
Attilio Andreazza Università di Milano

Caterina Doglioni Université de Genève

ROOT tutorial, part 1

HASCO school – 17/07/2012

07/17/12 2

What is ROOT? http://root.cern.ch/

ROOT tutorial – A. Andreazza, C. Doglioni

An object oriented framework
for large scale data analysis

An object oriented framework
for large scale data analysis

http://root.cern.ch/

07/17/12 3

Object oriented...

ROOT tutorial – A. Andreazza, C. Doglioni

ROOT objects:
C++ classes with

data members,
member functions

inheritance relationships

07/17/12 4

...framework...

ROOT tutorial – A. Andreazza, C. Doglioni

ROOT: a set of reusable classes and libraries

ROOT in interactive mode ROOT in compiled code

07/17/12 5

...for large scale...

Enormous amount of data
recorded by e.g. the LHC:

Need efficient data formats
and tools to:
store the data

read data out (I/O)
extract information from data

(this plot has been made with ROOT)

ROOT tutorial – A. Andreazza, C. Doglioni

07/17/12 6

...data analysis

Analysing data involves:

● Recording and storage of data/MC
● Reconstruction of physics objects

● Discrimination of signal
from background (e.g. using cuts)

● Quantitative comparison
of predictions to experimental results

● Presentation results
(usually using plots)

...and much more:
ROOT is used to do all of this

this tutorial: final data analysis

ROOT tutorial – A. Andreazza, C. Doglioni

Raw data

Reconstructed/calibrated
Physics objects

Ntuples

...
ve

ry
 r

ou
gh

l y
...

07/17/12 7ROOT tutorial – A. Andreazza, C. Doglioni

Documentation and links

Class reference

ROOTTalk (forum)

ROOT manual

Tutorial disclaimer: partial / personal
view of all that ROOT can do...

http://root.cern.ch/drupal/content/reference-guide
http://root.cern.ch/phpBB3/viewforum.php?f=3
http://root.cern.ch/drupal/content/users-guide

Using ROOT:
interactive (CINT), ACLiC

ROOT Tutorial
HASCO school – 17/07/2012

From now on, raise your hand
if you want any of the lines of code
written out & demonstrated live!

07/17/12 9ROOT tutorial – A. Andreazza, C. Doglioni

Start and quit ROOT

No splash screen

To quit

To quit a stubborn session

07/17/12 10

CINT: necessary health warning

ROOT tutorial – A. Andreazza, C. Doglioni

CINT is an interpreter, not a compiler

For most of this tutorial, we will use CINT

A compiler would complain about this
liberal use of pointer operators on objects...

CINT has limitations, but it is easy to use on command line
and works reasonably for quick plotting purposes

E.g. one advantage: CINT will look for objects in the current directory and save you some typing

However, bad idea to learn C++ via CINT...

07/17/12 11

Macros in CINT

ROOT tutorial – A. Andreazza, C. Doglioni

Unnamed macros Named macros

Tab completionTab completion

Function argument

Loads the macro
so function can be
executed

07/17/12 12

Macros in ACLiC

ROOT tutorial – A. Andreazza, C. Doglioni

Compiled macros

Needs a bit more work...

More info on this link

Let's try with the named macro

http://root.cern.ch/drupal/content/compiling-macros

07/17/12 13

Macros in ACLiC

ROOT tutorial – A. Andreazza, C. Doglioni

Compiled macros

#includes
(for each class used)

namespaces
Standard library objects

Compiled macros are faster!
Worth thinking about if e.g. reading events from file

More info on this link

myFirstMacro.C

Indicates a macro that
you can try out
in the tarball

attached to the agenda

http://root.cern.ch/drupal/content/compiling-macros

Mini-introduction to OO in ROOT

ROOT Tutorial
HASCO school – 17/07/2012

07/17/12 15

An object in ROOT: TF1

ROOT tutorial – A. Andreazza, C. Doglioni

A (mathematical) function TF1 is an object: has data members/methods

Constructor:
makes an instance of the object

Methods:
ask for/modify properties of the object

Name Formula Range
(min/max)

From the TF1.h classData members:
properties of the object

generally inaccessible to us (encapsulation)
can be modified with setters/getters

07/17/12 16

An object in memory: TF1*

ROOT tutorial – A. Andreazza, C. Doglioni

What is the difference between an object and a pointer to an object?

