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Abstract

In this Thesis we implement the method of exact diagonalization combined

with an ab initio approach (EDABI) to studies of simple HN nanoclusters.

In this method all configurations of the interacting particles are taken into

account and treated rigorously with the use of the modified Lanczos algo-

rithm. Additionally, the single-particle wave functions are allowed to relax in

the correlated many-particle state. We calculate the ground-state energies,

the Hubbard subband structures of excited states, as well as the electron-

density profiles beyond the Hartree-Fock approximation. To achieve this

we introduce a novel type of approximation to estimate 3- and 4-site inte-

grals describing the interparticle Coulomb interactions in the Slater -orbital

representation. The renormalized Wannier functions and the microscopic

parameters of the studied systems are determined as well. All the properties

are analyzed as a function of interatomic distance. In the final part of the

Thesis we calculate the quantum tunneling conductivity of those systems.
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Streszczenie

W obecnej rozprawie doktorskiej metoda ścis lej diagonalizacji po la̧czona z

podej́sciem ab initio (EDABI) zosta la zastosowana do badania prostych

nanoklastrów typu HN . W metodzie tej uwzglȩdniane sa̧ wszystkie kon-

figuracje oddzia lywuja̧cych cza̧stek, na bazie których operuje w sposób ścis ly

zmodyfikowany algorytm Lanczosa. Dodatkowo, jednocza̧stkowe funkcje

falowe w stanie wielocza̧stkowym maja̧ możliwość rozprȩżania siȩ i kurczenia.

Obliczenia obejmuja̧ energie stanu podstawowego, widma podpasm Hubbarda

z lożone ze stanów wzbudzonych, jak również profile gȩstości elektronowej

wychodza̧ce ponad przybliżenie Hartree-Focka. Aby to osia̧gna̧ć wprowa-

dzamy nowy rodzaj przybliżenia umożliwiaja̧cy szacowanie 3- i 4-wȩz lowych

ca lek opisuja̧cych miȩdzycza̧stkowe oddzia lywania Coulombowskie w repre-

zentacji orbitali Slatera. Również określane sa̧ zrenormalizowane funkcje

Wanniera oraz mikroskopowe parametry badanych uk ladów. Wszystkie anali-

zowane przez nas cechy badane sa̧ w zależności od odleg lości miȩdzyatomowej.

W końcowej czȩści rozprawy badane sa̧ efekty tunelowania elektronów we

wspomnianych uk ladach.
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1 INTRODUCTION

1 Introduction

In the recent years much attention has been devoted to molecular-scale sys-

tems ranging from vast organic molecules through multi-atom nanowires to

single molecules [1]. The stability of those systems, their electronic struc-

ture, and their electronic-transport properties have been a major focus of

research in the condensed matter physics. Also, because of the progress

in nanotechnology, lithographic techniques, mechanically controllable break-

junctions (MCBJ), and scanning tunneling microscopy (STM), it is now pos-

sible to make various submicron devices, with the help of which accurate

measurements can be carried out [2]. Such devices are typically made of two

separated electrodes (the source and the drain) bridged by a single molecule

or a quantum wire. Relative position of the two electrodes can be precisely

controlled with piezoelectric transducers and the electronic conductance can

be monitored as a function of either the applied bias voltage or the electrode

separation distance.

Electrodes are the key factor in the study of nanojunction-transport prop-

erties such as the current-voltage characteristics or the charge distribution.

In STM, the tip is driven into contact with the metal surface and the conduc-

tance is measured during subsequent retraction. In the alternative method

of the mechanically controllable break-junctions (MCBJ), a macroscopic not-

ched wire is broken, and the contact is re-established between the fractured

surfaces of the wire by piezoelectric control. What is more important, it has

been found that the same conductance quantization (CQ) features appear for

both microscopic, as well as macroscopic contacts [3]. This is probably due to

the formation of nanoscopic threads between the macroscopic contacts that

are brought close enough. The above indicates a universal quantum nature

of the conductance at microscopic level.

Obviously, the current flow through a nanojunction depends on quantum

nature of the molecular bridge, electronic properties of the electrodes near the

Fermi energy level, and on the strength of the molecule-electrode interaction.

It has been observed that the conductance of quantum nanowires exhibits

quantization steps in units of the conductance quantum G0 = 2e2/h (G−1
0 ≈

1



1 INTRODUCTION

12.9 kΩ). Wide range of experiments with gold nanochains have been carried

out recently [3, 4, 5], most of them dealing with the multiwalled, helical, or

stretched configurations of gold atoms with diameters of the order of 10

Å. The experimental results comprise typically one to four equally spaced

abrupt steps located with a period of about G0, what is consistent with the

Landauer-Büttiker theory of electronic transport in mesoscopic systems.

Figure 1: (a) Typical device geometry for electrical transport measurement.
(b) Conductance G of a nanotube rope vs. gate voltage Vg. ([6, 7])

The single-wall carbon nanotubes (SWNT), though with diameters of the

order of ten times larger than the gold nanowires, can exhibit similar trans-

port phenomena, which have been observed already in mesoscopic metallic

conductors. Namely, for the nanotubes having high contact resistance with

the electrical leads (Fig. 1a), the low-temperature transport is dominated by

the Coulomb blockade effect [6]. The effect occurs at low temperature when

the energy required to inject a single electron into the nanotube is larger

than the thermal energy (due to small capacitance of the nanotube). It is

considered that for a typical ∼ 1µm long tube, the Coulomb blockade would

set in below the temperature ∼ 50K. The ground state spin configuration of

nanotubes was revealed by Cobden et al [7], the unusual even-odd effect was

seen that cannot be understood within the constant interaction model (Fig.

1b). The contradiction is in the peak P0 − P3 heights which are predicted

to be equal, the peaks P0 and P2 represent the nanotube with even number

2



1.1 Experimental properties of nanowires 1 INTRODUCTION

of electrons injected, and the peaks P1 and P3 with the odd number. As

can be easily seen from the figure, the odd peaks are significantly larger.

Tans et al [8] have found that the spin degeneracy can be lifted at zero

magnetic field and all the electrons enter the nanotube with the same spin,

what cannot be explained by using independent-particle models or simple

shell-filling schemes. These experimental observations, as suggested by the

authors, point to significant electron-electron correlations, which seem to be

a common factor of the transport properties in many nanoscopic systems.

Mechanical and electrical properties of nanostructures have drawn much

attention recently because the miniaturization requirement has been forcing

the engineers to design smaller and smaller components. Simultaneously with

this process, the properties of such components are substantially different

from those of the mesoscopic systems, as the quantum nature of this truly

microscopic matter starts to play a predominant role. This is the rationale

behind the theoretical analysis of the few-atom complexes in this Thesis.

1.1 Experimental properties of nanowires

The experiments with stretched gold wires present very interesting conduc-

tance characteristics. The interest in such nanowires becomes clear when we

recognize that during the last stage of nanowire elongation the conductance

takes place in the system of one atom in cross-section. This suggests that the

wire, while stretched, forms a chain of single atoms. The longest bridges can

have as much as 20− 25 Å in length and are found to break at the multiples

of approximately 3.6 Å, which would correspond to a stretched Au-Au bond

distance [9]. Once pulled out, the atomic chains remain very stable, some

for as long as one hour, and are able to sustain enormous current densities

of up to 8× 1014 A/m2. This makes them suitable candidates as conductors

in the research of atomic electronic circuits.

The conductance of the atomic nanowires is always obtained by drawing

the histograms assembling a few hundred experimental curves, causing thus

a controversy if the step-like behavior is caused by the conductance quan-

tization or by discrete contact-size changes during the nanowire elongation

3



1.1 Experimental properties of nanowires 1 INTRODUCTION

Figure 2: The model of a single strand of gold atoms. The atoms in the
strand are spaced at approximately 4 Å. The size of Au atoms is of the order
of 1− 2 Å. ([5])

process, due to discrete atomic size. Recent MCBJ, as well as STM experi-

ments show, that at room temperature, the conductance quantization is more

prominent than in the low-temperature studies. The explanation given by

Muller et al [10] is that at T > 0 the tunneling through nanowire involves

larger number of atomic configurations due to the higher kinetic energy of the

carriers. There is also a difficulty with detecting the subsequent conductance

peaks beyond that at G0 at 4.2 K, whereas up to 3 − 4 peaks are observed

at room temperature. Moreover, some of the experimental data exhibit the

indifference to the temperature or the conductance peaks are not located

exactly at integer values of G0. Also, there is almost no discussion of the

possible origin of these observations [4]. As we can see, the measurements

of properties of such nanoscopic systems leave much room to interpretation

because of the indirect, statistical nature of the experiments.

Figure 3: Helical multi-shell structures of gold nanowires. The helix of each
shell composes a tube with triangular close-packed network of gold atom.
([5])
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1.2 Theoretical modelling of nanowires 1 INTRODUCTION

The multiwalled nanowires of diameter of less than ten atoms, on the

other side, possess different electrical and mechanical properties. For ex-

ample, it has been found that under certain conditions, the ability of the

nanowires to conduct electricity declines to the point that they resemble in-

sulators. The conductance of such atomic-scale gold wires depends on their

length, lateral dimensions, the state of atomic order (disorder), and the elon-

gation mechanism of the wires. Although the nanowires shorter than 50 Å

show linear and ohmic characteristics, the nature of the resistance changes

as the wire becomes longer and narrower, going through a stage, in which

the wire properties look very much like those of a semiconductor. The very

long wires, up to 150− 200 Å, appear to be insulating. The current through

such wires varies in a stepwise manner as the STM tip is pulled from the sub-

strate, what is attributed to the formation of new layers (atomic shells) and

corresponding reduction in the diameter of the wires [11]. The quasi-metallic

character of the short-chain conductivity can be understood by noting that

electrons tunnel then through a finite-size barrier. By the same token, the

sufficiently long wires become effectively localized due to the Coulomb repul-

sion between the carriers, which prevent the extra electrons from tunneling

through. The same result was obtained theoretically by Lieb and Wu [12]

for the infinite Hubbard chain of hydrogen atoms.

1.2 Theoretical modelling of nanowires

The experimental work discussed above has been paralleled by theoretical

effort, which can be divided into two categories. The first group includes

models that take into account the confinement of electrons in reduced di-

mensions, but ignore the atomic structure of the system. These attempts

include self-consistent electronic-structure calculations, mainly within the

jellium framework [13, 14]. The stabilized jellium method is found to be very

useful in the investigations of alkali-metal clusters. Lately, it has been used

to model the metallic leads (electrodes) attached to a chain of Na atoms [14].

The electronic properties of the system have been obtained with the use of

the density-functional theory (DFT) within the local-density approximation
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1.2 Theoretical modelling of nanowires 1 INTRODUCTION

(LDA) and assuming the limit of zero external bias. The approach predicts

conductance oscillations as a function of the number of atoms in the chain,

as well as the lead opening angle α (Fig. 4), but still does not provide a

satisfactory picture of the conductance quantization at the nanoscopic level.

The models utilizing the effective-mass approximation in quantum dots also

belong to this group.

Figure 4: Sketch of a nanochain of Na atoms between the metallic leads,
which are described by the jellium model. The cone angle α (the opening
angle) can be varied continuously. ([14])

The second group of models includes semiclassical or ab initio calcu-

lations, in which the atomic structure of nanowires is taken into account.

These methods have been successful in showing the mechanisms of the elon-

gation force and the conductance, and they are predominantly based on the

S -matrix, Hartree-Fock, or ab initio quantum mechanical formalism. The

S -matrix formalism addresses the problem of the conductance through such

systems by formulating the Schrödinger equation as a scattering problem.

However, according to the conductance theory, the elements of the S -matrix

can be expressed in terms of the Green’s function of nanoconductor [15]

which, in practice, is sometimes easier to compute. Thus lately, the authors

prefer the Green’s function instead of the S -matrix formalism. The Hartree-

Fock formalism utilizes the variational principle of the many-body theory,

and employed originally a single Slater determinant wave function to estimate

the ground state of the system. The multiconfigurational interaction (MCI)

method, extensively used in quantum chemistry, systematically extends the

Hartree-Fock approach by employing many Slater determinant representa-
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1.2 Theoretical modelling of nanowires 1 INTRODUCTION

tion of the N -particle wave function. Theoretically, the MCI method can

provide us with the exact solution of the many-body problem within the

space spanned by the single-particle basis if the basis is complete and all

possible electron configurations have been accounted for. In practice, the

MCI method is computationally intractable for any but the smallest sys-

tems, due to the vast number of states in the single-particle basis as well as

the electron configurations. Many applications of the MCI method also make

the mean-field approximation of interparticle interactions in the Hamiltonian

and thus suffer a partial loss of the correlation energy.

