116-1500] GeV
- Compared to pQCD at NNLO from FEWZ 3.1 which includes NLO EWK corrections such as photon induced background  $\gamma\gamma$ ->ee process (of the same size as syst. from PDFs and  $\alpha_s$  uncertainties)



## **Z/γ\* transverse momenta**

 $\phi_{\eta}^{*}$  depends exclusively on the angles of the two leptons which are better measured than their momenta



Good description of ATLAS data by RESBOS at the ~4% level



## **EW physics: Dibosons**

#### Measurements crucial to check the gauge structure of the Standard Model

Cross-section measurements performed in WW, WZ, W $\gamma$ , Z $\gamma$  and ZZ channels. Results in agreement with SM predictions. Typical precision comparable with size of NLO corrections.

Sensitivity to new physics in most channels: imposing contraints by setting limits on aTGC (anomalous couplings)



# **QCD**: jet physics

#### **Rates span 10 orders of magnitude**

- Absolute NLO theory prediction for both shape and normalisation, agreement to within 20%
- Residual discrepancy consistent with PDF's and perturbative NLO uncertainties
- Jet properties: fragmentation function,

jet shapes, <Nch>, angular decorelations,... data more precise than theory predictions.

- Starting to explore also ratios of 8 TeV/7 TeV which reduces syst. errors.
- Should be able to probe Njet ~ 11-12 (pT>60 GeV) by end of 2012
- New ideas: **subjets within jets**




# Top physics: mass

Top mass measurements from different experiments and different techniques agree well within each other.



### Which mass are we measuring?

- Pole mass (unphysical): based on the concept of the top being free parton
- <u>MS</u> ("running") mass: related to the top mass via RGE

# **Top physics: cross-section**



The era of precision top quark physics, started at the TEVATRON, is continuing at LHC

- 5% precision on total cross section (CMS dilepton), competing with theory uncertainty
- First round of differential cross section measurements
- Measurements of tt+X, where X=(b-)jets,  $\gamma$ , W, Z

# **Top physics: properties**

### Statistics available at LHC allowed for new and more precise measurements

- Spin correlations in to pair production observed
- First measurements of top quark polarisation
- Precise measurements of \ helicity allowed to set stringent limits on the anomalous W<sub>th</sub> couplings
- Exotic top-quark charge excluded



## **Electroweak production of top quark**

For the first time evidence at Tevatron in 2010 (s+t channel) It is challenging even for LHC, in particular s-channel observation

is a long shot (background)

All diagrams have V<sub>tb</sub> vertex



# **Electroweak production of top quark**





 $V_{_{\rm tb}}$  might stay at 10% precision for some time

### The LHC Forecast



# Luminosity colected up to date

Almost 4 x more data with 8 TeV pp available for analysis today: about 20fb<sup>-1</sup> recorded

### Some channels updated with 12-13fb<sup>-1,</sup> presented at HCP conference

- Next major updates planned for Moriond 2013 ...
- However still not excluded that new intermediate results will be released for December CERN Counsil week.



### **Standard Model: global fit**



## **SM Higgs production at the LHC**



## **SM Higgs decays**



## **ATLAS results of 4-th July**

Searches performed in 12 channels in the range 110 GeV < m<sub>H</sub> < 600 GeV</p>

Updated with 2012 data

|             |                           |                  |           | Construction and the second |
|-------------|---------------------------|------------------|-----------|-----------------------------|
| Higgs decay | Subsequent decay          | Mass range [GeV] | L [fb-1]  | Publication (arXiv)         |
| Н→үү        |                           | 110-150          | 4.8 + 5.9 | 1202.1414                   |
| H→ZZ        | III'I'                    | 110-600          | 4.8 + 5.8 | 1202.1415                   |
|             | llvv                      | 200-600          | 4.7       | 1205.6744                   |
|             | llqq                      | 200-600          | 4.7       | 1206.2443                   |
| H→WW        | lvqq                      | 300-600          | 4.7       | 1206.6074                   |
|             | IvIv                      | 110-600          | 4.7       | 1206.0756                   |
| Η→ττ        | ll4∨                      |                  | 4.7       |                             |
|             | I⊤ <sub>had</sub> 3∨      | 110-150          | 4.7       | 1206.5971                   |
|             | $	au_{had}	au_{had} 2  u$ |                  | 4.7       |                             |
| VH→bb       | Іνьь                      |                  | 4.7       |                             |
|             | llbb                      | 110-130          | 4.7       | 1207.0210                   |
|             | ννbb                      |                  | 4.6       |                             |