TF1
TF1*

The actual chunk of memory
needed to contain a TF1

object's functions accessed with .
(e.g. function.GetName())

A smaller chunk of memory
pointing to the object

object's functions accessed with ->
(e.g. function>GetName())

Nasty things can happen if this link is broken (e.g.
pointer doesn't point anywhere anymore...)

Good practice to check the pointer: a broken link
will show up as a null pointer

07/17/12 17

An object in memory: TF1*

ROOT tutorial – A. Andreazza, C. Doglioni

What is the difference between an object and a pointer to an object?

Main difference (to me): persistency

Object lives in the memory stack
→ memory gets freed automatically

when object goes out of scope

07/17/12 18

An object in memory: TF1*

What is the difference between an object and a pointer to an object?

Main difference (to me): persistency

Associated object lives in the memory heap
→ memory does not get freed automatically

when it goes out of scope

especially in compiled code,
every new needs a delete to free the memory...

otherwise memory leak

2 GB of functions!

ROOT tutorial – A. Andreazza, C. Doglioni

MemoryLeak.C

07/17/12 19

Another object in ROOT: TH1

ROOT tutorial – A. Andreazza, C. Doglioni

Most famous object in ROOT: histogram (TH1...)

Various types of histograms depending on type of content:
e.g. TH1D: bins filled with doubles

TH1I: bins filled with integers

Many properties and functionalities in common
→ inheritance from common class TH1

~ all functions of TH1 will be inherited by derived classes

Most ROOT objects inherit from TNamed class → all have a SetName function

07/17/12 20

Interlude: naming conventions

ROOT tutorial – A. Andreazza, C. Doglioni

How does ROOT call its classes and functions?

● Class names start with capital T, e.g. TF1

● Class data members start with f, e.g. fXmin

● Names of non-class data types end with _t: e.g. Int_t

● Class methods start with _t: e.g. GetName()

● Global variable names start with _t: e.g. gPad

● Constant (or enumerator) names start with k: e.g. kTrue

● Words in names are capitalized: e.g. GetLineColor()

● Two subsequent capital letters are avoided: e.g. GetXaxis()

Taken from B. List's tutorial (link)

Objects in files

ROOT Tutorial
HASCO school – 17/07/2012

07/17/12 22

TFile: opening for reading

ROOT tutorial – A. Andreazza, C. Doglioni

TFile: how to persistify ROOT's objects

Reading objects from a file

Returns a pointer to a Tfile
Opening option: will not
modify the file

Like unix's ls fuction, list the file content

A bit of pointer gymnastic: Get() returns a
TObject, need to cast it to the correct object in
order to access the pointer later

07/17/12 23

TFile: writing objects

ROOT tutorial – A. Andreazza, C. Doglioni

TFile: how to persistify ROOT's objects

Writing objects on a new file

Opening option: will overwrite
any existing file with the same
name (alternative: UPDATE)

Simply write the function(object) to
the file

Write the function to the file with
a different name

07/17/12 24

TBrowser: ROOT's GUI

ROOT tutorial – A. Andreazza, C. Doglioni

TBrowser: convenient way of accessing objects quickly

Time for a demo

List of filenames to be opened
by ROOT and put in current directory

Functions: TF1s

ROOT Tutorial
HASCO school – 17/07/2012

07/17/12 26

TF1 with parameters

ROOT tutorial – A. Andreazza, C. Doglioni

A function can have parameters (e.g. floating parameters for fits...)