The exact diagonalization combined with an ab initio approach (EDABI),

we employ in the Thesis, has much in common with the MCI method. In

fact, it can be proved they are equivalent (Appendix A.1). Yet, the EDABI

approach has numerous advantages over the standard version known from

the quantum-chemical calculations. Namely, the approach applies exact di-

agonalization technique for the Hamiltonian matrix in the Fock space, and

thus lets us obtain the ground state of the system within fixed (but otherwise

arbitrary) single-particle basis, not just the upper approximation as in the

variational methods. As can be easily seen, the approach takes account of all

possible electron configurations, what is equivalent to the method known in

quantum chemistry as the full-CI (FCI) method. Furthermore, the EDABI

approach, as opposed to the CI or MCI-SCF methods, does not suffer from

size-extensivity or size-consistency problems [16] and thus does not require

any specific choice of electron configurations as in the complete-active-space

(CAS) technique [17] developed in quantum chemistry. Although the meth-

ods differ in a way the ground state of the system is obtained, all of them

work with the reduced single-particle basis, and the reduction is considered

a major source of their approximation. Also, the approach can be compared

to the Møller-Plesset (MP) or coupled-cluster (CC) methods, which do not

suffer from the problems either, and yet they have a serious weakness as well.

Namely, they do not provide upper bounds to the true energies of the system.

A whole range of the numerical methods used in modern quantum chemistry

or chemical physics can be found in the book [18] or in the overview [19].

We discuss their implementation details to emphasize the essential assump-
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1.2 Theoretical modelling of nanowires 1 INTRODUCTION

tions and drawbacks, and hence the reasons why we have chosen the EDABI

approach.

Most of the mentioned methods rely on the concept of configuration state

function (CSF). The CSFs are simply Slater determinants of the single-

particle wave functions of the system in the effective Hamiltonian approxima-

tion. These, on the other hand, are obtained either from the self-consistent

approach or the LCAO approximation. The latter methods deal with the

two fundamentally different kinds of parameters that need to be determined -

the CI (many-particle wave-function composition) coefficients and the LCAO

(single-particle wave-function composition) coefficients. In general, the meth-

ods differ in the manner they determine them. We characterize them briefly

next.

In the multiconfigurational interaction self-consistent field (MCI-SCF)

method the CI, as well as the LCAO, coefficients are variationally treated

to minimize the energy of the system. The only constraint is that both the

many-particle and single-particle wave functions have to be normalized. Si-

multaneous optimization of the LCAO and CI coefficients performed within

MCI-SCF calculations is quite a formidable task. Although the system-

energy variational expression depends quadratically on the CI coefficients,

its dependence on the LCAO coefficients is of the fourth order. It is a well

known fact that minimization of the functions of several non-linear param-

eters is a difficult task that can suffer from poor convergence and locate

local rather than global minima. In the MCI-SCF method the energy is only

weakly dependent on the orbitals that are weakly occupied, in contrast to the

strongly occupied. Therefore, one is faced with the minimization of the func-

tion of many variables that depends strongly on several of the variables and

weakly on many others. As we can see, the stationary states are extremely

difficult to obtain.

The configuration interaction (CI) method differs from the MCI-SCF

method in the manner the LCAO coefficients are obtained. The latter uses

either a single CSF or a small number of CSFs to determine them. The CI

coefficients are subsequently determined in the same variational manner with

the LCAO coefficients set fixed. In this process, the optimizations of orbitals

8



1.2 Theoretical modelling of nanowires 1 INTRODUCTION

and CSF amplitudes are carried out in separate steps, what usually leads to

a better treatment of electron correlations for the number of CSFs included

in the CI calculations can be far in excess of the number considered typical

in the MCI-SCF calculations.

The Møller-Plesset (MP) method, also referred to as the many-body per-

turbation theory (MBPT), utilizes the single-configuration SCF process (usu-

ally the UHF implementation) to determine a set of LCAO coefficients, and

hence a set of single-particle orbitals. The orbitals are subsequently used to

define the unperturbed Hamiltonian of the system and then the regular per-

turbation theory is used to finetune the energy as well as the wave function

of the system. As has been already said, the MP method, despite all of the

advantages, provides the energies which are not upper bounds to the true

energies of the system, and therefore it may not be able to treat cases where

two or more CSFs have equal or nearly equal amplitudes because it obtains

the amplitudes of all but the dominant CSF from the perturbation theory

formulas that assume the perturbation is small [20].

The coupled-cluster (CC) method expresses the CI part of the wave func-

tion in a somewhat different manner. Although it starts much like the MP

method, the single-particle orbitals are used to construct the ground many-

particle state and the so-called cluster operator is introduced to generate

the excitations. Parameters for the specific excitations play here a similar

role as the CI coefficients in the CI or MCI-SCF methods. In general, the

CC equations are quartic functions of these parameters and thus cause the

problems similar to those of the MCI-SCF method. Thus, the CC working

equations are often obtained by neglecting all of the terms that are non-linear

in them. The CC method, as presented here, suffers from the same draw-

backs as the MP method. Moreover, solution of the non-linear CC equations

may be difficult and slowly convergent.

As we can see, each of the methods has its own field of applicability and

leads to a different degree of approximation. Having described the most

important aspects of the above methods a list of required properties for an

acceptable method may be compiled. An early attempt to compile such a

list was published by Pople et al [21]. Half a decade later another list was

9



1.3 Aim and scope of the Thesis 1 INTRODUCTION

published by Bartlett [22]. The EDABI approach is checked against such

lists in the following Chapters.

1.3 Aim and scope of the Thesis

The aim of the Thesis is to provide a systematic study of nanoscale cluster

systems with the use of the EDABI approach. We present the comparative

results for various systems composed of hydrogen-like atoms. The micro-

scopic parameters, ground state energies, charge distributions, as well as the

patterns of the excited states are examined and compared against different

space-arrangements of atoms.

In our approach, we study hydrogen clusters containing up to N = 6

atoms. The starting parametrized Hamiltonian in the second-quantization

formulation is characterized in Chapter 2. The 3- and 4-site interactions

required to determine the Hamiltonian parameters are estimated using an

ansatz discussed in detail in Appendix B.2. The exact diagonalization me-

thod of the Hamiltonian is based on the modified Lanczos algorithm and

has been detailed in Appendix B.3, whereas the relevant physical quantities

and the comparison with the MCI method are provided in Appendix A. The

starting atomic wave functions, used to compose the Wannier functions,

have their Bohr radius a ≡ 1/α adjusted to minimize the interacting-system

energy. In this manner, the renormalized Wannier functions are obtained.

This Thesis is complementary to the other two [23, 24] that are devoted

respectively to the study of the linear chains and fermionic ladders [23], and

to the determination of the renormalized structure of atoms, molecules, and

ions, as well as to calculation of the crystal-field levels from first principles

[24].

10



2 THE EDABI APPROACH

2 The EDABI approach

The approach we extensively utilize in this Thesis is called the Exact Di-

agonalization combined with an Ab Initio approach (EDABI) [25, 26, 23].

Main features of this approach are: the second quantization formulation,

the finite single-particle basis selection to define the field operators and, in

turn, the parametrized Hamiltonian, which involves the introduction of the

variational parameters characterizing the single-particle basis and the ex-

act diagonalization technique combined with the basis optimization. In this

Chapter we summarize the methodology of the approach in the systematic

study of nanoscale cluster systems.

2.1 Second quantization formulation

The wave mechanics (Schrödinger, 1926), also known as the first quantization

scheme, describes the wave aspect of the single-particle quantum states. It

is supplemented with the probabilistic interpretation due to Born (1926),

which introduces the particle aspect in an ad hoc to the description of those

quantum states. The second quantization formulation (Fock, 1932, 1957),

on the other hand, is often the only choice when the particle number is

variable or the interparticle correlations start to play a predominant role. It

is particularly useful in describing multiparticle quantum states in interacting

systems. Although both formulations are known to be equivalent, at least

for nonrelativistic systems, the latter seems to be better suited for dealing

with nanoscopic systems, in which the electrons can form a collective, highly

correlated state.

In general, the spin-independent Hamiltonian of many-particle system in

the first quantization formulation can be written down as follows

H =
∑

i

H1 (ri) +
1

2

∑
i6=j

H2 (ri − rj) , (1)

where H1 and H2 represent respectively the single- and the two-particle parts

of the Hamiltonian. On the other hand, the second quantization formulation

works with the field operators Ψ̂+ (r) and Ψ̂ (r), creating (anihilating) parti-
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cles in the states at given point r in the Fock space. The Hamiltonian can

be expressed then as follows

Ĥ =
∫
d3rΨ̂+ (r)H1 (r) Ψ̂ (r) (2)

+
1

2

∫
d3rd3r′Ψ̂+ (r) Ψ̂+ (r′)H2 (r− r′) Ψ̂ (r′) Ψ̂ (r) .

The field operator (containing, as a rule, an infinite number of functions) has

the following form

Ψ̂ (r) ≡
∑
iσ

wi (r)χσ · aiσ, (3)

where aiσ is the anihilation operator of the particle in the single-particle state

{wi (r)χσ}. In this notation σ = ±1 labels the spin quantum number and the

index ”i” comprises all other quantum numbers for the single-particle state

|iσ〉. There are no further requirements on the basis apart from its com-

pleteness and orthonormality. However, in practical calculations we select

here the Wannier basis comprising orthogonalized atomic states; the label

”i” characterizes then the site located at Ri, on which a particular function

wi (r) is centered (i.e. we select the position representation). Thus, by com-

bining Eq. (2) and Eq. (3), we obtain the well known expression for the

many-particle Hamiltonian in the particle creation- (anihilation-) operator

language, namely

Ĥ =
∑
ijσ

tij · a+
iσajσ +

1

2

∑
σσ′

∑
ijkl

Vijkl · a+
iσa

+
jσ′alσ′akσ, (4)

where

tij =
∫
d3rw∗

i (r)H1 (r)wj (r) , (5)

and

Vijkl =
∫
d3rd3r′w∗

i (r)w∗
j (r′)H2 (r− r′)wk (r)wl (r′) . (6)

The first term in Eq. (4) contains the so-called hopping integral {tij} and

the second term – the electron-electron interaction parameters {Vijkl}. The

12



2.2 Single-particle basis choice 2 THE EDABI APPROACH

parameters {Vijkl} comprise one-site (i = j = k = l), two-site (i = j = k 6= l,

etc.), three-site (i = j 6= k 6= l, etc.), and four-site (i 6= j 6= k 6= l) terms.

One should note that some terms of the Hamiltonian (4) may be ne-

glected in more specialized models, e.g. for the Hubbard model. In the

Hubbard model we take into account only the on-site energy εi ≡ tii, the

nearest-neighbour hopping integrals t〈ij〉 (or the limited range of the hop-

ping integrals), and the intraatomic part of the interaction among particles

Ui ≡ Viiii. In such situation, the Hamiltonian is written in the compact form

Ĥ =
∑

i

εini +
∑
〈ij〉σ

t〈ij〉a
+
iσajσ +

∑
i

Uini↑ni↓, (7)

where ni =
∑

σ niσ. Dropping some terms is often a necessity, as their to-

tal number increases to the fourth power of the number of single-particle

wave functions taken into account in the field operator. The limitation to

a finite basis set constituting the field operator results in a model Hamil-

tonian. However, we should realize that the invariance with respect to the

unitary transformations of the single-particle basis is then broken, and thus

an extraordinary care should be taken with the single-particle basis choice.

Another issue concerning the universality of the Hubbard model when ap-

plied to correlated systems is that the results can become unstable or even

unphysical when we consider consecutive interaction terms in addition to the

Ui interaction. This is because some of the terms in the Hamiltonian balance

out each other and additional terms need to be taken into account simulta-

neously. Such additional terms change the universality class of the solution

also, e.g. the type of symmetry breaking. It is important to note that the

basis choice is the single factor which determines what type of dynamical

processes are included and determines relevant physics of a model.

2.2 Single-particle basis choice

The line of approach we take requires usually the explicit knowledge of the

single-particle basis before we actually solve the parametrized Hamiltonian.

Namely, the basis wave functions are used to determine the Hamiltonian
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2.2 Single-particle basis choice 2 THE EDABI APPROACH

parameters (5 and 6), as well as the type of dynamical processes we include

in the second quantized form. Obviously, one of the possible ways of dealing

with the problem is to postulate the form of such basis.1

A widely accepted method is to take a linear combination of atomic or-

bitals (LCAO) as the single-particle basis choice. The legitimacy of the

method can be easily justified if we realize that the single-particle wave func-

tions of electron in a solid are predominantly influenced by the atoms they are

bound to and they reduce to the atomic wave functions in the limit of a large

interatomic separation. Fortunately, such a basis often gives satisfactory re-

sults, even without any subsequent basis optimization. The only requirement

with respect to the basis, known as the Wannier basis for its locality in space,

is the orthonormality, achieved with the algorithm detailed in Appendix B.1.

Once we have taken Eq. (B1) and the algorithm of determining the LCAO

coefficients (cf. Appendix B.1), we can express the Hamiltonian parameters

(5 and 6) through the atomic wave functions directly, namely

tij =
∑
i′j′

t′i′j′ · β∗ii′βjj′ , (8)

and

Vijkl =
∑

i′j′k′l′
V ′

i′j′k′l′ · β∗ii′β∗jj′βll′βkk′ , (9)

where t′i′j′ and V ′
i′j′k′l′ represent the integrals (5 and 6) with the atomic instead

of the Wannier functions taken, and βii′ are the coefficients expressing the

superposition of atomic wave functions composing the Wannier function.