### **ATLAS results of 4-th July**



Excluded at 95% CL: 110-122.6 GeV, 129.7-558 GeV

Excluded at 99% CL: 111.7-121.7 GeV, 130.7-523 GeV

Expected exclusion at 95% CL (no signal): 110-582 GeV

### **ATLAS results of 4-th July**



### **Excess consistent with** H->γγ and H->ZZ\*->4I decays

## **SM predictions for H-**> $\gamma\gamma$



> Branching fraction small but simple signature (two high  $p_T$  photons in final state) Main backgrounds to  $H \rightarrow \gamma \gamma$  are SM diphoton, jet- $\gamma$  and jet-jet events



## **H->γγ event signature**



#### Simple event signature

□ Two high pT photons pT<sub>1</sub> > 40 GeV and pT<sub>2</sub> > 30 GeV

High trigger efficiency
 ~99%

 High event selection efficiency despite high jet-jet & γ-jet production
 ~40%

High signal over background
 ~3-10 % (depending on sub-category)

Invariant mass reconstruction  $m_{\gamma\gamma}^2 = 2^* E_1 E_2 (1 - \cos \alpha)$ 

- Good energy calibration
- Robust primary vertex reconstruction

→ Excellent invariant mass resolution ~1.6 GeV with 90% of events within ±2σ

### Shower shapes and vertex reconstr.

Photon ID 2 – Photon shower shapes and background rejection



 Photons shower shape distributions in LAr sampling layers - different for signal and background (π<sup>0</sup>)

### Vertex Reconstruction

$$m_{\gamma\gamma}^{2} = 2^{*}E_{1}E_{2}(1 - \cos \alpha)$$

Vertex reconstructed through likelihood combination



- Σ tracks pT<sup>2</sup>
- Conversion vertex
- Mean vertex position



### **Event categorization**

### Event categories based on eta, pTt, and conversion



### **Energy calibration and resolution**

$$m_{\gamma\gamma}^{2} = 2^{*} E_{1} E_{2} (1 - \cos \alpha)$$

- ► MC based calibration improved with energy scale and resolution corrections based on in-situ analysis of Z→ee, W→ev and J/ $\psi$ → ee
- Energy scale at m<sub>z</sub> known to 0.3%, uniformity (constant term) 1% in barrel, 1.2
   2.1% in endcap



### **Invariant mass distribution**



- Photon ID efficiency ~10%
- Energy resolution ~14% and mass scale ~0.6%
- Isolation < 1%</p>
- Pileup 4%
- Lumi 1-3.6 % (2011-2012)
- Theory cross section
  - ~ up to 25% (for VBF contribution)
  - up to 12% (in other ggF)

```
(underlying event ~5% and PTt dist up to 12% at hight PTt)
```

```
Bkg Param (evts) 0.2-4.6 (0.3-6.8) for 2011(2012)
```

#### In VBF category

- Jet E-scale 9-10%
- Underl. Evt. 6-30%
- $\Box Higgs p_{T} up to 12.5\%$

23788 events (7 TeV) and 35251 events (8 TeV) Background+signal fit, signal fixed at 126.5 GeV

# **Quantifying the excess**

- Maximum deviation from background only expectation at m<sub>vv</sub> 126.5 GeV
- $\rightarrow$  Local significance 4.5 $\sigma$  (expected from SM Higgs 2.4 $\sigma$ )



Results consistent between 2011 and 2012 and improved by VBF category
 Results consistent between inclusive analysis (no categories) and with categories

# Signal strenght

- SM hHggs excluded in the regions of 112 122.5 GeV and 132 143 GeV
- > Best fitted signal strength (wrt SM) for  $m_{yy} = 126$  of  $\mu = 1.8 \pm 0.5$
- Consistent results from different categories >



### CL limit on $\sigma/\sigma_{SM}$

15

Signal Strength per Category

### **Properties of new resonance**

#### Mass

→ Likelihood contours in the (µ, mH) plane. Uncertainty on fit comparable for statistical and systematic uncertainty



With and without
 ES uncertainty

### Couplings

- → Constraints in the plane of μ (ggF+tf H ×B/B<sub>SM</sub>) and μ (VBF+V H × B/B<sub>SM</sub>), where B is the branching ratio for H→γγ, can be obtained
- The data are compatible with the SM at the 1.5 σ level
- Production modes merged due to similar couplings and small stats (with current data-set)



# Since then..... (4-th July)

## **ATLAS**

- The WW channel completed with 5.8fb<sup>-1</sup> and released end of July, included in the SM Higgs published paper.
- Low mass channels with decay to WW, bb, ττ updated with ~13fb<sup>-1</sup> (2012) and released for HCP conference.
- Update on combination for signal strength.

