
C. Delaere 2004 ROOT users workshop 1

TMultiLayerPerceptron

Designing and using
Multi-Layer Perceptrons with ROOT.

Christophe Delaere

FNRS Research Fellow

UCL – Belgium

C. Delaere 2004 ROOT users workshop 2

Outlook

• Introduction
• Multi-layer perceptrons
• Learning methods
• Implementation
• Examples

– mlpHiggs.C
– fitting a function

• Timing
• Conclusions

C. Delaere 2004 ROOT users workshop 3

Introduction
Neural Networks are more and more used in various fields for data analysis and
classification, both for research and commercial institutions.

� Image analysis� Financial movements predictions and analysis� Sales forecast and product shipping optimisation � In particles physics: mainly for classification tasks
(signal over background discrimination)

Several tools: for Matlab, or in various programming languages.
MLPfit: fast and powerful, already ported to paw.

(Jerome Schwindling, http://schwind.home.cern.ch/schwind/MLPfit.html)

Existing solutions do implement powerfull learning methods, are evolutive tools for
research on neural networks, but are generally not suited to the large samples ROOT is
used to manipulate.

A clear flexible Object Oriented implementation has been choosen, starting from MLPfit.

Something new was needed...

C. Delaere 2004 ROOT users workshop 4

Neuron

Synapse

Multi-layer perceptrons (1)

Input layer

Hidden layer(s)

Linear combinations (w
ij
)

Linear combinations (w
ij
)

Output layer

Normalization

Evaluation of a function f(x)

Forward inputs (f(x)=x)
& computes the error

C. Delaere 2004 ROOT users workshop 5

Multi-layer perceptrons (2)

A linear combination of sigmoids can approximate
any continuous function.

Trained with output = 1 for the signal and 0 for the
background, the approximated function of inputs
X is the probability of signal, knowing X.

Hidden neurons
are sigmoids.

� � 1
2

i

�
i
2 ,

C. Delaere 2004 ROOT users workshop 7

Learning methods

The most trivial learning method is the (Robbins-Monro) stochastic minimization:
The weights are updated after each example according to the formula:

with

� steps follow the gradient� additionnal “flat-spot elimination factor” δ� second-order term

5 other learning methods are implemented:
 � Steepest descent with fixed step size, � Steepest descent algorithm with line search,� Conjugate gradients with the Polak-Ribiere updating formula, � Conjugate gradients with the Fletcher-Reeves updating formula � and the Broyden, Fletcher, Goldfarb, Shanno (BFGS) method.

wij t � 1 � wij t � �

wij t

�

wij t 	
 � � �

p

 �

wij

� � ��� �
wij t
 1

C. Delaere 2004 ROOT users workshop 8

Implementation

TMultiLayerPerceptron is a collection of neurons and synapses.
Services: configuration, training and USER INTERFACE

TNeuron class
This is a transfert function, an input or an output
and may be associated to a TTree branch or to a set of synapses.

Other services: normalisation, output, error.

��

i�

w j

�
�

f�

w j

�

k � out

�

f�

wk

TSynapse class
This is a weighted bidirectionnal link between 2 neurons

��

i�

w j

� in
�

f out�
wout

C. Delaere 2004 ROOT users workshop 9

Example 1 : mlpHiggs.C

Starting with a TFile containing two TTrees, one for the
signal, the other for the background, a simple script is used.
Those 2 trees are merged into one, with an additionnal type
branch.

 TMultiLayerPerceptron *mlp =
 new TMultiLayerPerceptron(
 "msumf,ptsumf,acolin,acopl:8:type”, tree);

 mlp->Train(500, "text,graph,update=10");

This network is then trained:

With Monte Carlo events simulated at LEP, a neural network is build to make the
difference between WW events and events containing a Higgs boson.

msumf ptsumf acolin acopl

Type:
(WW:0) (Higgs:1)

C. Delaere 2004 ROOT users workshop 10

Example 1 : mlpHiggs.C

Learning...E
rr

or

Time

Higgs events

WW events

During the learning, one sees 2 curves:
the sample has been divided into a
training set and a test set.

The resulting NN distributions :

C. Delaere 2004 ROOT users workshop 11

Example 2 : fitting a function

NN are also used to fit functions:

2-10-1 network. 90s learning time with the BFGS method.

C. Delaere 2004 ROOT users workshop 12

Example 3 : fitting a 1D function

In nuclear physics, people handle complex spectrums difficult to fit.
Such a fit is sometimes used to perform a subsequent background
subtraction.

Christophe Dufauquez, from Louvain-la-Neuve, has used a NN as such:

(12 free parameters)

(90 free parameters)

C. Delaere 2004 ROOT users workshop 13

Timing

���� �� "!� # $%& '(�) * *+-, ./ (-0 � 1� .� ! /

��� / � 243 25 243 67

�� ! . 8�, � (. 9 3 2: 67 3 ; 6 ;

1 (=< # �, � #0 , (=> # ; 3 : : 6 6 3 9? ; 3 @?

�� # #0 #, � � #, . #� � ? 5 3 : 6 : : 3 : @ 9 3 A 5

) (B (# / #DC& ! � E ? 2 3 7 9 6 3 A7 9 3 ? ;

1 # � . 8 # / C) # #F #, ? 2 3 A ; 9 6 3 7 9 ; 3 @ A

G 1 H � ? 6 3 5 9 : : 3 5 : 9 3 9 9

Here are the results of the learning of:
the Higgs example above

I 979 TTree entries for learning

J 979 TTree entries for test

K 1000 epochs (iterations)
on a mobile AMD Athlon(tm) XP 1500+ (458.8 rootmarks)

Only trivial optimization of the code has been achieved now.
This difference might be recovered.

t (sec)

C. Delaere 2004 ROOT users workshop 14

Conclusions

More documentation, reference papers and examples can be found
on the TMultiLayerPerceptron website:
http://www.fynu.ucl.ac.be/users/c.delaere/MLP/

L A multi-layer perceptron implementation is now released with ROOT
since the version 3.10.1

M The flexible implementation should allow to extend the code to other
networks.

N Some timing studies hows that MLPfit is faster by a factor

O

7 . Code
optimization might allow to recover at least part of it.

P MLPs are fully working and easy to use. It has a growing user-base.

