Lecture 4

Computing for HEP experiments

Trigger and DAQ System

Based on lectures given by P. Sphicas CERN Summer Students Lectures
July 2005

Collisions at the LHC: summary

Selection of 1 event in 10,000,000,000,000

Trigger and Data Acquisition System

Mandate:

- "Look at (almost) all bunch crossings, select the most interesting ones, collect all detector information for them and store it for off-line analysis"
 - P.S. For a reasonable number of CHF
- The photographer analogy:
 - Trigger: the photographer/camera push-button combination
 - DAQ: burning the film, rolling out the picture, storing film
 - Quality of shot: number of pictures/second, number of pixels
 - And of course the photographer
 - Cost of shot: the camera (one-time); film (recurring); the shot itself (cannot take another picture for a short time after we push on the camera button)
- Trigger/DAQ: the HEP experiment photographer. All physics analysis runs off of the film (s)he produces

Beam crossings: LEP, Tevatron & LHC

LHC will have ~3600 bunches

- And same length as LEP (27 km)
- Distance between bunches: 27km/3600=7.5m
- Distance between bunches in time: 7.5m/c=25ns

Impact on detector design

- LHC detectors must have fast response
 - Avoid integrating over many bunch crossings ("pile-up")
 - Typical response time: 20-50 ns
 - → integrate over 1-2 bunch crossings → pile-up of 25-50 minbias events → very challenging readout electronics
- LHC detectors must be highly granular
 - Minimize probability that pile-up particles be in the same detector element as interesting object (e.g. γ from H → γγ decays)
 - → large number of electronic channels
- LHC detectors must be radiation resistant:
 - high flux of particles from pp collisions → high radiation environment e.g. in forward calorimeters:
 - up to 10¹⁷ n/cm² in 10 years of LHC operation
 - up to 10⁷ Gy (1 Gy = unit of absorbed energy = 1 Joule/Kg)

Pile-up

- "In-time" pile-up: particles from the same crossing but from a different pp interaction
- Long detector response/pulse shapes:
 - "Out-of-time" pile-up: left-over signals from interactions in previous crossings

Need "bunch-crossing

Time of Flight

c=30cm/ns; in 25ns, s=7.5m

INTERNATION

Physics selection at the LHC

Trigger/DAQ requirements/challenges

- N (channels) ~ O(10⁷); ≈20 interactions every 25 ns
 - need huge number of connections
 - need information super-highway
- Calorimeter information should correspond to tracker info
 - need to synchronize detector elements to (better than) 25 ns
- In some cases: detector signal/time of flight > 25 ns
 - integrate more than one bunch crossing's worth of information
 - need to identify bunch crossing...
- Can store data at ≈ 10² Hz
 - need to reject most interactions
- It's On-Line (cannot go back and recover events)
 - need to monitor selection

Triggering

 Task: inspect detector information and provide a first decision on whether to keep the event or throw it out

The trigger is a function of :

Event data & Apparatus Physics channels & Parameters

- Detector data not (all) promptly available
- Selection function highly complex
- ⇒T(...) is evaluated by successive approximations, the TRIGGER LEVELS

(possibly with zero dead time)

Online Selection Flow in pp

- Level-1 trigger: reduce 40 MHz to 10⁵ Hz
 - This step is always there
 - Upstream: still need to get to 10² Hz; in 1 or 2 extra steps

Three physical entities

Additional processing in LV-2: reduce network bandwidth requirements

Two physical entities

- Reduce number of building blocks
- Rely on commercial components (especially processing and communications)

Comparison of 2 vs 3 physical levels

- Three Physical Levels
 - Investment in:
 - Control Logic
 - Specialized processors

Model

- Two Physical Levels
 - Investment in:
 - Bandwidth
 - Commercial Processors

Trigger/DAQ parameters: summary

ATLAS	No.Levels	Level-1	Event	Readout	Filter Out
	Trigger	Rate (Hz)	Size (Byte)	Bandw.(GB/s)	MB/s (Event/s)
	3	10 ⁵ v-2 10 ³	10 ⁶	10	100 (10 ²)
CMS		V-2 10			
	2	10 ⁵	10 ⁶	100	100 (10 ²)
LHCb		₁ 10 ⁶ ₁ 4 10 ⁴	2x10 ⁵	4	40 (2x10 ²)
PICO DE ABOURE PRENCHAME		. _{Pp} 500 ⊳ 10³	5x10 ⁷ 2x10 ⁶	5	1250 (10 ²) 200 (10 ²)