GaussianWithOffset.C

07/17/12 27

Let's draw a TF1 on a TCanvas

ROOT tutorial – A. Andreazza, C. Doglioni

Like most objects in ROOT, functions can be drawn on a canvas

07/17/12 28

Let's draw a TF1 on a TCanvas

ROOT tutorial – A. Andreazza, C. Doglioni

Like most objects in ROOT, functions can be drawn on a canvas

gPad: global variable
pointing to current canvas

gPad controls properties
of current canvas, e.g. log scale

07/17/12 29

Let's draw a TF1 on a TCanvas

ROOT tutorial – A. Andreazza, C. Doglioni

Like most objects in ROOT, functions can be drawn on a canvas

a TCanvas is an object too...

...it can be divided in TPads

...and saved as an image

07/17/12 30

Formatting TF1s

ROOT tutorial – A. Andreazza, C. Doglioni

Graphical properties of TF1 can be changed

This will work for histograms too!

07/17/12 31

Formatting TF1s

ROOT tutorial – A. Andreazza, C. Doglioni

Graphical properties of TF1 can be changed

This will work for histograms too!

Line styles here

Some available line styles

Histograms: TH1/TH2s

ROOT Tutorial
HASCO school – 17/07/2012

07/17/12 33

1-dimensional histograms (1)

ROOT tutorial – A. Andreazza, C. Doglioni

1-D histograms can be instantiated in various ways

With fixed bin size

With variable bin size

C array with low edges for each bin + high edge of last bin

The number of bins is equal to the
number of elements in the vector of
bins minus one

07/17/12 34

1-dimensional histograms (2)

Filling a histogram, getting information from a histogram

Useful when no graphic session

Can also:
● fill with weights:

call Fill(xEntry, weight)
and TH1::SetSumw2 for
calculating errors correctly

● Set entire bin content: call
setBinContent(iBin,
binContent)

TH1Basic.C

ROOT tutorial – A. Andreazza, C. Doglioni

07/17/12 35

1-dimensional histograms (3)

Useful information on bin conventions

Every ROOT histogram has:
overflow bin → where entries beyond
the upper edge of the last bin go
Underflow bin → where entries
beyond the low edge of the first bin go

Overflows and underflows

bin = 0; underflow bin
bin = 1; first bin with low-edge included
bin = nbins; last bin with upper-edge excluded
bin = nbins+1; overflow bin

Bin numbering conventions

Every ROOT histogram has:
overflow bin → where entries beyond
the upper edge of the last bin go
Underflow bin → where entries
beyond the low edge of the first bin go

Overflows and underflows

bin = 0; underflow bin
bin = 1; first bin with low-edge included
bin = nbins; last bin with upper-edge excluded
bin = nbins+1; overflow bin

Bin numbering conventions

Every ROOT histogram has:
overflow bin → where entries beyond
the upper edge of the last bin go
Underflow bin → where entries
beyond the low edge of the first bin go

Overflows and underflows

bin = 0; underflow bin
bin = 1; first bin with low-edge included
bin = nbins; last bin with upper-edge excluded
bin = nbins+1; overflow bin

Bin numbering conventions

ROOT tutorial – A. Andreazza, C. Doglioni

07/17/12 36

Drawing histograms

Many options to draw a histogram (see THistPainter)

h1>Draw() h1>Draw(“E”)

h1>Draw(“TEXT”) h1>Draw(“L”)

http://root.cern.ch/root/html/THistPainter.html

07/17/12 37

The TBrowser editor

Let's click our way through editing a histogram...

Time for a demo

07/17/12 38

Don't forget the axis labels (1)

TAxis: class controlling x and y axes

Incidentally, this always happens

ROOT tutorial – A. Andreazza, C. Doglioni

07/17/12 39

Don't forget the axis labels (2)

TAxis: class controlling x and y axes

Axis title

ROOT tutorial – A. Andreazza, C. Doglioni

07/17/12 40

Many 1-dimensional histograms (1)

How to plot many histograms at once?