### <u>CMS</u>

Updated ZZ, WW, bb, ττ with ~12 fb<sup>-1</sup> (2012).
 Updated combination, couplings and spin.

### Tevatron

Update on H->bb analysis with 10fb<sup>-1</sup>.

### **The TEVATRON update**





 $Z \rightarrow bb$  yields is 5 times larger, but more W+jets at lower mass,

also there is **BG from WW**.

Measure diboson cross section with exactly the same analysis procedure.



$$\sigma$$
(WZ+ZZ)= 3.0 ± 0.9 pb

(Fit performed with MVA output without Higgs signal )

$$\sigma(\text{VZ})_{\text{SM}}^{\text{NLO}}$$
= 4.4  $\pm$  0.3 pb

### **The TEVATRON update**



# $\sigma$ (WH+ZH) × Br(H→bb̄) = 0.19 ± 0.09 (stat+syst) pb → μ = 1.56 ± $^{0.72}_{0.73}$ @M<sub>H</sub>=125GeV



# **ATLAS H->bb: analysis strategy**

- Search for Higgs decaying to pair of b-quarks
   ➢ Associated production to reduce backgrounds
   The analysis is divided into three channels
   ➢ <u>Two</u> (IIbb), <u>one</u> (Ivbb) or <u>zero</u> (vvbb),) (I=e,µ)
- Cuts common to all channels
  - Two or three jets: 1<sup>st</sup> jet p<sub>T</sub> > 45 GeV

other jets  $p_T > 20$  GeV

Two b-tags: 70% efficiency per tag (mistag ~1%)

### Two lepton

### One lepton

### ZH → Ilbb

- No additional leptons
- $E_t^{miss} < 60 \text{ GeV}$
- 83 < m<sub>z</sub> < 99 GeV
- Single & di-lepton trigger

### WH $\rightarrow$ Ivbb

- No additional leptons
- $E_t^{miss} > 25 \text{ GeV}$
- 40 < M<sub>T</sub><sup>W</sup> < 120 GeV</li>
- Single lepton trigger



### Zero lepton

- $ZH \rightarrow vvbb$
- No leptons
- E<sub>t</sub><sup>miss</sup> > 120 GeV
- E<sup>miss</sup> trigger

## H->bb: backgrounds



- Background shapes from simulation and normalised using data (flavour & signal fit)
- Multi-jet bkg determined by data-driven techniques
- WZ(Z→bb) & ZZ(Z→bb) resonant bkg normalisation and shape from simulation



### H->bb: example flavour fit





# H->bb: systematic uncertainties

### Main experimental uncertainties

### b-tagging and jet energy dominate

- Jets: components (7 JES, 1 p<sub>T</sub><sup>Reco</sup>, resol.)
- $\succ$  E<sub>T</sub><sup>miss</sup> scale and resolution
- bTagging light, c & 6 p<sub>T</sub> efficiency bins
- Top, W, Z background modelling
- Lepton/ Multijet / diboson / Luminosity
- MC statistics

### Main theoretical uncertainties

- > W/Z+jet m<sub>bb</sub> and V pT
- ➢ BR(H→bb) @ mH=125 GeV
- Signal cross-sections include pT-dependent electroweak correction factors
- Single top/top normalisation
- ➢ W+c, Z+c

| Uncertainty [%]                     | 0 lepton | 1 lepton | 2 leptons |  |  |
|-------------------------------------|----------|----------|-----------|--|--|
| b-tagging                           | 6.5      | 6.0      | 6.9       |  |  |
| <i>c</i> -tagging                   | 7.3      | 6.4      | 3.6       |  |  |
| light tagging                       | 2.1      | 2.2      | 2.8       |  |  |
| Jet/Pile-up/ $E_{\rm T}^{\rm miss}$ | 20       | 7.0      | 5.4       |  |  |
| Lepton                              | 0.0      | 2.1      | 1.8       |  |  |
| Top modelling                       | 2.7      | 4.1      | 0.5       |  |  |
| W modelling                         | 1.8      | 5.4      | 0.0       |  |  |
| Z modelling                         | 2.8      | 0.1      | 4.7       |  |  |
| Diboson                             | 0.8      | 0.3      | 0.5       |  |  |
| Multijet                            | 0.6      | 2.6      | 0.0       |  |  |
| Luminosity                          | 3.6      | 3.6      | 3.6       |  |  |
| Statistical                         | 8.3      | 3.6      | 6.6       |  |  |
| Total                               | 25       | 15       | 14        |  |  |

