Wstęp do programowania

Wykład 1. Podstawy C.

Wstęp do programowania

Michał Cieśla

pokój D-2-47 konsultacje: piątek 10-12 michal.ciesla@uj.edu.pl

Zagadnienia:

- programowanie proceduralne: C,
- programowanie obiektowe: C++/Java/Python,
- podstawowe struktury danych i algorytmy,
- programowanie funkcyjne: Scala,
- programowanie współbieżne.

Plan wykładu

Pierwszy program w C:

- Linux / VirtualBox,
- kompilacja i uruchomienie,
- funcje w C,
- podstawowe typy danych.

Klikamy "New"

Wpisujemy dowolną nazwę a potem: Type: Linux. Version: Ubuntu (64-bit). Przydzielamy ok. połowę pamięci RAM. Klikamy "Create".

File location /Users/ciesla/VirtualBox VMs/Ubuntu Linux/Ubuntu Linux.vdi		
4.00 MB Hard disk file type VDI (VirtualBox Disk Image) VHD (Virtual Hard Disk) VMDK (Virtual Machine Disk) HDD (Parallels Hard Disk) QCOW (QEMU Copy-On-Write) QED (QEMU enhanced disk)	64 GB 2.00 TB Storage on physical hard disk Opnamically allocated Fixed size Split into files of less than 2GB	
Guided Mode	Go Back Create Cancel	

Przydzielamy ok. 64 GB dysku wirtualnemu komputerowi. Klikamy "Create".

I mamy nasz nowy "wirtualny komputer na liście. Zanim go uruchomimy sciągamy Linuxa: https://ubuntu.com/download/desktop. Potem klikamy Settings

Wybieramy pobrany plik: ubuntu-....-amd64.iso. Klikamy "OK".

Oracle VM VirtualBox Manager			
Tools	New Settings		
Ubuntu Linux Powered Off	🧾 General	Preview	
	Name: Ubuntu Linux Operating System: Ubuntu (64-bit)		
	I System		
	Base Memory: 8192 MB Boot Order: Floppy, Optical, Hard Disk Acceleration: VT-x/AMD-V, Nested Paging, KVM Paravirtualization		
	📃 Display		
	Video Memory:16 MBGraphics Controller:VMSVGARemote Desktop Server:DisabledRecording:Disabled		
	Storage		

I uruchamiamy nasz "wirtualny" komputer. Po chwili rozpocznie się proces instalacji Linuxa. Instalacja trwa kilka(naście) minut. Jeśli nie wiemy co wybrać zostawiamy opcje domyślne.

Ubuntu Linux

Linux zainstalowany! Teraz instalujemy kompilator C. Klikamy w "kropki" i wyszukujemy aplikacji "Terminal". Możemy ją sobie dodać do bocznego paska - przyda nam się jeszcze wiele razy.

Ubuntu Linux

sudo apt install gcc [Enter]

11

Opcjonalnie zaleca się zainstalować VirtualBox Guest Additions. W tym celu korzystając z terminala instalujemy make i perl

sudo apt install make perl

A następnie z menu VirtualBox wybieramy:

Devices / Insert Guest Additions CD image...

I po instalacji restartujemy Linuxa

Hello world

Hello world

chcemy skorzystać z biblioteki, która zawiera m.in. funkcję printf(). deklarujemy własną funkcję o nazwie main, która nie przyjmuje żadnych argumentów () i nie zwraca żadnej wartości void. W nawiasach klamrowych { } umieszczamy definicję funkcji – czyli co ona robi.

Wywołujemy funkcję printf, do której przekazujemy argument "Hello world!\n". Każde takie wywołanie funkcji (instrukcję) kończymy znakiem ;. Program zapisujemy w pliku hello.c.

Hello world

Przed uruchomieniem program musi zostać skompilowany przetłumaczony na instrukcje zrozumiałe przez procesor. Kompilator to program o nazwie gcc:

gcc hello.c

W wyniku kompilacji powstaje plik a.out, który możemy uruchomić:

./a.out

Można zmienić nazwę skompilowanego pliku

gcc -o hello hello.c

a następnie

./hello

Funkcje

#include<stdio.h>

```
char* napis(){
   return "Hello world!\n";
}
```

```
void main(){
    printf(napis());
    printf("%s", napis());
}
```

deklarujemy własną funkcję o nazwie **napis**, która zwraca wartość typu **char*** ciąg znaków. Po słowie **return** znajduje się zwracana wartość przez Funkcje móżemy wywoływać wielokrotnie. Pierwszy sposób użycia **prinf()** jest niezalecany – kompilator zwróci ostrzeżenie.

Pierwszy argument printf() to formatowanie %s mówiące, że kolejny argument ma być wyświetlony jako ciąg znaków. Więcej informacji o formatowaniu w printf(): https://www.cypress.com/file/54441/download

Funkcje

Funkcja dodaj ma dwa argumenty typu **int**. Jeden nazwaliśmy **a** a drugi **b**.

%d oznacza, że w tym miejscu zostanie wyświetlony kolejny argument funkcji printf w formie liczby całkowitej.

Podstawowe typy danych

int - liczba całkowita

long - liczba całkowita (większa, zapisywana z wykorzystaniem większej liczby bajtów)

short - liczba całkowita (mniejsza niż int, zapisana z wykorzystaniem mniejszej liczby bajtów)

float - liczba rzeczywista (zmiennoprzecinkowa)

double - liczba rzeczywista (większa, dokładniejsza, zapisywana z wykorzystaniem większej liczby bajtów)

char - znak (np. 'a', 'b', ' '. Znaki umieszcza się między apostrofami)

```
* - ciągi, np. char*, int*, ...
```

Plan wykładu

Dziękuję za uwagę