THStack

TLegend

TLatex

TPad

TPaveText

http://root.cern.ch/root/html/THStack.html
http://root.cern.ch/root/html/TLegend.html
http://root.cern.ch/root/html/TLatex.html
http://root.cern.ch/root/html/TPad.html
http://root.cern.ch/root/html/TPaveText.html

07/17/12 41

Many 1-dimensional histograms (2)

How to plot many histograms at once, the easy way

Disadvantage: any formatting
of axes, title etc

will be tied to first histogram

Draw histogram
(or anything else)

on the same canvas

TH1Draw.C

ROOT tutorial – A. Andreazza, C. Doglioni

07/17/12 42

THStack (1)

How to plot many histograms at once and stack them as well

Stacked histograms:
Total bin content displayed

= sum of bin contents
of individual histograms

More on random number generators later...

ROOT tutorial – A. Andreazza, C. Doglioni

07/17/12 43

THStack (2)

How to plot many histograms at once and stack them as well

nostack option:
Equivalent to drawing with “same”

Advantage: control global
drawing properties (axes etc)

using THStack only

Needed to 'create' the axis

TH1Stack.C

ROOT tutorial – A. Andreazza, C. Doglioni

07/17/12 44

TPad

How to have e.g. a data/MC inset on the bottom of your plot

TPad: contained in a TCanvas, can contain other TPads

Parameters: xLow, yLow, xHigh, yHigh
Coordinates are relative to the
canvas: (x,y)=(0,0) is bottom left

If plots share the same x axis, cover axis for first plot

From now on, everything will be Draw()n on pad1

From now on, everything will be Draw()n on pad2

TPadExample.C

07/17/12 45

TPad

How to have e.g. a data/MC inset on the bottom of your plot

Final result (with some more formatting + a TLegend needed...)

07/17/12 46

TLegend

How to draw a legend for multiple histograms

TH1Stack.C

07/17/12 47

2-dimensional histograms

ROOT tutorial – A. Andreazza, C. Doglioni

2-D histogram can be instantiated in a similar way as 1-D ones,
with one dimension more (there are also 3D histograms...)

With fixed bin size

With variable bin size

C arrays with low edges for each bin + high edge of last bin

The number of bins is equal to the number of elements
in the vector of bins minus one

07/17/12 48

2-dimensional histograms

ROOT tutorial – A. Andreazza, C. Doglioni

Filling a 2-D histogram

TH2Basic.C

07/17/12 49

2-dimensional histograms

ROOT tutorial – A. Andreazza, C. Doglioni

Getting information from a 2-D histogram

TH2Basic.C

07/17/12 50

Pretty 2-dimensional histograms

ROOT tutorial – A. Andreazza, C. Doglioni

How to set a new palette (credits to this website)

SetPlotStyle.C

Graphs with errors

ROOT Tutorial
HASCO school – 17/07/2012

07/17/12 52

TGraph

ROOT tutorial – A. Andreazza, C. Doglioni

TGraph: two arrays of points representing x and y coordinates
TGraphErrors: TGraph with symmetric errors on x and y points
TGraphAsymmErrors: TgraphErrors, with asymmetric errors

TGraph.C

07/17/12 53

TGraphAsymmErrors

ROOT tutorial – A. Andreazza, C. Doglioni

TGraph: two arrays of points representing x and y coordinates
TGraphErrors: TGraph with symmetric errors on x and y points
TGraphAsymmErrors: TGraphErrors, with asymmetric errors

TGraphAsymmErrors.C

07/17/12 54

Many TGraphs

ROOT tutorial – A. Andreazza, C. Doglioni

TLegend

TLatex

TMultiGraph

How to plot many graphs at once?

http://root.cern.ch/root/html/TLegend.html
http://root.cern.ch/root/html/TLatex.html
http://root.cern.ch/root/html/TMultigraph.html

07/17/12 55

TMultigraph

ROOT tutorial – A. Andreazza, C. Doglioni

How to plot many graphs at once?

