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Introduction
Neural Networks are more and more used in various fields for data analysis and 
classification, both for research and commercial institutions. 

� Image analysis� Financial movements predictions and analysis� Sales forecast and product shipping optimisation � In particles physics: mainly for classification tasks 
(signal over background discrimination)

Several tools: for Matlab, or in various programming languages.
MLPfit: fast and powerful, already ported to paw.

(Jerome Schwindling, http://schwind.home.cern.ch/schwind/MLPfit.html )

Existing solutions do implement powerfull learning methods, are evolutive tools for 
research on neural networks, but are generally not suited to the large samples ROOT is 
used to manipulate.

A clear flexible Object Oriented implementation has been choosen, starting from MLPfit.

Something new was needed...
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Neuron

Synapse

Multi-layer perceptrons (1)

Input layer

Hidden layer(s)

Linear combinations (w
ij
)

Linear combinations (w
ij
)

Output layer

Normalization

Evaluation of a function f(x)

Forward inputs (f(x)=x) 
& computes the error
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Multi-layer perceptrons (2)

A linear combination of sigmoids can approximate 
any continuous function.

Trained with output = 1 for the signal and 0 for the 
background, the approximated function of inputs 
X is the probability of signal, knowing X.

Hidden neurons 
are sigmoids.
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Learning methods

The most trivial learning method is the (Robbins-Monro) stochastic minimization:
The weights are updated after each example according to the formula:

with

� steps follow the gradient� additionnal “flat-spot elimination factor”   δ� second-order term

5 other learning methods are implemented:
  � Steepest descent with fixed step size, � Steepest descent algorithm with line search,� Conjugate gradients with the Polak-Ribiere updating formula, � Conjugate gradients with the Fletcher-Reeves updating formula � and the Broyden, Fletcher, Goldfarb, Shanno (BFGS) method. 
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Implementation

TMultiLayerPerceptron is a collection of neurons and synapses.
Services: configuration, training and USER INTERFACE

TNeuron class
This is a transfert function, an input or an output
and may be associated to a TTree branch or to a set of synapses.

Other services: normalisation, output, error. 
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TSynapse class
This is a weighted bidirectionnal link between 2 neurons
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Example 1 : mlpHiggs.C

Starting with a TFile containing two TTrees, one for the 
signal, the other for the background, a simple script is used. 
Those 2 trees are merged into one, with an additionnal type 
branch. 

 TMultiLayerPerceptron *mlp = 
  new  TMultiLayerPerceptron(
    "msumf,ptsumf,acolin,acopl:8:type”, tree);

 mlp->Train(500, "text,graph,update=10");

This network is then trained:

With Monte Carlo events simulated at  LEP, a neural network is build to make the 
difference between WW events and events containing a Higgs boson.

msumf  ptsumf  acolin  acopl

Type: 
(WW:0)  (Higgs:1)
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Example 1 : mlpHiggs.C

Learning...E
rr

or

Time

Higgs events

WW events

During the learning, one sees 2 curves:
the sample has been divided into a 
training set and a test set.

The resulting NN distributions :
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Example 2 : fitting a function

NN are also used to fit functions:

2-10-1 network. 90s learning time with the BFGS method. 
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Example 3 : fitting a 1D function

In nuclear physics, people handle complex spectrums difficult to fit. 
Such a fit is sometimes used to perform a subsequent background 
subtraction.

Christophe Dufauquez, from Louvain-la-Neuve, has used a NN as such:

(12 free parameters)

(90 free parameters)
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Timing
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Here are the results of the learning of:
the Higgs example above

I 979 TTree entries for learning

J 979 TTree entries for test

K 1000 epochs (iterations)
on a mobile AMD Athlon(tm) XP 1500+ (458.8 rootmarks)

Only trivial optimization of the code has been achieved now. 
This difference might be recovered. 

t (sec)
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Conclusions

More documentation, reference papers and examples can be found 
on the TMultiLayerPerceptron website:
http://www.fynu.ucl.ac.be/users/c.delaere/MLP/

L A multi-layer perceptron implementation is now released with ROOT 
since the version 3.10.1

M The flexible implementation should allow to extend the code to other 
networks.

N Some timing studies hows that MLPfit is faster by a factor 

O

7 . Code 
optimization might allow to recover at least part of it.

P MLPs are fully working and easy to use. It has a growing user-base.