The algorithm uniquely defines the Wannier basis and in this manner

one avoids the variational optimization of the LCAO coefficients, and hence

we avoid the problems the MCI method suffers from. Strictly speaking, the

LCAO coefficient matrix β is ambiguous for it can be left-multiplied by a

unitary matrix and still satisfies the orthonormality condition (B4). The al-

gorithm we apply arbitrarily assumes that β = β+, what provides best results

in the case when the invariance with respect to the unitary transformations

1This is not always the case, since a renormalized (self-adjusted) wave equation can
be formulated through an Euler variational procedure combined with the EDABI method
(cf. [24]).
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2.3 Variational parameters 2 THE EDABI APPROACH

of the basis is broken. The choice is understandable from the physical point

of view, since the contributions of any two atomic wave functions to the each

other’s Wannier functions are then of the same amplitude (|βij| = |βji|).

2.3 Variational parameters

The atomic wave functions should be readjusted if the atoms form a solid.

Thus, the Wannier basis constructed from the wave functions of individual

atoms does not reflect the actual situation. The solution to the problem is

to introduce variational parameters accounting for a variable wave-function

size. The parameters allow the electrons to readjust to the resultant many-

particle state. In effect, we obtain a better ground state. Strictly speaking,

the single-particle wave function could be expanded in any complete basis in

the quantum-mechanical sense. However, the selection of a finite subbasis

makes it incomplete. Therefore, to minimize the error we adjust the selected

wave functions in such a way that they correspond to the absolute minimum

of the ground state energy.

In this Thesis we start with the adjustable 1s wave functions of hydrogen-

like atoms. The Hamiltonian for a single electron in the atomic units takes

the form

H = −∇2 − Z · 2

|r|
, (10)

where the eigenvalues of H are expressed in Rydbergs (Ry), r - in units of the

1s Bohr radius (a0), and Z represents the nuclear charge. The adjustable

1s-like wave function centered at i ≡ Ri has then the shape

Φi(r;α) =

√
α3

π
· e−α|r−Ri|, (11)

where α is the variational parameter. The above function is used to deter-

mine the primed parameters t′i′j′ and V ′
i′j′k′l′ ; their explicit expressions have

been provided in Appendix C.3. The 1- and 2-site interaction parameters in

the representation of the atomic wave functions (11) are: the single-site Hub-

bard term U ′
i ≡ V ′

iiii, the two-site Coulomb term K ′
ij ≡ V ′

ijij, the Heisenberg
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2.4 Exact diagonalization technique 2 THE EDABI APPROACH

exchange integral J ′
ij ≡ V ′

ijji, and the correlated hopping term V ′
ij ≡ V ′

jiii.

Unfortunately, even such simple functions do not allow us to determine all

of the parameters explicitly in an analytical form. As it has already been

mentioned, the 3- and 4-site interaction parameters cannot be determined an-

alytically and we are forced to propose an approximation scheme explained

in detail in Appendix B.2.

The EDABI approach differs from the MCI-class methods in a way vari-

ational parameters are used. Our approach utilizes significantly reduced

number of the variational parameters and often ensures perfect convergence

of the minimization procedure and replaces the variational determination of

the coefficients with the quickly convergent algorithm.

2.4 Exact diagonalization technique

The Hamiltonian (4) of the many-particle system needs to be diagonalized

once we have determined the microscopic parameters. We use the modi-

fied Lanczos algorithm as the diagonalization method. The modified form

of the Lanczos algorithm emphasizes the fact that the algorithm is essen-

tially a minimization procedure and is advantageous with respect to the

variational methods by making use of specific (quadratic) dependence of the

mean system-energy on the CI coefficients of many-particle state. Namely,

the calculated ground state energy EG fulfills the condition

EG ≤ 〈ΦN |Ĥ|ΦN〉, (12)

where |ΦN〉 represents the N -particle ground state. Decomposing the N -

particle state into the series of the CI coefficients according to Eq. (A5) (cf.

Appendix A.1), we obtain explicitly that

EG ≤
1

N !

∑
i1...iN

∑
j1...jN

C∗
i1...iN

Cj1...jN
· 〈0|ai1 ...aiN Ĥa

+
j1
...a+

jN
|0〉. (13)

The modified Lanczos algorithm provides an efficient prescription to itera-

tively improve the CI coefficients, to finetune the energy in each step of the

algorithm iteration (cf. Appendix B.3).
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Unfortunately, the Lanczos algorithm suffers substantial problems in the

case of large systems. Its computational complexity increases expotentially

with the number of sites in the system, what makes it unacceptable for the

systems with more than about 16 sites. Yet, there is a candidate that ad-

dresses the problem and is able to provide with the results for much larger

systems than the Lanczos algorithm can be applied to. This alternative

class of methods of the Hamiltonian diagonalization are the methods known

as quantum Monte Carlo (QMC). The auxiliary-field QMC (AFMC) method

is of particular interest in the field for being free of the fixed-node approxima-

tion, which addresses the issue of non-fermionic ground-state solutions plagu-

ing the former methods of the kind. Furthermore, the multi-determinantal

AFMC method lets us to calculate the excited states as well as profits from

the increased efficiency of the ground state determination. The reason is in

the decreased error (Fig. 5) in total energy E (β) with respect to the result

of the FCI method EFCI for any inverse temperature β. This allows us to

reach even larger systems for the method can work for higher temperature.

Although the QMC-class methods allow us to study relatively large sys-

tems, with up to 100 sites, they often suffer from the sign-related problems

and the computational effort can depend on the system studied. The Lan-

czos method, on the other hand, makes no assumptions about the considered

system and the computational time depends on the number of terms in the

Hamiltonian, not on the parameter values. Hence, the Lanczos algorithm

provides us with the reliable, stable, and predictable method of determining

eigenstates and eigenenergies of the Hamiltonian. The method is actually the

fastest and most accurate, in the case the clusters are small enough. This

is the rationale behind choosing the Lanczos algorithm as the diagonalization

technique. The AFMC method can be a reasonable substitute for the Lanczos

algorithm when we consider larger clusters.
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2.5 Recapitulation 2 THE EDABI APPROACH

Figure 5: The AFMC error in total energy in a H2 molecule and the relative
statistical error bars. Two calculations are shown, with K = 1 and K = 6,
where K is the number of determinants (CSFs) taken into account. The
ellipse indicates the region where the standard error dominates. ([27])

2.5 Recapitulation

All the above features of the EDABI approach are combined into a single

scheme of calculating the properties of small atomic clusters. In general, the

scheme can be illustrated on the following diagram (Fig. 6).

Initially, we assume the form of the single-particle basis as linear combi-

nation of the adjustable 1s wave functions of hydrogenic-like atoms. Next,

we iteratively build the field operators, determine the ground state of the

Hamiltonian expressed through the field operators, and simultaneously ad-

just the variational parameters to minimize the ground-state energy of the

system for given interatomic distance. Finally, we obtain the renormalized
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2.5 Recapitulation 2 THE EDABI APPROACH

Figure 6: Flowchart diagram of the EDABI approach. The renormalized
Wannier functions, field operators, as well as N -particle wave function are
obtained as a final result, in addition to the ground state energy as a function
of interatomic distances in the cluster.

single-particle basis, and hence the N -particle wave function of the system,

as will be discussed in the following. Both ground state and the excited states

of the nanocluster will be analyzed in detail.
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3 Numerical analysis

Exact solutions of interacting (correlated) electronic systems, incorporating

an ab initio framework in a consistent manner, should be very valuable, even

for model systems. This is because we can obtain the system properties as

a function of the lattice parameter, not only as a function of the interaction

parameters, as is usually the case. Actually, the microscopic parameters are

also calculated as a function of interatomic distance for given cluster geom-

etry. We apply the EDABI approach, detailed in the previous Chapter, to

small atomic clusters, with up to 6 hydrogen-like atoms, for different 3D

configurations. As a result, we obtain not only the electronic properties, but

also the local electron-lattice interaction parameters, the dimerization ampli-

tude, the zero-point energies, and much more, all as a function of the lattice

parameter. Moreover, it has been found that some of the characteristics are

of the solid-state character even for such small systems. The model aspect of

the study is reflected only in taking the hydrogenic-like 1s orbitals (11) when

constructing the orthonormalized single-particle wave functions. Therefore,

the present results may be regarded as a reference point to realistic calcu-

lations for nanoscopic systems composed of more complex atoms. In this

Chapter we present a few crucial aspects of the EDABI approach that have

essential influence on the method stability and the consistency of its results.

3.1 The role of intersite terms

Hydrogen molecule is the simplest system we test our methodology of ap-

proach on. What is even more important, in the case of hydrogen molecule

we do not encounter the difficulties with the 3- and 4-site terms in the in-

teraction part, as well as there are no other sites contributing with their

potentials to the hopping and different from the pair involved. All the terms

in the Hamiltonian (4) for the hydrogen molecule are determined analytically

(cf. Appendix C.3). We identify the most important of them by starting from

the Hubbard Hamiltonian (7) and incorporating the additional intersite terms

next. As we can see from Fig. 7a, the two-site Coulomb term has a crucial

influence on the results, the remaining terms practically do not change the
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3.2 The renormalization ansatz 3 NUMERICAL ANALYSIS

character of the results for EG.

It seems that taking into account all the 1- and 2-site terms is completely

sufficient to obtain precise results. However, we shall see, it is far from it

when the number of sites N � 2. As we can see from Fig. 7b, the reason is

in the increasing percentage (with the number of sites N) of the number of

the 3- and 4-site terms over the 1- and 2-site terms. Such percentage can be

easily obtained from simple combinatoric calculations namely, the portion of

one- and two-site interactions is

P12 ≡
N12

N4
=

1

N4
[N + 7N(N − 1)] , (14)

whereas the corresponding number of three- and four-site terms is

P34 ≡
N34

N4
=

1

N4
[6N(N − 1)(N − 2) +N(N − 1)(N − 2)(N − 3)] . (15)

Hence, although the energy values of the 3- and 4-site terms are small, their

total contribution cannot be completely neglected, since their number dom-

inates even in the case of systems composed of N = 4 atoms.

3.2 The renormalization ansatz for 3- and 4-site pa-

rameters

The H3 system is the simplest many-particle system with the number of sites

N > 2. Unfortunately, in this system the 3-site interaction terms appear.

The 3-site (and, in general, 4-site) terms cannot be calculated efficiently

with numerical methods. In Fig. 8a, we present the results of three alterna-

tive approximation schemes that can be applied here. The first approxima-

tion scheme relies on simply neglecting the 3-site terms in the representation

of atomic wave functions, i.e. we take V ′
ξ′
|3

= 0 and use Eq. (B12) to eval-

uate the interaction terms Vξ in the Wannier representation (cf. Appendix

B.2 for notation and details). In the second scheme, we additionally set the

3-site terms in the Wannier representation to zero, i.e. Vξ|3 = 0. As can

be easily seen, both schemes produce the results having no global minimum

for the ground state energy with respect to the variational parameter α (cf.
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(a)

(b)

Figure 7: (a) Total ground state energy (per atom, including both the elec-
tron and the lattice contributions) for H2 molecule. The consecutive two-
particle interaction terms are accounted for. (b) Relative number of different
interaction terms contributing to EG versus number of sites in the HN ring.
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(a)

(b)

Figure 8: (a) Total ground state energy for the H3 system. We compare
different approximations of the 3-site terms, as explained in the main text.
(b) The optimized variational parameter α for the square configuration of
four atoms and comparison with the result for H2 molecule.
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Chapter 2.3). The only scheme providing stable results relies on an ansatz

explained in detail in Appendix B.2 and amounting for renormalizing of 1-

and 2-site interaction terms by the 3-site terms in the atomic representation.

This scheme also works for the systems with the number of sites N > 3,

where additionally the 4-site interaction terms appear.

We have developed the above mentioned scheme assuming that the 3- and

4-site terms in the Wannier representation vanish (in our strongly localized

basis). The similar pattern remains even when the renormalization ansatz is

applied. Furthermore, the optimized value of the variational parameter α (cf.

Fig. 8b) indicates contraction of the orbital size a ≡ 1/α with the decreas-

ing interatomic distance, making the ansatz work even better because of the

further localization of the basis. One should note the EDABI approach dis-

qualifies some of the approximation schemes with the use of global minimum

requirement, what would not be possible without orbital readjustment.

Figure 9: The planar (square) configuration of the system composed of four
atoms. The corresponding 1- and 2-site interaction terms are marked.

In Fig. 10ab, we plot the values of microscopic parameters (cf. also

Table 1) obtained with the renormalization ansatz explained above. The only

parameters significantly contributing to the Hamiltonian, especially when the

atomic spacing is small, are the intrasite Hubbard U and the intersite Coulomb

K terms (cf. Fig. 9). The remaining 2-site interactions, namely the correlated

hopping V and the Heisenberg exchange J terms, are at least two orders of

magnitude smaller. This is the rationale behind the assumption that the

3- and 4-site interactions in the Wannier representation can be neglected.
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(a)

(b)

Figure 10: Microscopic parameters vs. R in the Wannier representation for
the square configuration of the N = 4 atom cluster. (a) Hubbard (U) and
intersite Coulomb interaction (K) parameters. (b) Correlated hopping (V )
and Heisenberg-exchange interaction (J) parameters.
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Table 1: Microscopic interaction parameters vs. interatomic distance R for
the square configuration of four atoms. The star marks the distance R with
the lowest energy.