#### Background systematics (after cuts)

| Uncertainty [%]                     | 0 le | pton | 1 lepton | 2 leptons |  |  |
|-------------------------------------|------|------|----------|-----------|--|--|
|                                     | ZH   | WH   | WH       | ZH        |  |  |
| b-tagging                           | 8.9  | 9.0  | 8.8      | 8.6       |  |  |
| Jet/Pile-up/ $E_{\rm T}^{\rm miss}$ | 19   | 25   | 6.7      | 4.2       |  |  |
| Lepton                              | 0.0  | 0.0  | 2.1      | 1.8       |  |  |
| $H \rightarrow bb \text{ BR}$       | 3.3  | 3.3  | 3.3      | 3.3       |  |  |
| $VH p_T$ -dependence                | 5.3  | 8.1  | 7.6      | 5.0       |  |  |
| VH theory PDF                       | 3.5  | 3.5  | 3.5      | 3.5       |  |  |
| VH theory scale                     | 1.6  | 0.4  | 0.4      | 1.6       |  |  |
| Statistical                         | 4.9  | 18   | 4.1      | 2.6       |  |  |
| Luminosity                          | 3.6  | 3.6  | 3.6      | 3.6       |  |  |
| Total                               | 24   | 34   | 16       | 13        |  |  |

#### Signal systematics (after cuts)

# H->bb: m<sub>bb</sub> distribution (1 lepton)



# **H->bb: Diboson production**

WZ & ZZ production with  $Z \rightarrow bb$  similar signature, but 5 times larger cross-section Perform a separate fit to search for it and to validate the analysis procedure

- Profile likelihood fit performed (with full systematics)
- All backgrounds (except diboson) subtracted

► Uses full  $p_T^{W,Z}$  range, done individually for each channel & year (see backup) Clear excess is observed in data at expected mass (all lepton channels combined) Results:  $\sigma/\sigma_{SM} = \mu_D = 1.09 \pm 0.20$  (stat)  $\pm 0.22$  (syst). The significance is 4.0 $\sigma$ 



67

### H->bb: Expected and observed events

|              | 0-lepton, 2 jet              |         |      | 0-lepton, 3 jet |         |                         | 1-lepton    |        |         |                                | 2-lepton |               |        |         |         |      |
|--------------|------------------------------|---------|------|-----------------|---------|-------------------------|-------------|--------|---------|--------------------------------|----------|---------------|--------|---------|---------|------|
| Bin          | $E_{\rm T}^{\rm miss}$ [GeV] |         |      |                 |         | $p_{\rm T}^W[{ m GeV}]$ |             |        |         | $p_{\rm T}^{\rm Z}[{\rm GeV}]$ |          |               |        |         |         |      |
|              | 120-160                      | 160-200 | >200 | 120-160         | 160-200 | >200                    | 0-50        | 50-100 | 100-150 | 150-200                        | > 200    | 0-50          | 50-100 | 100-150 | 150-200 | >200 |
| ZH           | 2.9                          | 2.1     | 2.6  | 0.8             | 0.8     | 1.1                     | 0.3         | 0.4    | 0.1     | 0.0                            | 0.0      | 4.7           | 6.8    | 4.0     | 1.5     | 1.4  |
| WH           | 0.8                          | 0.4     | 0.4  | 0.2             | 0.2     | 0.2                     | 10.6        | 12.9   | 7.5     | 3.6                            | 3.6      | 0.0           | 0.0    | 0.0     | 0.0     | 0.0  |
| Тор          | 89                           | 25      | 8    | 92              | 25      | 10                      | 1440        | 2276   | 1120    | 147                            | 43       | 230           | 310    | 84      | 3       | 0    |
| W + c,light  | 30                           | 10      | 5    | 9               | 3       | 2                       | 580         | 585    | 209     | 36                             | 17       | 0             | 0      | 0       | 0       | 0    |
| W + b        | 35                           | 13      | 13   | 8               | 3       | 2                       | 770         | 778    | 288     | 77                             | 64       | 0             | 0      | 0       | 0       | 0    |
| Z + c, light | 35                           | 14      | 14   | 8               | 5       | 8                       | 17          | 17     | 4       | 1                              | 0        | 201           | 230    | 91      | 12      | 15   |
| Z + b        | 144                          | 51      | 43   | 41              | 22      | 16                      | 50          | 63     | 13      | 5                              | 1        | 1 <b>010</b>  | 1180   | 469     | 75      | 51   |
| Diboson      | 23                           | 11      | 10   | 4               | 4       | 3                       | 53          | 59     | 23      | 13                             | 7        | 37            | 39     | 16      | 6       | 4    |
| Multijet     | 3                            | 1       | 1    | 1               | 1       | 0                       | <b>89</b> 0 | 522    | 68      | 14                             | 3        | 12            | 3      | 0       | 0       | 0    |
| Total Bkg.   | 361                          | 127     | 98   | 164             | 63      | 42                      | 3810        | 4310   | 1730    | 297                            | 138      | 1 <b>50</b> 0 | 1770   | 665     | 97      | 72   |
|              | ± 29                         | ± 11    | ± 12 | ± 13            | ± 8     | ± 5                     | ± 150       | ± 86   | ± 90    | ± 27                           | ± 14     | ± 90          | ± 110  | ± 47    | ± 12    | ± 12 |
| Data         | 342                          | 131     | 90   | 175             | 65      | 32                      | 3821        | 4301   | 1697    | 297                            | 132      | 1485          | 1773   | 657     | 100     | 69   |