Trigger/DAQ systems: present & future

Particle signatures in the detector(s)

At Level-1: only calo and muon info

 Pattern recognition much faster/easier

- Simple algorithms
 - Simple algorithms
- ➤ Small amount of data
- > Local decisions

Compare to tracker info

Need to link sub-detectors

Level-1 Trigger: decision loop

- Synchronous 40 MHz digital system
 - Typical: 160 MHz internal pipeline
 - Latencies:
 - Readout + processing:
 1μs
 - Signal collection & distribution: ≈ 2μs
- At LvI-1: process only calo+μ info

LvI-1 Calo Trigger: prototypes

Trigger Crate (160 MHz backplane)

Back

Front

Receiver Card

Links

Electron (isolation) Card

Online Selection Flow in pp

Internet Growth (a reminder)

- 100 million new users online in 2001
- Internet traffic doubled every 100 days
- 5000 domain names added every day
- Commerce in 2001: >\$200M
- 1999: last year of the voice
- Prices(basic units) dropping
- Need more bandwidth
- Conclusion:
 - It'll go on; can count on it.

Pietro M. DI VITA / Telecom ITALIA Telecom99

Processor Engine (II)

PC+Linux: the new supercomputer for scientific applications

obswww.unige.ch/~pfennige/gravitor/gravitor_e.html

www.cs.sandia.gov/cplant/

HLT requirements and operation

- Strategy/design guidelines
 - Use offline software as much as possible
 - Ease of maintenance, but also understanding of the detector
- Boundary conditions:
 - Code runs in a single processor, which analyzes one event at a time
 - HLT (or Level-3) has access to full event data (full granularity and resolution)
 - Only limitations:
 - CPU time
 - Output selection rate (~10² Hz)
 - Precision of calibration constants
- Main requirements:
 - Satisfy physics program (see later): high efficiency
 - Selection must be inclusive (to discover the unpredicted as well)
 - Must not require precise knowledge of calibration/run conditions
 - Efficiency must be measurable from data alone
 - All algorithms/processors must be monitored closely

HLT (regional) reconstruction (I)

Global

- process (e.g. DIGI to RHITs) each detector fully
- then link detectors
- then make physics objects

Regional

- process (e.g. DIGI to RHITs) each detector on a "need" basis
- link detectors as one goes along
- physics objects: same

HLT (regional) reconstruction (II)

For this to work:

- Need to know where to start reconstruction (seed)
- For this to be useful:
 - Slices must be narrow
 - Slices must be few

Seeds from LvI-1:

- e/γ triggers: ECAL
- μ triggers: μ sys
- Jet triggers: E/H-CAL

Seeds ≈ absent:

- Other side of lepton
- Global tracking
- ◆ Global objects (Sum E_T, Missing E_T)

Example: electron selection (I)

"Level-2" electron:

- 1-tower margin around 4x4 area found by Lvl-1 trigger
- Apply "clustering"
- Accept clusters if H/EM < 0.05
- Select highest E_⊤ cluster

Brem recovery:

- ◆ Seed cluster with E_T>E_T^{min}
- Collect all clusters in road
- → "supercluster" and add all energy in road:

After the Trigger and the DAQ/HLT

A parting thought

Cut

CODY

Paste

Clear

Paste Into

Copy Merged ☆%C

第X 第C

#V ☆#V

With respect to offline analysis:

Same hardware (Filter Subfarms)

Same software

But different situations

(Grand) Summary

- The Level-1 trigger takes the LHC experiments from the 25 ns timescale to the 10-25 μs timescale
 - Custom hardware, huge fanin/out problem, fast algorithms on coarse-grained, low-resolution data
- Depending on the experiment, the next filter is carried out in one or two (or three) steps
 - Commercial hardware, large networks, Gb/s links.
 - If Level-2 present: low throughput needed (but need Level-2)
 - If no Level-2: three-dimensional composite system
- High-Level trigger: to run software/algorithms that as close to the offline world as possible
 - Solution is straightforward: large processor farm of PCs
 - Monitoring this is a different issue
- All of this must be understood, for it's done online.