R/a0 U K1 K2 V1 V2 J1 J2

(Ry) (Ry) (Ry) (mRy) (mRy) (mRy) (mRy)
0,5 2,78 1,68 1,20 -37,30 35,02 49,04 0,49
1,0 2,18 1,26 0,92 -12,54 23,56 32,54 5,93
1,5 1,83 1,00 0,74 -8,15 15,52 24,03 5,49
1,8 1,69 0,89 0,65 -7,88 11,83 20,28 4,63

1,9* 1,65 0,86 0,63 -7,96 10,75 19,17 4,33
2,0 1,61 0,83 0,61 -8,1 9,73 18,12 4,03
2,5 1,47 0,71 0,52 -9,13 5,53 13,57 2,66
3,0 1,38 0,62 0,45 -10,29 2,53 9,91 1,61
3,5 1,32 0,55 0,39 -11,12 0,50 6,93 0,89
4,0 1,28 0,49 0,35 -11,31 -0,69 4,58 0,45
5,0 1,26 0,40 0,28 -9,64 -1,25 1,66 0,08

Moreover, in Fig. 10b we illustrate our earlier statement that some of the

microscopic parameters could balance each other out in the Hamiltonian.

The correlated hopping interaction, for example, presents completely different

characteristics depending on which pair of the sites is taken (cf. Fig. 9).

Furthermore, the parameters V1 and V2 contribute to the Hamiltonian with

different signs reducing their contribution in the final result. Thus, ignoring

any one of them could provide unsatisfactory results.

The interaction terms in the representation of atomic wave functions (cf.

Table 2), on the other side, present a qualitatively different picture, as il-

lustrated in Fig. 11ab. All of them are positively defined and their values

are of the same order for a smaller interatomic distance. The renormaliza-

tion ansatz allows us to recover the 3- and 4-site parameters in the atomic

representation (cf. Table 3). One should note that their magnitudes are

comparable to the 1- and 2-site parameters and this is the reason why the

renormalization ansatz of the 1- and 2-site parameters provides such an es-

sential improvement of the results.

One remark at the end of this Chapter is in place. Namely, most au-
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(a)

(b)

Figure 11: Microscopic parameters vs. R in the atomic representation for the
square configuration of the N = 4 atom cluster. (a) 1- and 2-site interaction
parameters. (b) The values of 3- and 4-site interaction parameters using
the renormalization ansatz. The inset specifies various types of 3- and 4-site
parameters.
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Table 2: One- and two-site microscopic parameters vs. R in the atomic
representation for the square configuration of four atoms. The star marks
the distance R with the lowest energy.

R/a0 U ′ K ′
1 K ′

2 V ′
1 V ′

2 J ′
1 J ′

2

(Ry) (Ry) (Ry) (Ry) (Ry) (Ry) (Ry)
0,5 1,98 1,83 1,71 1,73 1,53 1,57 1,27
1,0 1,72 1,39 1,19 1,18 0,88 0,91 0,54
1,5 1,53 1,09 0,88 0,83 0,52 0,53 0,23
1,8 1,45 0,96 0,75 0,68 0,38 0,39 0,14

1,9* 1,43 0,93 0,72 0,63 0,35 0,35 0,12
2,0 1,41 0,89 0,69 0,59 0,32 0,32 0,10
2,5 1,33 0,75 0,56 0,43 0,20 0,19 0,05
3,0 1,29 0,64 0,47 0,31 0,12 0,11 0,02
3,5 1,26 0,56 0,40 0,22 0,07 0,06 0,01
4,0 1,25 0,50 0,35 0,15 0,04 0,03 0,00
5,0 1,25 0,40 0,28 0,07 0,01 0,01 0,00

thors [19, 20, 18] suggest using the Gaussian reference functions to describe

approximately the Slater orbitals (11). At present, STO-3G, 4-31G, and 6-

31G are the bases used most frequently in the calculations of properties of

nanoscopic systems [19]. The reason for using the Gaussian bases is they

can provide us with the 3- and 4-site interaction parameters in an analytic

form. On the other hand, linear combinations of the Gaussian functions do

not approximate the Slater functions accurately, there are four such combi-

nations in the definition of interaction parameters (6), and the number of

parameters increases sharply (∼ N4) with the number of atoms in the sys-

tem. This can result in an error, the impact of which might be substantial

for larger systems.

Therefore, we have chosen yet another approach to approximate the in-

tegrals itself and not their building blocks. An ansatz we utilize makes an

approximation that applies to the complete set of interaction parameters and

not to the particular parameters, and thus does not cause the accumulation

of the error.
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Table 3: Three- and four-site microscopic parameters vs. R in the atomic
representation for the square configuration of four atoms. The star marks
the distance R with the lowest energy.

R/a0 V ′
1142 V ′

1132 V ′
1213 V ′

1412 V ′
4312 V ′

1432

(Ry) (Ry) (Ry) (Ry) (Ry) (Ry)
0,5 1,52 1,39 1,61 1,53 1,47 1,27
1,0 0,83 0,67 0,99 0,86 0,76 0,53
1,5 0,47 0,33 0,63 0,50 0,41 0,23
1,8 0,33 0,22 0,49 0,37 0,28 0,14

1,9* 0,30 0,19 0,45 0,33 0,25 0,12
2,0 0,26 0,16 0,42 0,30 0,22 0,10
2,5 0,15 0,08 0,28 0,18 0,12 0,04
3,0 0,08 0,04 0,19 0,11 0,06 0,02
3,5 0,04 0,02 0,12 0,06 0,03 0,01
4,0 0,02 0,01 0,08 0,03 0,02 0,00
5,0 0,00 0,00 0,03 0,01 0,00 0,00

3.3 The single-particle parameters

Apart from the two-particle interactions, the single-particle part (namely,

the atomic tii and the hopping tij parameters) provides a major contribution

to the system energy. The single-particle microscopic parameters (cf. Table

4) are drawn in Fig. 12a. One should note the ground state energy reflects

the dependence on R of the microscopic atomic energy.

For the number of sites N > 2 we encounter one additional feature,

there appear the sites contributing with their potentials to the hopping and

different from the pair involved. The contribution originates from the form

of H1 (r) in Eq. (5). Namely, the hopping term is influenced, in general, by

all nuclear potentials in the system, since we have that

H1 (r) = −∇2 − Z ·
∑
k

2

|r−Rk|
, (16)

where Rk is the atomic position. This circumstance introduces the 3-center

integrals to the hopping parameters (cf. Appendix C.1). The integrals con-

tain non-analytical functions, but they can be calculated with reasonable
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(a)

(b)

Figure 12: (a) Single-particle hopping parameters in the Wannier represen-
tation for the square configuration of four atoms. The atomic energy t0,
the hopping parameters t1 and t2, and relation to the ground state energy
EG. (b) Ground state energy for the H3 system. The influence of the sites
contributing with their potentials to the hopping and different from the pair
involved is shown (lower curve).
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Table 4: The ground state energy, the atomic energy, as well as the hopping
parameters for the square configuration of four atoms. The star marks the
distance R with the lowest energy.

R/a0 t0 t1 t2 α Eel. EG

(Ry) (Ry) (Ry) (a−1
0 ) (Ry) (Ry)

0,5 -2,15 -3,87 1,51 1,585 -4,3834 1,0308
1,0 -3,53 -1,47 0,30 1,373 -3,5042 -0,7971
1,5 -3,42 -0,77 0,09 1,225 -2,8861 -1,0814
1,8 -3,26 -0,56 0,04 1,162 -2,6167 -1,1127

1,9* -3,20 -0,50 0,03 1,145 -2,5394 -1,1147
2,0 -3,15 -0,46 0,02 1,130 -2,4676 -1,1140
2,5 -2,88 -0,30 0,00 1,067 -2,1738 -1,0909
3,0 -2,66 -0,20 -0,01 1,028 -1,9617 -1,0593
3,5 -2,47 -0,14 -0,01 1,007 -1,8068 -1,0333
4,0 -2,32 -0,09 -0,01 1,000 -1,6932 -1,0165
5,0 -2,07 -0,04 -0,00 1,000 -1,5446 -1,0032

precision within a reasonable time (cf. Appendix C.2). In Fig. 12b we show

the importance of taking into account all the nuclear potentials, regardless

of the computational effort. The results are stable only when all the poten-

tials are included. More importantly, taking into account only the potentials

V (r−Ri) and V (r−Rj) as contributing to tij, breaks the size-consistency

of the result.

As could be expected, the single-particle parameters, calculated in this

manner, are predominant factors, their magnitudes can have values larger

than the largest interaction parameters by factor of two for small R. More-

over, the atomic energy changes dramatically when the number of neighbour-

ing atoms in the system (the coordination number) increases (cf. Fig. 12a).

The above seems to be a steady pattern when approaching the solid-state

limit. One should underline that the atomic part involves Wannier functions

and this contributes to its strong R dependence.
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3.4 The requirement lists

Requirement lists for an acceptable method of dealing with nanoscale cluster

systems are widely known in quantum chemistry. One of the first such lists,

published by Pople et al [21], contains four points:

1. A method should provide well-defined results for the energies of elec-

tronic states for any arrangement of fixed nuclei, leading to a set of

continuous potential energy surfaces.

2. A method should be such that the amount of computation does not

increase too rapidly with the size of the system.

3. A method should be size-consistent.

4. A method should yield upper bounds to the exact solutions, i.e. be

variational.

Another such list, published by Bartlett [22], states that:

1. A method should be size-extensive.

2. A method should be generally applicable to a wide class of problems

within one framework, i.e. not dependent on specific choices of config-

urations.

3. A method should be invariant to unitary transformations among de-

generate orbitals.

4. A method should be efficient and cost-effective.

5. A method should be applicable to excited states and open shells.

6. A method should be able to dissociate a molecule correctly into its

fragments.

The second, the third, and the fifth items on the Bartlett ’s list can together be

considered as a more explicit statement of the Pople’s first requirement. New
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on this list is the realization that even though a method yields continuous

potential energy surfaces it may also yield unphysical results if it fails to

describe dissociations properly. Furthermore, the upper bound requirement

has been dropped for it has been found that the requirement is of little

importance without a lower bound. The upper bound, in this case, gives no

real information about the accuracy of calculation and hence, in practice, is

of little use. Implications of the requirement lists are widely discussed in the

PhD Thesis of van Dam [20].

The EDABI approach as a whole, supplemented with the referred stabi-

lization techniques, can also be checked against such lists. The results we

present in this and the following Chapters are also supposed to prove its

consistency with the above requirements. We could already note that our

approach satisfies the Pople’s first and fourth requirements for tiny atomic

displacements always yield tiny changes in the Hamiltonian and what follows

they yield tiny changes in the ground state energy also. Furthermore, the

approach provides exact results, which in particular are the upper bounds,

though it is not variational by nature (it mixes exact diagonalization with

variational determination of the microscopic parameters). The more explicit

Bartlett ’s requirements (the second, third, and fifth) are also satisfied, what

can be easily seen from the fact that the EDABI approach provides exact

solutions within the space spanned by the single-particle basis, which do not

depend on the particular basis choice.

Unfortunately, the present implementation of the EDABI approach re-

quires significant amounts of computation for large systems. Thus, it violates

the Pople’s second and the Bartlett ’s fourth requirements, and we shall see

these are the only obstacles we face with the approach. Yet, the rapid growth

of computer power and the development of ab initio methods give hope the

problem could be overcome in the future. Additional feature is the explicit

solution of the renormalized wave equation, which would make the EDABI

approach self-contained.
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4 Cluster properties of different size

In this Chapter we compare the results obtained with the help of the EDABI

approach for several nanosystems in the configurations shown in Fig. 13.

The studied clusters represent regular geometric figures and all of them are

controlled by a single interatomic-distance parameter.

Figure 13: Configurations of the studied nanosystems. Labels identifying the
particular systems in the subsequent figures are also provided.

We discuss the energetic stability at temperature of 0 K, the dimerization

amplitude, as well as the excited-state profiles of the above nanosystems. Fur-

thermore, we analyze the impact of small distortions applied to the system

regular geometry by smoothly changing atomic positions, that provides us

with the zero-point energies and the phonon frequencies. The present discus-

sion is meant to provide a systematic analysis of the nanosystems composed

of 3 to 6 atoms in the above configurations. In the following Chapters we

present those properties and compare them with those of H2 molecule.
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4.1 The dissociation patterns

Ground state energy is one of the most important characteristics when consid-

ering the system stability. Our results, presented in Fig. 15ab, indicate that

all of the configurations are stable with respect to dissociation into the indi-

vidual atoms (EG/N < −1 Ry). Yet, all of them also have the ground state

energy at the optimal interatomic distance far larger than the H2 molecule.

That could be an explanation why there are no such complexes in nature,

they just simply separate into hydrogen molecules.

Figure 14: Dissociation diagrams of the studied complexes into H2 molecules.
The energy-gain in the process is also shown.

However, an external pressure or a background potential can influence

this behavior and make H2 molecules combine into more complex structures.

Such dimerization could take place in the solid hydrogen when the hcp struc-

ture is formed under high pressure at low temperature. The diagram (Fig.

14) shows possible patterns of dissociation of the studied complexes, they

finally always dissociate into H2 molecules, and yet some of them can have

the intermediate Triangle or Square configuration, for they appear to have

appropriate separation energies, making them the most likely objects when

the system is under the pressure. In Table 5 we list the corresponding nu-

merical values for the studied clusters. The configurations are arranged in
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the descending order of the separation energy per atom, Esep./N . The op-

timized orbital size a ≡ 1/α and the optimal interatomic distance R/a0 are

also shown.