### H->bb: Expected and observed events



E. Richter-Was



# H-> \u03c7 \u03c1: sensitivity not yet reached

- Calculated limit and significance using MMC distribution as the discriminant.
- To extract signal, Profile likelihood was used.



### Observed Limit (inclusive $H \rightarrow \tau \tau$ )





- Sensitivity(125 GeV)=1.05. Observed limit(125 GeV)=1.66.
- Compatible with Higgs boson signal at 125 GeV but also with background only hypothesis.

Roger Wolf

13

<sup>1)</sup> no fit to data for expectation
## Results





Alexey Drozdetskiy

m₄, (GeV)

#### **ATLAS: update on combination**

| Higgs Boson<br>Decay            | Subsequent<br>Decay                    | Sub-Channels                                                                                                       |     |  |
|---------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----|--|
| $2011 \sqrt{s} = 7 \text{ TeV}$ |                                        |                                                                                                                    |     |  |
| $H \rightarrow ZZ^{(*)}$        | 4ℓ                                     | $\{4e, 2e2\mu, 2\mu 2e, 4\mu\}$                                                                                    | 4.8 |  |
| $H \rightarrow \gamma \gamma$   | -                                      | 10 categories $\{p_{Tt} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet}\}$                 | 4.8 |  |
|                                 | $\tau_{\rm lep} \tau_{\rm lep}$        | $\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, \text{boosted}, VH\}$ | 4.7 |  |
| $H \to \tau \tau$               | $	au_{ m lep}	au_{ m had}$             | $\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, \text{boosted}, 2\text{-jet}\}$                                  | 4.7 |  |
|                                 | $	au_{\mathrm{had}}	au_{\mathrm{had}}$ | {boosted, 2-jet}                                                                                                   | 4.7 |  |
|                                 | $Z \rightarrow \nu \nu$                | $E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$    | 4.6 |  |
| $VH \rightarrow Vbb$            | $W \to \ell \nu$                       | $p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$                                    | 4.7 |  |
|                                 | $Z \to \ell \ell$                      | $p_{\mathbf{T}}^{\hat{Z}} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$                       | 4.7 |  |