TMultiGraph.C

Data storage and more: TTrees

ROOT Tutorial
HASCO school – 17/07/2012

07/17/12 57

What is a TTree?

ROOT tutorial – A. Andreazza, C. Doglioni

TTree: made for saving (and processing) data

Simple idea:
it's like a table with

rows = events
columns = data fields

...more complex
(more functionalities)

than this: e.g.
● TTree can contain entire
objects (branches → leaves)

● TTree can perform
operations on itself

(scanning, dumping to
histogram, cuts)

 Run number Event number m_jj (GeV)

203353 87535595 2669.6731

203353 74292059 2617.4563

203353 84096111 2452.7685

203353 74541499 2450.3027

203353 87499206 2399.0742

branches

e
n
t
r
i
e
s

07/17/12 58

Preparing a TTree

ROOT tutorial – A. Andreazza, C. Doglioni

Branching a TTree → creating data fields to save entries

TTreeBasic.C

This will associate the
variables to the tree
so it will read from the
right locations in memory

07/17/12 59

Filling a TTree

ROOT tutorial – A. Andreazza, C. Doglioni

Filling a TTree → inserting entries in data fields

See the TTree class doc for
more ways to fill a TTree...

TTreeBasic.C

http://root.cern.ch/root/html/TTree.html

07/17/12 60

Reading a TTree: Scan

ROOT tutorial – A. Andreazza, C. Doglioni

Simple by-eye inspection of TTree entries

Without any
arguments, Scan() will
display all entries and

all branches
sequentially

Ttree::Scan()

07/17/12 61

Reading a TTree: Scan

ROOT tutorial – A. Andreazza, C. Doglioni

Simple by-eye inspection of TTree entries

Ttree::Scan(“branchName”)

You can Scan() single /
multiple branches (first

argument of the
function needs to be

the branch name)

07/17/12 62

Cuts on a TTree with TTree::Scan

ROOT tutorial – A. Andreazza, C. Doglioni

Simple by-eye inspection of TTree entries + apply cuts

Ttree::Scan(“”,”branchName>cut”)

You can apply cuts using Scan()
and the syntax of TFormulas

e.g.

[0]*sin(x) +
[1]*exp([2]*x)

2*pi*sqrt(x/y)

http://root.cern.ch/root/html/TFormula.html

07/17/12 63

Drawing a TTree

ROOT tutorial – A. Andreazza, C. Doglioni

TTree branches can easily be drawn on 1D histograms

TTree::Draw(“branchName”, “cuts”,””, “histogram painting options”)

...not very physical...

07/17/12 64

Drawing a TTree

ROOT tutorial – A. Andreazza, C. Doglioni

TTree branches can easily be drawn on 2D (or 3D) histograms

TTree::Draw(“branchName1:branchName2”, “...”)

...still not very physical...

07/17/12 65

Drawing a TTree

ROOT tutorial – A. Andreazza, C. Doglioni

The result of Draw() can be saved on a custom histogram

TTree::Draw(“branchName”, “branchName>h1(TH1 nBinsX, xLow, xHigh)”)

07/17/12 66

Inspecting TTree with TTreeViewer

ROOT tutorial – A. Andreazza, C. Doglioni

Scan(), Draw() and more by clicking on branches

Time for a demo

07/17/12 67

TChains

ROOT tutorial – A. Andreazza, C. Doglioni

A TChain is a TTree (inheritance...) - advantage: split over many files

...after having generated two separate large TTrees...

Chained TTrees must have
the same branches and the
same name, given to the
TChain

Wildcards work to give
files containing Ttrees
to TChain

● Reading TTrees efficiently: TSelector
● Random number generation
● Fitting in ROOT and more
● pyROOT

(things will get more interesting for the experienced ones among you!)

Tomorrow...

HASCO school – 18/07/2012

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