Table 5: The optimal interatomic distance, the orbital size, and the separa-
tion energy for several nanosystems.

Configuration R/a0 a (a0) Esep. (eV) Esep./N (eV)
H2 1.45 0.84 4.02 2.01

Square 1.9 0.88 6.24 1.56
Tetrahedron 2.1 0.89 5.63 1.41

H6 2.0 0.89 7.14 1.19
Pentagon 1.8 0.91 4.83 0.97
Triangle 2.2 0.93 2.38 0.79

Fcs 3.4 0.95 1.59 0.32

One should note that all the configurations are unstable and hence the re-

sults cannot be compared to the experimental values, and yet the relevance of

the obtained separation energies can be demonstrated by considering the H2

molecule where the experimental value for the heat of formation 436 kJ/mol

indicates the error of about 10%. One should also note that the Tetrahedron

configuration is less stable energetically, though it is composed of the same

number of atoms as the Square configuration. The Fcs configuration, on

the other hand, shows the lowest separation energy from the studied config-

urations and the optimal interatomic distance almost twice as that for the

others. Obviously, that situation can be explained by the presence of the

central atom. However, in Fig. 16a we point out that the variational param-

eter α readjusts in the Fcs configuration more rapidly than for the others.

This circumstance hints to the possibility that more than just one variational

parameter are required to minimize the ground state energy further.

Furthermore, in Fig. 15ab we also characterize the size-consistency, as

well as the size-extensivity, of the EDABI approach, what satisfies both the

Pople’s [21] as well as the Bartlett ’s [22] requirements for an acceptable

method to be used in quantum chemistry.
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(a)

(b)

Figure 15: (a) R dependences of the total ground state energy (per atom,
including both the electron and the lattice contributions) for several nanosys-
tems. (b) The stability points for each of the nanosystems studied.
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(a)

(b)

Figure 16: (a) Optimal value of the variational parameter for several nanosys-
tems. (b) Total ground state energy approximated with parabolic function
used to calculate the zero-point energies and the phonon frequencies.
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4.2 The metastable configurations

It was suggested in the previous Chapter that the Triangle and the Square

configurations can play the role of intermediate steps in the dissociation

processes of more complex structures. Such intermediate configurations dis-

sociate finally into H2 molecules. The dissociation patterns, where the in-

termediate configurations are taken into consideration, (cf. Fig. 14) were

obtained by simply analyzing the separation energies and the optimal inter-

atomic distances of the studied nanosystems (cf. Table 5). We still need

to determine if the configurations are metastable in order to see the system

sustainability for a reasonable time interval. The Figure below presents the

dissociation of the chosen configurations.

Figure 17: The irregular Triangle, Square, and Tetrahedron configurations
dissociating. The interatomic distance parameters R1 and R2 are also
marked.

Obviously, all the configurations in the dissociation limit R2 → ∞ have

the separation energies per atom Esep./N identical with that of the H2

molecule. However, the studied systems behave differently as the parameter

R2 decreases. The parameter R1 is always chosen to minimize the ground

state energy of the system.

In Fig. 18ab we can see the effect of deformation applied to the regular

configurations. The obtained ground-state energy dependency in the case of

the Triangle configuration has no global minimum, and yet there is an in-

teresting local minimum in the direct closeness to the regularity point. The

local minimum depth is about 50 meV. This result indicates that the regu-

lar Triangle configuration can be sustained within relatively long period of

time, i.e. it is metastable. The Square and the Tetrahedron configurations,
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(a)

(b)

Figure 18: (a) Dissociation of the third atom in the Triangle configuration.
The regular figure coincides with local maximum in the energy. (b) Dissoci-
ation of the atomic pair in the Square and the Tetrahedron configurations.
There is a slight global minimum in the energy.
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on the other hand, have global minima situated below even the energy of

the H2 molecule, what suggests some kind of long-range interaction between

the H2 molecules (R1/a0 ∼ 1.43 and R2/a0 ∼ 5.2). However, the obtained

minima do not mean that the studied configurations can be sustained in-

finitely, their depth is so small that we can claim they are surpassed with

the zero-point energies (discussed in the following Chapter) or they originate

from the approximations of the EDABI approach.

4.3 The harmonic oscillations

Dynamical properties of the studied nanosystems can be derived from the

ground state energy dependence on the interatomic distance (Fig. 16b).

We approximate it with parabolic function and determine the second order

coefficient K. The approximation allows us to obtain the phonon (breathing-

mode) frequency in the system by applying the harmonic oscillator theory.

The results are obtained for the H2 molecule and the Square configuration.

Figure 19: The H2 molecule and the Square configuration oscillating around
the center of mass. The oscillation variable r is also marked.

The oscillation (phonon) frequency of the breathing-mode can be easily ob-

tained from the following equation

r̈ + ω2 · (r− r0) = 0, (17)

where r represents distance from the center of mass in the system and ω is

the breathing-mode frequency, and thus
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ω =
S

a0

√
e

mH

· 2K. (18)

Here, mH represents hydrogen atom mass, S is the structural factor, which

yields 2 for the H2 molecule and
√

2 for the Square configuration, and K is

the elastic constant. Thus, the zero-point energy can be obtained through

the relation

Ez.p. =
h̄ω

2
. (19)

The phonon breathing-mode frequencies, as well as the zero-point energies,

are shown in the following table.

Table 6: The phonon breathing-mode frequency and the zero-point energy
of the chosen configurations.

Configuration ν (THz) Ez.p. (meV)
H2 123± 3 255± 6

Square 78± 2 162± 4

One should note, the above results could be obtained only because of the

fact that the EDABI approach allows us to analyze the system evolution as

a function of interatomic distance. The zero-point energies we obtain with

good precision (about 3%) and their relevance can be seen by considering the

H2 molecule where the experimental value 25.9 kJ/mol indicates the error of

about 5%.

4.4 The density profiles

Electron density profiles, considered in this Chapter, are another properties

of the studied systems that provide real-space characteristic. The ability to

determine it is an important feature of the EDABI approach, and is of sig-

nificant interest. The electron density is often taken to determine molecular

or solid-state bond characteristics, as well as to approximate the electronic

transport in the nanosystems. We start from the well known fact that the
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electron density is closely related to the many-particle wave function, and for

the system with N electrons we have the particle density in the form

n(r1...rN) = N · |ΨN(r1...rN)|2, (20)

where ΨN(r1...rN) is the N -particle wave function. The expression for the

electron density in the second quantization formulation is obtained by inte-

gration over all the electron configurations and yields Eq. (A16), the calcula-

tion is detailed in Appendix A.2. In Fig. 20ab we can see the electron density

profiles of the chosen atomic configurations. The profiles are obtained for the

configurations in the ground state and at the optimal interatomic distance.

The interesting fact is the densities are heavily dependent on the correlation

functions 〈ΦN |a+
i aj|ΦN〉, which provide the significant contribution to the

overall electron density. In the Hartree-Fock theory, for example, it takes the

form

nHF (r) =
∑

i

|wi(r)|2, (21)

where {wi(r)} are the Wannier functions centered respectively on {i ≡ Ri}.
We present in Fig. 21ab the relative error of the Hartree-Fock theory. One

should note the difference is nonnegligible and its value is up to 80% depend-

ing on the region in space.

Obviously, the EDABI approach, as well as the Hartree-Fock treatment,

utilize the optimized Wannier basis when determining the electron density.

However, only the EDABI approach incorporates the average occupation

factor of the basis states and the correlation functions in the many-particle

state.

4.5 The Wannier basis

We determine the Wannier functions by applying the relation (B1) to the 1s

atomic orbitals (11). The variational parameter α is taken to minimize the

ground state energy of the many-particle state. The following figure shows

one of such functions for the H6 configuration. Obviously, the remaining
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(a)

(b)

Figure 20: The profiles of the electron density of in units a−3
0 for the H6

(a) and the Fcs (b) configurations for the ground state and at the optimal
interatomic distance.
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(a)

(b)

Figure 21: The relative error (%) in the electron density of the Hartree-Fock
theory for the H6 (a) and the Fcs (b) configurations for the ground state and
at the optimal interatomic distance.
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single-particle wave functions are of the same shape, since the system is

rotationally invariant.

Figure 22: Single Wannier function for the H6 configuration for the ground
state and at the optimal interatomic distance. Note the negative values at
the nearest neighboring sites.

The system with two different Wannier function shapes is the Fcs con-

figuration, we can see these functions in Fig. 23ab. The function localized

on the central atom (Fig. 23b) is more compact, since it is influenced by

the surrounding electrons. All the figures also show that our method of de-

termining the Wannier functions (cf. Appendix B.1) always makes them

localized on the individual atoms. Such localization features are crucial to

make the renormalization ansatz (cf. Appendix B.2) work better.

4.6 The excited states

Apart from the ground states of the nanosystems, we determine the excited

states as well. The EDABI approach allows us to obtain all the eigenener-

gies and the eigenstates of the Hamiltonian for each of the studied systems.
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(a)

(b)

Figure 23: Wannier functions for the Fcs configuration for the ground state
and at the optimal interatomic distance. (a) The function is centered on the
border atom. (b) The same, but on the central atom.
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Moreover, we can classify the many-particle states of the systems into the

classes with the constant number of double occupancies. Each of the classes

is expected to be characterized by the energies significantly different from

the others by the single-site Hubbard interaction U , which is the major con-

tribution to the system energy. As we can see in Fig. 24, the excited states,

in general, follow the pattern of the double-occupancy classes and each of the

classes represents the particular subband of the electronic structure in the

nanosystem. The results suggest that the subbands are thin and separated

by the Hubbard gap for a larger interatomic distance, which collapses as the

interatomic distance decreases.

Figure 24: The energy spectrum (per atom, including both the electron
and the lattice contributions) for the Triangle configuration. The double-
occupancy classes are seen at larger R values.

The maximal gap width in the limit of large interatomic distance can be easily

calculated, since the Wannier functions tend to the atomic functions and the

variational parameter α tends to unity then. Hence, the single-site Hubbard

interaction U determines the gap width and, according to Eq. (C22), in the

R → ∞ limit the width is equal to 1.25 Ry. We mark such maximal gap

values with dashed horizontal lines (cf. Fig. 24, 25ab).
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(a)

(b)

Figure 25: The energy spectrum (per atom, including both the electron and
the lattice contributions) for the Square (a) and the H6 (b) configurations.
The subbands appear clearly when R increases.
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Table 7: The approximate interatomic distance R/a0, at which the Hubbard
gaps collapse.

Configuration 1st gap 2nd gap 3rd gap
Triangle 1.14 - -

Square 2.6 3.0 -
H6 3.0 ? 6.0

An interesting feature of the nanosystems is that they can have more than

two distinct Hubbard subbands (Fig. 25ab). The well known lower and the

upper Hubbard subbands seem to be just the lowest two in this model. Thus,

the complete band structure of any of the systems consists of the Hubbard

subbands in the large R limit, and all the Hubbard gaps collapse as the

interatomic distance decreases. The gap values at the optimal interatomic

distance determine whether the system is quasimetallic, semiconducting, or

insulating. Hence, the ability to determine them provides a valuable insight

into the system transport properties. This feature of the EDABI approach

is of the particular interest, for it provides characterization in terms of the

interatomic distance, at which the collapse occurs, and not in terms of the

interaction magnitude, as is usually the case. In the Table 7 we list the

approximate interatomic distances, at which the gaps collapse. One should

note that all the gaps collapse at the distances comparable to the optimal

ones (cf. Table 5). This can indirectly explain why the solids appear in many

different states from the elastic transport point of view.

4.7 The absolute stability

The nanosystems with non-unitary filling of the orbitals can also be studied

with the EDABI approach. The most interesting and widely considered [28,

29, 30] is the H+
3 ion. This ion plays an important role in many different

fields, such as chemistry, plasma physics, and astronomy. It was discovered in

the diffuse interstellar medium and characterizes the Jupiter atmosphere. It

is also the dominant positively charged ion in the molecular hydrogen plasma.

What is more important, it has been found both the ion is stable and lacks
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a stable excited state, as well as a permanent electric dipole moment. These

features make electronic and rotational spectroscopy inapplicable here, and

the only excited states that can be detected in the case of this ion belong

to the low-energy rotation-vibration infrared spectrum. Recently, there have

been discovered the quasi-bound predissociative states in the high-energy

region also.

In Fig. 26a we can see the energy spectrum of the H+
3 ion. The results

are obtained by considering the atomic configuration identical to the Trian-

gle configuration and the Fock space spanned with the many-particle states

having two electrons instead of three. The H+
3 ion ground state and two pairs

of its (degenerate) excited states are found to have a global minimum with

respect to the interatomic distance. However, this does not mean they are

stable yet, we analyze the dissociation patterns of the H+
3 ion to determine

that.

Table 8: The optimal interatomic distance, the orbital size, and the separa-
tion energy for the systems relevant to the H+

3 ion study.