2012  $\sqrt{s} = 8 \text{ TeV}$ 

| $H \rightarrow ZZ^{(*)}$      | 4ℓ                                                     | $4\ell$ {4 <i>e</i> , 2 <i>e</i> 2 $\mu$ , 2 $\mu$ 2 <i>e</i> , 4 $\mu$ }                                       |    |
|-------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----|
| $H \rightarrow \gamma \gamma$ | —                                                      | 10 categories { $p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}$ } $\oplus$ {2-jet}              |    |
| $H \to WW^{(*)}$              | $e\nu\mu\nu$ { $e\mu,\mu e$ } $\otimes$ {0-jet, 1-jet} |                                                                                                                 | 13 |
|                               | $	au_{ m lep}	au_{ m lep}$                             | $\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, \text{boosted}, VH\}$                                       | 13 |
| $H \to \tau \tau$             | $	au_{ m lep}	au_{ m had}$                             | $\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, \text{boosted}, 2\text{-jet}\}$                               | 13 |
|                               | $	au_{\mathrm{had}}	au_{\mathrm{had}}$                 | {boosted, 2-jet}                                                                                                | 13 |
| $VH \rightarrow Vbb$          | $Z \rightarrow \nu \nu$                                | $E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$ | 13 |
|                               | $W \to \ell \nu$                                       | $p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$                                 | 13 |
|                               | $Z \to \ell \ell$                                      | $p_{\rm T}^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$                                 | 13 |

E. Richter-Was

### **Channels entering HCP combination**

Best—fit Higgs mass m<sub>H</sub> : 126.0 ± 0.4 (stat) ± 0.4 (syst) GeV

Best-fit signal strength: μ = 1.3 ± 0.3

Coupling measurement not updated for HCP: uncertainies of 20-30%





# Signal strength

- Combined significance at MH=125.8 GeV: 6.9  $\sigma$
- Combined  $\sigma/\sigma_{SM} = 0.88 \pm 0.21$
- Overall satisfactory level of compatibility of the individual channels to the SM cross section
  - p-value=0.46 from pseudo experiments
- Break-down production mode shows compatibility within  $1\sigma$  for each decay channel



6

#### Marco Zanetti, HCP 2012, Kyoto



## Couplings summary

- Overall good compatibility with SM predictions
- Still limited precision



| Model parameters                                                        | Assessed scaling factors |                   |  |
|-------------------------------------------------------------------------|--------------------------|-------------------|--|
|                                                                         | (95% CL intervals)       |                   |  |
| $\lambda_{\rm wz},\kappa_{\rm z}$                                       | $\lambda_{wz}$           | [0.57-1.65]       |  |
| $\lambda_{wz}, \kappa_z, \kappa_f$                                      | $\lambda_{wz}$           | [0.67-1.55]       |  |
| $\kappa_{\rm v}$                                                        | $\kappa_{\rm v}$         | [0.78-1.19]       |  |
| κ <sub>f</sub>                                                          | κ <sub>f</sub>           | [0.40-1.12]       |  |
| $\kappa_{\gamma}, \kappa_{g}$                                           | $\kappa_{\gamma}$        | [0.98-1.92]       |  |
|                                                                         | κg                       | [0.55-1.07]       |  |
| $\mathcal{B}(\mathrm{H} \to \mathrm{BSM}), \kappa_{\gamma}, \kappa_{g}$ | $\mathcal{B}(H \to BSM)$ | [0.00-0.62]       |  |
| $\lambda_{\rm du}, \kappa_{\rm v}, \kappa_{\rm u}$                      | $\lambda_{du}$           | [0.45–1.66]       |  |
| $\lambda_{\ell q}, \kappa_{v}, \kappa_{q}$                              | $\lambda_{\ell q}$       | [0.00-2.11]       |  |
|                                                                         | $\kappa_{\rm v}$         | [0.58-1.41]       |  |
|                                                                         | $\kappa_b$               | [not constrained] |  |
| $\kappa_v, \kappa_b, \kappa_\tau, \kappa_t, \kappa_g, \kappa_\gamma$    | $\kappa_{\tau}$          | [0.00–1.80]       |  |
|                                                                         | $\kappa_t$               | [not constrained] |  |
|                                                                         | ĸg                       | [0.43-1.92]       |  |
|                                                                         | $\kappa_{\gamma}$        | [0.81-2.27]       |  |



Couplings look consistent within 2 standard deviations

- Fermions versus vector bosons
- effective gluon versus photon couplings (loops)

For SM Higgs physics we are shifting from a searchbased to a **measurement based program**. It presents a challenge.

In particular final fitting and fit models undergo much deeper scrutinity and optimisation

→ Enormous numbers of nuisance parameters in the likelihoods require deep understanding of their uncertainties and petential correlations

→ Fitting process itself is very complicated and time consuming

→ Mixture of fitered Monte Carlo and data-driven techniques makes **understanding of uncertainties particularly challenging**.