Configuration R/a0 a (a0) Esep. (eV) Esep./N (eV)
H+

3 1.69 0.72 8.09 2.70
H2 1.45 0.84 4.02 2.01
H+

2 2.0 0.81 2.35 1.18
Triangle 2.2 0.93 2.38 0.79

The possible patterns of dissociation, e.g. initiated by a photon, can be

expressed with the following chemical equations

H+
3 + hν1 → H +H +H+,

H+
3 + hν2 → H2 +H+,

and

H+
3 + hν3 → H+

2 +H.

The first dissociation pattern (I) is clearly an endothermic process, what can

be seen in Fig. 26a. The dissociation leads to the separation of all the ion
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(a)

(b)

Figure 26: (a) Excited-state energy spectrum (per atom, including both the
electron and the lattice contributions) for the H+

3 ion. (b) Comparison of
the ground-state energy dependencies for the systems relevant to the H+

3 ion
study.
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components, what is equivalent to setting R→∞. Thus, the required energy

can be easily calculated (hν1 = 8.09 eV). The two remaining dissociation

patterns (III and II) are also endothermic, and the required energies are

lessened then with the separation energies of the H2 molecule and the H+
2

ion (hν2 = 4.07 eV and hν3 = 5.74 eV). The above results are obtained by

analyzing Table 8 and the following diagram (Fig. 27) presents the energy

levels for all the configurations taking part in the dissociation. As we can

see, the H+
3 ion has the lowest energy, and hence is an absolutely stable

configuration.

Figure 27: The energy levels of the configurations relevant to the H+
3 ion

study. The red, dashed line represents the lowest excited state of the H+
3

ion.

The excited states of the H+
3 ion, on the other hand, are unstable since

the energy of the lowest of them lies above the energy of the dissociated ion

(Fig. 27). As we can see, this result is compatible with the experimental

data. Here, the transitions (IV and VI) represent the dissociations of the H2

molecule and the H+
2 ion, and are irrelevant in our study. Also, the transi-

tion (V) indicates instability of the H+
2 ion since the following dissociation

direction is preferred

H+
2 +H → H2 +H+ + hν4,

where hν4 = 1.67 eV. Apart from the H+
3 ion stability, the major source of
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its destruction is recombination with an electron or a neutral molecule. The

common destruction mechanisms can be expressed with the equations

H+
3 + e− → Triangle→ H2 +H + hν5,

and

H+
3 +X → XH+ +H2.

The second equation indicates that the H+
3 ion is an efficient donor of positive

charge to neutral molecules (X), yet this is out of the scope of this Thesis.

The recombination with an electron, on the other hand, provides energy

gain that can be easily calculated (Fig. 26b). Thus, such processes probably

are accompanied with the photon emissions (hν5 = 9.54 eV), and yet it

is not clear whether the Triangle configuration appears as an intermediate

metastable configuration in these processes.

4.8 The computational limitations

The EDABI approach, in its current form, presents serious computational

limitations when considering the larger systems (N > 12). Hence, it is ap-

plicable only to either dealing with the smallest nanosystems or considering

just the few essential orbitals. The main reason for this limitation is com-

putational intractability of the Hamiltonian diagonalization for the larger

number of sites in the system. To address the problem we can do one of the

following:

1. apply symmetry criterions which reduce the size of the Fock space,

2. use one of the QMC-class methods instead of the Lanczos algorithm,

3. reduce the size of the Fock space by neglecting the vectors with minor

contribution to the final ground state of the system.

The third solution to the problem seems to be the next step of develop-

ment of the EDABI approach. However, there are questions if such vectors

can be accounted for and how to identify them. Obviously, each of the vectors
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in the Fock space contributes to the ground state with different amplitude.

The probability of detection of the particular electronic configuration is

pi1...iN = |〈i1...iN |ΦN〉|2 , (22)

where |ΦN〉 is the N -particle ground state and |i1...iN〉 represents the par-

ticular electronic configuration. Therefore, the effective number of vectors in

the ground state, according to Shannon expression for the number of config-

urations, can be determined with the following relation

Leff ≡ 2
−
∑

i1...iN
pi1...iN

log2 pi1...iN =
∏

i1...iN

(pi1...iN )−pi1...iN . (23)

In this manner we examine the effective size of the Fock space for the ground

state of the system under study.

Figure 28: Effective number of basis vectors in the Fock space contributing
to the ground state of several nanosystems. The number is taken as relative
to the size of the Fock -space dimension for given model.
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One should note that the effective size vs. R/a0, presented in Fig. 28, is

regular for the Square and the H6 configurations, and more or less chaotic for

the other. All the configurations show the increase in the effective size for the

lower interatomic distances as well as its decrease with the increasing number

of sites in the system. This corresponds to the precursory effects connected

with formation of the effective symmetry-broken state with N →∞.

The last feature provides rationale behind the reducing the size of the

Fock space for the larger systems. However, the aim of this Thesis is not to

provide an algorithm of discarding some vectors in the Fock space, but to

present that it is possible. This, was achieved by showing that the effective

size can be much less than the size of the model Fock space even in the case

of the nanosystems we study.

56



5 ELECTRON TUNNELING

5 Electron tunneling

In this Chapter we present an approach to determining the electron tunneling

current through nanosystems. At the present, the most frequently utilized

approach is the Landauer-Büttiker formalism [5, 31, 32, 33]. According to

this approach (cf. Appendix A.3), the Landauer equation (A22) determines

the current flow through the system, and depends basically on the chemical

potentials of the leads, the excitation spectrum of the system, and on the

system transmittance (it is equal to unity in the ballistic transport). Thus,

most methods differ in by the manner they provide the excited states or the

transmittance of the nanosystems. The common preconditions for all the

approaches have been detailed in Appendix A.3. One should note that none

of them applies to the systems with the 1s atomic orbitals and for small

number of sites.

5.1 The analytical approach

The approach of determining electronic current through the system should

not be limited to the Landauer-Büttiker theory. The preferred by us method

is to utilize the second-quantization formulation, where many-particle cur-

rent-density operator can be derived from the single particle momentum op-

erator, namely

ĵ ≡ Ψ̂+ (r)
(
− e

m
p̂
)

Ψ̂ (r) =
ieh̄

m
Ψ̂+ (r)∇Ψ̂ (r) , (24)

where Ψ̂ (r) and Ψ̂+ (r) are the field operators, and by taking the real part of

the above expression we obtain a well known equation for the current density

ĵ =
ieh̄

2m

(
Ψ̂+ (r)

(
∇Ψ̂ (r)

)
−
(
∇Ψ̂+ (r)

)
Ψ̂ (r)

)
, (25)

and, by the use of Eq. (3), we have

ĵ =
ieh̄

2m

∑
ijσ

a+
iσajσ (w∗

i (r)∇wj(r)−∇w∗
i (r)wj(r)) =

∑
ijσ

a+
iσajσ · jij (r) , (26)
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and

jij (r) =
ieh̄

2m
(w∗

i (r)∇wj(r)−∇w∗
i (r)wj(r)) , (27)

where {wi(r)} are the Wannier functions.

The above result is much more general than the Landauer-Büttiker for-

malism [15] which, in fact, can be obtained by taking a particular limit of

the above quantum mechanical formulation. We can easily prove this fact by

applying a different expansion relation of the field operators

Ψ̂ (r) =
∑
kσ

χσψk (r) akσ, (28)

what transforms the operator of current density to the form

ĵ =
ieh̄

2m

∑
k1k2σ

a+
k1σak2σ

(
ψ∗

k1
(r)∇ψk2 (r)−∇ψ∗

k1
(r)ψk2 (r)

)
, (29)

where {ψk (r)} are the Bloch functions. The proof requires us make basi-

cally two assumptions, the first concerning single-particle states ∇ψk (r) ≈
ikψk (r), what is obviously true, strictly speaking, only for plain waves,

and the second one concerning multi-particle states 〈ΦN |a+
k1σak2σ|ΦN〉 ≈

δk1k2〈ΦN |nk1σ|ΦN〉. Under these conditions, the current-density operator sim-

plifies to the form

ĵ =
ieh̄

2m

∑
kσ

nkσ|ψk (r) |2 (−2ik) =
∑
kσ

nkσ · jk (r) , (30)

where

jk (r) = −e|ψk (r) |2 h̄k

m
. (31)

Obviously, the above formula is essentially equivalent to the Landauer for-

mula (A22) when we additionally assume the dense homogeneous momentum

space, the energy dependent occupation distribution function, and the con-

stant single-particle density. As we can see, the ab initio quantum mechanical

treatment of current density is the proper one to describe nanoscopic multi-

particle systems, as they violate each of the assumptions necessary for the

Landauer-Büttiker approach to become valid.
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5.2 The complementary descriptions

The expression (26) for the current density can be used to determine the

average current density in the ground state of the nanosystem. The detailed

calculations have been carried out in Appendix A.3. The final expression

(C47) for the current through the system depends only on the correlation

function, and not on the particle occupations, as in the Landauer-Büttiker

approach.

These two approaches represent two complementary descriptions of the

current flow. The quantum mechanical approach derives the current from the

correlation between single-particle states in the ground state of the system,

and the Landauer-Büttiker approach derives it from the occupation of the

single-particle states, which have a self-current accompanied with. We show

the two descriptions originate from Eq. (26) when we take the Wannier

functions of the form

wi (r) = Ωi (r) eiωi(r), (32)

where Ωi and ωi are real functions. The expression for the current amplitude

jij (r) then has the following form

jii (r) = −eh̄
m
|wi (r)|2∇ωi (r) , (33)

in the case of the particle-occupation contribution, and

ji6=j (r) = −eh̄
m
w∗

i (r)wj (r)
∇ωi (r) +∇ωj (r)

2

− eh̄

m
[Ωi (r)∇Ωj (r)−∇Ωi (r) Ωj (r)]

eiωj(r)−iωi(r)

2i
, (34)

in the case of the correlation-function contribution. One should note we can

distinguish between two different origins of the above contributions to the

total current. The first originates from the self-current carried by particles

occupying individual single-particle states and depends on the momentum-

like character of the single-particle basis. The Landauer-Büttiker approach
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operates within this context

jocc (r) = −eh̄
m

∑
ijσ

〈
a+

iσajσ

〉
w∗

i (r)wj (r)
∇ωi (r) +∇ωj (r)

2
. (35)

The second contribution to the current originates from the correlation be-

tween the single-particle states and is the only one that provides results in

the case of the single-particle basis built of the hydrogen-like 1s orbitals (11).

It does not appear in the Landauer-Büttiker theory, and yet it is essential

for the systems we study

jcor (r) = −eh̄
m

∑
i<jσ

[Ωi (r)∇Ωj (r)−∇Ωi (r) Ωj (r)]

× Im
{〈
a+

iσajσ

〉
eiωj(r)−iωi(r)

}
. (36)

We can see, studying the electronic transport through the nanosystems

requires implementation yet another approach that is missing in the studies

of the mesoscopic systems or any Landauer -derivative approach, i.e. the

Keldysh formalism. The approach is especially useful in the fields, where the

Landauer-Büttiker theory is inapplicable, i.e. few-atom nanowires.

5.3 The transport analysis

The electronic transport through the system made of few hydrogenic-like

atoms can be determined with the use of Eq. (C47). The overall current is

obtained as a sum of the components representing current flow between the

sites of the system on the pair-like basis. The component of each individual

pair of sites depends on the imaginary part of the effective hopping operator

(C36) in the ground state as well as the transport amplitude (C46).

It can be clearly seen, there is a maximum in the transport amplitude

(Fig. 29) for the specific interatomic distance

Rmax =
1 +

√
5

2
· 1

α
=

1 +
√

5

2
· a, (37)

where a is the effective size of the atomic orbitals and the multiplication factor
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Figure 29: The electronic-transport amplitude (I) profile for the single pair
of sites (i′j′) as a function of both the interatomic distance R/a0 and the
variational parameter α.

is the ”golden section” factor. The amplitude diminishes gradually as either

interatomic distance increases or the atomic wave-function size decreases for

given R/a0.

The provided approach formulated here can be implemented in a direct

manner to more realistic situation with the starting ns-like orbitals and for

n > 1. However, this would require the extension of our numerical code

to those cases. Also, the consideration of the so-called Coulomb blockade

phenomenon requires an introduction of external leads not included as yet.

This should be a starting point in the future.
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6 A brief summary

In this Thesis we have applied the EDABI method to small clusters, as well

as to calculations of the tunneling current across a nanoscopic system. In

both situations the 1s-like atomic wave functions were taken from the start

as composing the Wannier (orthogonalized-atomic) orbitals.

In the case of small clusters, the systems containing up to N = 6 atoms

were discussed in both two- and three-dimensional configurations. The gro-

und- and the excited-state configurations were explicitly singled out and

the existence of the Hubbard -like subband structure has been demonstrated.

Also, the renormalized single-particle wave function has been determined ex-

plicitly. Some of the configurations are metastable and their dissociation

routes have been discussed. The translationally invariant electron density

has been defined and the microscopic parameters have been tabulated as a

function of the interatomic distance. The numerical results are based on the

approximation that the three- and four-site contributions to the expressions

for the microscopic parameters in the atomic representation can be calculated

from the conditions that their counterparts in the Wannier representation

vanish.

In the final part of the Thesis we have sketched the method of calculating

the intrinsic tunneling conductivity of the system by disregarding the influ-

ence of the (semi) macroscopic leads. Obviously, the conductivity of such a

nanoscopic system will always be non-zero, as it is represented by a quantum

tunneling of electrons through a barrier of both the finite width and height.

That Chapter should be elaborated much further to explain e.g. the Coulomb

blockade phenomenon observed in quantum wires.

The Appendices contain a detailed analysis of various formal aspects of

the problems constituting the Thesis, as well as provide some particulars of

reasoning when deriving various formulas.
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Appendices

A Quantum characteristics of nanosystems

In this Appendix we present general aspects, as well as some of the formal

expressions for the calculated properties of the system at hand, once the

EDABI approach has been implemented.

A.1 Relation to MCI method

The MCI method proved to be very useful in quantum chemistry, yet com-

putationally very expensive. The vast number of electron configurations for

any but the smallest systems makes the variational energy optimization a dif-

ficult task. Thus, in most applications of the MCI method, we consider only

a small subset of the total number of electron configurations or the LCAO

coefficients are taken for granted. This is because the first-quantization rep-

resentation MCI makes the representation of different configurations clumsy.

The EDABI approach, on the other hand, allows us to take into account

all electron configurations and diagonalize rigorously the Hamiltonian within

the finite Hilbert subspace of single-particle states relevant to the system.

This is because the occupation-number representation of the N -particle state

is just a combination of unity and zero in different columns of the basis

vector. The equivalence of both methods can be established by considering

the relation between the N -particle state |ΦN〉 in the Fock space and N -

particle wave function ΨN(r1...rN) in the Hilbert space. The field operator

Ψ̂(r) for electron is defined in terms of the sum over a complete set of the

Wannier functions {wi(r)}:

Ψ̂(r) =
∑

i

wi(r)ai, (A1)

where the spin-index is ignored for the sake of simplicity (it can be incorpo-

rated into the set of quantum numbers {i}). The N -particle state |ΦN〉 in

the Fock space can be expressed through the field operators in the following

manner (cf. e.g. [34])
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|ΦN〉 =
1√
N !

∫
d3r1...d

3rNΨN(r1...rN)Ψ̂+(r1)...Ψ̂
+(rN)|0〉. (A2)

Conversely, the N -particle wave function ΨN(r1...rN) can be expressed in

terms of the field operators and |ΦN〉 as follows

ΨN(r1...rN) =
1√
N !
〈0|Ψ̂(r1)...Ψ̂(rN)|ΦN〉, (A3)

where |0〉 is the vacuum state in the Fock space. Substituting Eq. (A1) to

Eq. (A3) we obtain

ΨN(r1...rN) =
1√
N !

∑
i1...iN

〈0|ai1 ...aiN |ΦN〉wi1(r1)...wiN (rN). (A4)

Recognizing that within the Fock space we have that

|ΦN〉 =
1√
N !

∑
i1...iN

Ci1...iN · a+
i1
...a+

iN
|0〉, (A5)

where Ci1...iN are the so-called configuration interaction (CI) coefficients.

Substituting then Eq. (A5) to Eq. (A4) we finally obtain

ΨN(r1...rN) =
1

N !

∑
i1...iN

∑
j1...jN

Ci1...iN · wj1(r1)...wjN
(rN)

× 〈0|aj1 ...ajN
a+

i1
...a+

iN
|0〉. (A6)

The expression 〈0|...|0〉 provides N ! non-zero terms, each equal to (−1)P ,

where P represents the number of permutations of quantum numbers (j1...jN)

with respect to (i1...iN). In other words, we can rewrite the above relation

to

ΨN(r1...rN) =
1√
N !

∑
i1...iN

Ci1...iN · (A, S) [wi1(r1)...wiN (rN)] . (A7)

64



A.2 Particle density profile A QUANTUM CHARACTERISTICS

This is the MCI starting expression for the N -particle wave function. The

symbols A and S represent, respectively, the antisymmetrization for fermions

and the symmetrization for bosons. Essential is that we have the same ex-

pansion coefficients Ci1...iN for both the representation of the state |ΦN〉 in the

Fock space and the wave function ΨN(r1...rN) in the Hilbert space. There-

fore, the expressions (A5) and (A7) represent equivalent approaches. Thus,

whether we variationally determine the wave function in the Hilbert space

or minimize energy of the state in the Fock space we have got the same CI

coefficients.

A.2 Particle density profile in the second-quantization

scheme

Single-particle density is an attribute of the system most naturally represent-

ing its stationary state. Evaluation of the particle density supplies the clear

real-space picture of the electronic structure of the system. Let us consider

the definition of the probability density for a single particle, which can be

defined as

ρ(rN) =
∫
d3r1...d

3rN−1|ΨN(r1...rN)|2, (A8)

where ΨN(r1...rN) is the N -particle wave function and from Eq. (A3) we

have

|ΨN(r1...rN)|2 =
1

N !
〈ΦN |Ψ̂+(rN)...Ψ̂+(r1)|0〉〈0|Ψ̂(r1)...Ψ̂(rN)|ΦN〉. (A9)

The state |ΦN〉 represents the constant number (N) of particles and hence

we can rewrite the above expression as follows

|ΨN(r1...rN)|2 =
1

N !
〈ΦN |Ψ̂+(rN)...Ψ̂+(r1)Ψ̂(r1)...Ψ̂(rN)|ΦN〉. (A10)
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We can derive the final result by applying the expression (A1) for the field

operator Ψ̂(r), defined with the help of the orthonormal basis {wi(r)}, what

leads to the relation

Ψ̂+(r)Ψ̂(r) =
∑
i1i2

w∗
i1

(r)wi2(r)a+
i1
ai2 , (A11)

and by regrouping the probability density (A8) in the following way

ρ(rN) =
∫
d3r2...d

3rN−1

(∫
d3r1|ΨN(r1...rN)|2

)
, (A12)

where

∫
d3r1|ΨN(r1...rN)|2 = (A13)

=
1

N !

∫
d3r1〈Ψ̂+(rN)...Ψ̂+(r1)Ψ̂(r1)...Ψ̂(rN)〉

=
1

N !

∑
i1i2

∫
d3r1w

∗
i1

(r1)wi2(r1)

× 〈Ψ̂+(rN)...a+
i1
ai2 ...Ψ̂(rN)〉

=
1

N !
〈Ψ̂+(rN)...Ψ̂+(r2)

∑
i

niΨ̂(r2)...Ψ̂(rN)〉.

The expectation value of the particle-number operator
∑

i ni is unity for the

many-particle state Ψ̂(r2)...Ψ̂(rN)|ΦN〉 ∼ |Φ1〉. Obviously, the procedure

applied subsequently N − 2 times leads to the result

ρ(rN) =
1

N
〈Ψ̂+(rN)Ψ̂(rN)〉. (A14)

This result can be understood by means of the particle-density operator

n̂(r) ≡ Ψ̂+(r)Ψ̂(r), and thus the particle density is

n(r) ≡ N · ρ(r) = 〈Ψ̂+(r)Ψ̂(r)〉. (A15)

Finally, we obtain the explicit expression for the density of particles by ap-

plying Eq. (A11):
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n(r) =
∑

i

|wi(r)|2 · 〈ni〉+
∑

i1 6=i2

w∗
i1

(r)wi2(r) · 〈a+
i1
ai2〉, (A16)

where averages 〈...〉 are taken with the N -particle state |ΦN〉.
The first of the two terms represents contribution of the particle-number

operator to the total density of particles. The other term can provide a

significant contribution in the case of highly correlated systems, yet what

is more important the term is missing in the Hartree-Fock theory and can

substantially improve estimations of the density of particles.

A.3 Landauer-Büttiker transport

A common approach to describe electronic transport in mesoscopic systems is

to utilize the semiclassical Landauer-Büttiker formalism [15]. Some authors

[14, 31, 32, 33] apply it to the nanoscopic systems as well, even though their

single-particle states are discrete, what contradicts the assumptions of the

theory.

Figure A1: (a) Lateral potential confining the electrons within the width of
the conductor. (b) Schematic dispersion relations for the transverse modes.
([35])

67
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Let us consider two metallic contacts connected to a narrow conductor

strip. The contacts are reflectionless, i.e. electrons inside the conductor can

exit into wide contacts with a negligible probability of reflection. The trans-

port inside the conductor is ballistic meaning that the transmission proba-

bility of electrons is close to unity. The electron dynamics in the effective

mass-approximation inside the conductor is described by the Schrödinger

equation

[
EC +

p̂2

2m∗ + V (x, y)

]
ψ(x, y, z) = Eψ(x, y, z), (A17)

where EC is the conduction band edge and V (x, y) is a confining potential

(Fig. A1a). Since the conductor is translationally invariant in the z direction

we can postulate the solution of the form

ψnkz(x, y, z) = χn(x, y)eikzz, (A18)

En(kz) = EC + εn +
h̄2k2

z

2m∗ . (A19)

The χn(x, y) states are called transverse modes, and electrons entering the

conductor must have the energy equal to an unoccupied transverse mode

(Fig. A1b). The effective current comes from difference in the occupation

of +kz states, originated in one contact, and −kz states, originated in the

other. Each state carries the current

Inkz = −enn · vkz = − e

L
· 1

h̄

∂En(kz)

∂kz

, (A20)

where nn is the linear electron density for an electron inside a conductor of

length L and vkz is the electron velocity. Thus, the effective current can be

expressed with the relation

I =
∑
n

∑
kzσ

Inkz [f (nkz, µ1)− f (nkz, µ2)] , (A21)

where f (nkz, µ) is the distribution function of electrons in the contacting

electrodes. The kz state spectrum is dense in the case of long conductors,

and therefore we can write that
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I = − e

L
· 1

h̄

∑
n

2× L

2π

∫ ∞

0
dkz

∂En(kz)

∂kz

[f (nkz, µ1)− f (nkz, µ2)]

= −2e

h
·
∑
n

∫ ∞

EC+εn

dE [f (E, µ1)− f (E, µ2)]

= −2e

h
·
∫ ∞

−∞
dEM(E) [f (E, µ1)− f (E, µ2)] , (A22)

where

M(E) =
∑
n

θ (E − εn − EC) . (A23)

In result, we have obtained a well known expression for the electronic

tunneling (ballistic) transport. As we can see, the transport reveals a stepwise

behavior with the increasing drain-source bias voltage, and the steps become

sharper as the temperature decreases. The 2e/h quantity is considered to be

a quantum of the electronic transport in the spin unpolarized processes.

A.4 Renormalized wave-equation

For the sake of completeness we characterize here the self-adjusted wave

equation proposed by Spa lek (2000)2. We start from a formal expression

for the system energy EG = EG {tij, Vijkl}, in which the microscopic pa-

rameters tij and Vijkl depend functionally on the single-particle (Wannier)

functions {wi (r)}. If we use the approach conserving the number of parti-

cles, the renormalized wave functions {wi (r)} are determined by the Euler

variational procedure with the constraint that the functions are normalized,

i.e. 〈wi|wj〉 = δij. Since EG contains only {wi (r)} and their gradients

{∇wi (r)}, the self-adjusted and stationary wave equation for single-particle

in the millieu of all other particles reads

δEG

δw∗
i (r)

−∇ · δEG

δ (∇w∗
i (r))

−
∑
i>j

λijwj (r) = 0, (A24)

2cf. for details [24]
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where λij are the Lagrange multipliers. In the case of explicitly orthogonal

basis λij = 0 and the above equation reduces to the Euler equations for the

renormalized basis {wi (r)}. In this Thesis we have used the Ritz variational

version of solving this equation by postulating the form of atomic functions,

which compose the final Wannier functions.
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B Applied algorithms

In this Appendix we present various algorithms providing us with the ana-

lytical tools when implementing the EDABI approach.

B.1 The Wannier basis determination

An explicit evaluation of the parameters tij and Vijkl requires the knowledge

of the single-particle (Wannier) basis {wi (r)}. The EDABI approach ex-

presses Wannier functions as linear combinations of atomic states. Namely,

we start from the decomposition:

wl(r;α) =
M∑

j=1

βljΦj(r;α), (B1)

where Φ(r;α) is the atomic wave function of an adjustable size. The normal-

ization condition takes then the form

〈wl(r;α)|wl′(r;α)〉 =
∑
jk

β∗ljβl′k〈Φj(r;α)|Φk(r;α)〉

=
∑
jk

β∗ljβl′kSkj

≡ δl′l, (B2)

where Skj = 〈Φj(r;α)|Φk(r;α)〉 is an overlap between the atomic functions

Φj(r;α) and Φk(r;α).

In the matrix language, the formalism we use for subsequent calculations,

the above condition can be written as

βSβ+ = 1, (B3)

or, equivalently

β+β = S−1, (B4)

where S is the overlap matrix and β – the matrix of coefficients.

The β matrix can be left-multiplied with a unitary matrix and still satis-

fies the condition. The ambiguity reflects the basic fact that rotations of the
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basis do not influence the results. Therefore, we can arbitrarily choose the β

matrix in the form β = β+. In effect, such choice leads to the relation:

β = S−1/2. (B5)

The above method is known as the Löwdin method of determining the

orthonormal basis and, in general, needs to be supplemented with series ex-

pansion. Namely, we make use of the fact that the overlap integral matrix

tends to the unit matrix as elements of the system are separated from each

other. Thus, the β matrix can be written down as the following series ex-

pansion:

β = 1 +
∞∑

n=1

(−1)n4n

2nn!

n∏
k=1

(2k − 1) = 1 +
∞∑

n=1

4n
n∏

k=1

(
1

2k
− 1), (B6)

where the small parameter has been selected as 4 ≡ S − 1. The above

series, however, does not converge in the case of tight binding systems, for

which the overlap matrix is far from unity. Therefore, we alter the Löwdin

relation (B5) slightly by redefining the expansion coefficient according to the

prescription

β = (1 + C)−1/2(
S

1 + C
)−1/2, (B7)

and hence, we have

β = (1 + C)−1/2[1 +
∞∑

n=1

4n
C

n∏
k=1

(
1

2k
− 1)], (B8)

where 4C ≡ S/(1 +C)− 1. The C parameter allows us to control the series

convergence as the convergence condition is

‖4C‖ < 1, (B9)
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where the metrics ‖ · ‖ can be chosen arbitrarily. We take it in the form

‖4C‖∞ ≡ max
ij
{| Sij

1 + C
− δij|} = max{ C

1 + C
;
maxi6=j |Sij|

1 + C
}. (B10)

As we can see, the chosen metrics has a minimum with respect to C and

satisfies the convergence condition when the C parameter is taken as

C = max
i6=j

|Sij|. (B11)

The present method of determining the Wannier basis can be applied to

the single-band, as well as multiple-band systems. What is most important,

the method is effective also in the case of irregular or deformed systems.

B.2 The 3- and 4-site contributions

The systems with the number N > 2 of atoms suffer from the difficulties

of determining the 3- and 4-site integrals reflecting the electron-electron in-

teraction term. Nonetheless, they are required to determine accurately the

parameters of Hamiltonian and the system ground state energy. We can ex-

press the relation between the expressions for the interaction parameters in

the Wannier and the atomic representations (B1) in the following way

Vξ ≡ Vijkl =
∑

i′j′k′l′
V ′

i′j′k′l′ · β∗ii′β∗jj′βll′βkk′ ≡
∑
ξ′
V ′

ξ′ · βξξ′ , (B12)

where ξ and ξ′ represent respectively sequences of four indices, ijkl and

i′j′k′l′. A common way of dealing with the difficulties is to neglect the inte-

grals that are difficult to determine. However, a consequence of such assump-

tion is often the inaccurate results. Thus, we choose yet another approach,

namely we have found the 3- and 4-site interaction parameters vanish in the

optimized Wannier representation, but the corresponding 3- and 4-site terms

in the atomic representation can be determined by solving a complete set of

linear equations determined from that condition. In effect, such a procedure

leads to the renormalization of the 1- and 2-site interaction parameters. We

call the procedure the renormalization ansatz.
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Explicitly, to express the renormalization procedure we denote by ξ|3,4

the indices with 3 or 4 different sites and likewise, by ξ|1,2 the indices with 1

or 2 different sites only. In this notation, the transformation (B12) involving

the 3- and 4-site parameters can be written in the following matrix form:



. . . . | .

. . . . | .

. . βξ|3,4ξ′
|3,4

. | βξ|3,4ξ′
|1,2

. . . . | .

− − − − + −
. . βξ|1,2ξ′

|3,4
. | βξ|1,2ξ′

|1,2


×



.

.

V ′
ξ′
|3,4

.

−
V ′

ξ′
|1,2


=



.

.

Vξ|3,4

.

−
Vξ|1,2


, (B13)

or equivalently,
Vξ|3,4

=
∑

ξ′
|3,4
βξ|3,4ξ′

|3,4
V ′

ξ′
|3,4

+
∑

ξ′
|1,2
βξ|3,4ξ′

|1,2
V ′

ξ′
|1,2

Vξ|1,2
=
∑

ξ′
|3,4
βξ|1,2ξ′

|3,4
V ′

ξ′
|3,4

+
∑

ξ′
|1,2
βξ|1,2ξ′

|1,2
V ′

ξ′
|1,2

. (B14)

Now, assuming that Vξ|3,4
= 0 we obtain

∑
ξ′
|3,4

βξ|3,4ξ′
|3,4
V ′

ξ′
|3,4

= −

∑
ξ′
|1,2

βξ|3,4ξ′
|1,2
V ′

ξ′
|1,2

 . (B15)

The above set of linear algebraic equations provides an explicit expression

for the V ′
α′

|3,4
integrals via V ′

α′
|1,2

. These relations can be used further in Eq.

(B14) to renormalize the 1- and 2-site interaction parameters. One should

note the renormalization procedure is valid for any set of the integrals we

cannot determine explicitly as long as we can estimate the same number of

interaction parameters.

B.3 The modified Lanczos algorithm

A common method of diagonalizing the Hamiltonian is the so-called Lanczos

method. We can determine the ground as well as the excited eigenstates and

eigenenergies of the system with the use of the modified Lanczos algorithm.
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The modified algorithm is much more transparent and easy to implement,

and yet its computational complexity is comparable to the standard algo-

rithm.

The standard Lanczos algorithm generates from 50 to 100 orthonormal

vectors in the Fock space, starting with a randomly chosen vector. The

Hamiltonian matrix in their representation has a tridiagonal form, what

makes the diagonalization a relatively easy task. However, limited numerical

precision prevents us from generating larger vector sets, and the procedure

needs to be repeated until the required precision is reached.

In the modified algorithm, similarly to the standard one, we start with a

|ϕ0〉 vector in the Fock space and determine the |ψ0〉 vector with the following

relation

|ψn〉 = Ĥ |ϕn〉 − an |ϕn〉 , (B16)

where

an =
〈ϕn| Ĥ |ϕn〉
〈ϕn|ϕn〉

, (B17)

and

〈ψn|ϕn〉 = 0. (B18)

In the next step of the algorithm, as distinct from the standard method, we

make a linear combination of them that minimizes (or maximizes) the energy

of the system. Such a vector is then recursively used to finetune the result.

Subsequent steps are determined with the relation

|ϕn+1〉 = cn · |ϕn〉+ |ψn〉 , (B19)

where

cn =
1

2

{
(an − a′n)∓

√
(an − a′n)2 + 4bn

}
, (B20)

with

a′n =
〈ψn| Ĥ |ψn〉
〈ψn|ψn〉

, and bn =
〈ψn|ψn〉
〈ϕn|ϕn〉

. (B21)

As we can see, the above method can produce the ground state of the
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system as well as the excited states by restricting the Fock space to the

subspaces orthogonal to the Hamiltonian eigenstates. One should note the

an and a′n terms represent mean energy of the system in the |ϕn〉 and |ψn〉
states, respectively. The method convergence can be easily proved in the

case energy spectrum of the system is bounded, what is always true for finite

systems. The proof can be acomplished through the relation

∀an, a
′
n, bn : cn + a′n = an+1 ≤ an, (B22)

and the energy gain in each step

|an+1 −min {an; a′n}| ≈
bn

|an − a′n|
. (B23)

Thus, the modified Lanczos algorithm we employ is computationally less

complex than the standard one and supplies us with a stable diagonalization

procedure.
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C Ab-initio calculations of the microscopic

parameters

In this Appendix we carry out the detailed calculations providing us with

the starting Hamiltonian parameters for the EDABI approach.

C.1 The 3-center integral

Much of the effort is concentrated on the evaluation of the integrals that

express the Hamiltonian parameters. The single-particle term does not cause

difficulties when the Slater -like functions are applied. Unfortunately, there

is a substantial difficulty with the two-particle term, namely only the 1- and

2-site interaction coefficients can be obtained analytically, and even these

require 3-center integrals to be evaluated. The 3-center integrals appear in

the hopping parameters as well when we take into account sites contributing

with their potentials to the hopping and different from the pair involved.

The exemplary expression for the 3-center integral is

I ≡ 1

π
α3 ·

∫
d3r

2

|r− r’|
e−α(|r−Ri|+|r−Rj |)

=
2

π
α3 ·

∫
d3r

1

|r− p|
e−α(|r|+|r−Rji|), (C1)

where p ≡ r’−Ri. The vectors drawn schematically in Fig. C1 we represent

in the spheroidal coordinate system. The coordinates (λ, µ, ϕ) are defined

through the relations

 λ ·Rji = |r|+ |r−Rji|, for 1 < λ <∞
µ ·Rji = |r| − |r−Rji|, for − 1 < µ < 1

. (C2)

Additionally, the integration element can be expressed as follows

∫
d3r =

∫ ∞

1
dλr

∫ 1

−1
dµr

∫ 2π

0
dϕr ·

(
Rji

2

)3 (
λ2

r − µ2
r

)
. (C3)
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The only term of the integral (C1) that requires special treatment is the

Coulomb-like potential. Fortunately, we can use the Neumann decomposition

in the spheroidal coordinates for the term:

1

|r− p|
=

2

Rji

∞∑
k=0

k∑
m=−k

(−1)m (2k + 1)

[
(k − |m|)!
(k + |m|)!

]2

eim(ϕr−ϕp)

× P
|m|
k (min {λr;λp})Q|m|

k (max {λr;λp})

× P
|m|
k (µr)P

|m|
k (µp) , (C4)

where P and Q are the Legendre polynomials of the first and the second

order, respectively.

Figure C1: Positions of the r and p vectors in the coordinate system.

The above decomposition when substituted to Eq. (C1) and after we take

the integration over ϕr and utilize the condition

∫ 2π

0
dϕr · eimϕr =

 2π, if m = 0

0, if m 6= 0
, (C5)
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leads to the expression

I =
2

π
α3 ·

(
Rji

2

)3

2π ·
∫ ∞

1
dλre

−αRjiλr

∫ 1

−1
dµr

(
λ2

r − µ2
r

)
× 2

Rji

∞∑
k=0

(2k + 1) · Pk (min {λr;λp})Qk (max {λr;λp})Pk (µr)Pk (µp)

= α3R2
ji ·

∞∑
k=0

(2k + 1)Pk (µp) ·
∫ ∞

1
dλre

−αRjiλr

× Pk (min {λr;λp})Qk (max {λr;λp})

×
∫ 1

−1
dµr

(
λ2

r − µ2
r

)
Pk (µr) . (C6)

The Legendre polynomials are ortogonal and the multiplicative term in

the last integration in Eq. (C6) involves only a linear combination of the

P0 (µr) = 1 and P2 (µr) = 3
2

(
µ2

r − 1
3

)
terms, so only the k = 0 and k = 2

terms survive and yield

I = α3R2
ji ·

∫ ∞

1
dλre

−αRjiλrQ0 (max {λr;λp})
∫ 1

−1
dµr

(
λ2

r − µ2
r

)
+ α3R2

ji · 5P2 (µp)
∫ ∞

1
dλre

−αRjiλrP2 (min {λr;λp})

× Q2 (max {λr;λp})
∫ 1

−1
dµr

(
λ2

r − µ2
r

)
P2 (µr)

= α3R2
ji ·

[∫ λp

1
+
∫ ∞

λp

]
dλre

−αRjiλrQ0 (max {λr;λp}) 2
(
λ2

r −
1

3

)

− α3R2
ji ·

4

3
P2 (µp)

[∫ λp

1
+
∫ ∞

λp

]
dλre

−αRjiλrP2 (min {λr;λp})

× Q2 (max {λr;λp}) . (C7)

We know the explicit form of the second-order Legendre polynomials,

which are Q0 (λ) = 1
2

ln λ+1
λ−1

and Q2 (λ) = 3
4

[(
λ2 − 1

3

)
ln λ+1

λ−1
− 2λ

]
, and there-

fore the whole term reduces to:

I = α3R2
ji · ln

λp + 1

λp − 1
·
∫ λp

1
dλre

−αRjiλr

(
λ2

r −
1

3

)
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+ α3R2
ji ·

∫ ∞

λp

dλre
−αRjiλr ln

λr + 1

λr − 1

(
λ2

r −
1

3

)
− α3R2

ji · 2
(
µ2

p −
1

3

)
Q2 (λp)

∫ λp

1
dλre

−αRjiλrP2 (λr)

− α3R2
ji · 2

(
µ2

p −
1

3

)
P2 (λp)

∫ ∞

λp

dλre
−αRjiλrQ2 (λr) . (C8)

The integrals appearing in Eq. (C8) can be calculated separately and the

entire expression takes the form:

I = α3R2
ji · ln

λp + 1

λp − 1
· I1

+ α3R2
ji · I2

− α3R2
ji ·

9

4

(
µ2

p −
1

3

) [(
λ2

p −
1

3

)
ln
λp + 1

λp − 1
− 2λp

]
I1

− α3R2
ji ·

9

4

(
µ2

p −
1

3

)(
λ2

p −
1

3

)
(I2 − 2I3) , (C9)

where the integrals are

I1 =
∫ λp

1
dλre

−αRjiλr

(
λ2

r −
1

3

)
=

2

α3R3
ji

· e−αRji

(
1 + αRji +

α2R2
ji

3

)

− 2

α3R3
ji

· e−αRjiλp

(
1 + αRjiλp +

α2R2
ji

2

(
λ2

p −
1

3

))
, (C10)

I2 =
∫ ∞

λp

dλre
−αRjiλr ln

λr + 1

λr − 1

(
λ2

r −
1

3

)

= 2 ·
e−αRjiλp

(
1 + αRjiλp +

α2R2
ji

2

(
λ2

p − 1
3

))
α3R3

ji

ln
λp + 1

λp − 1

− 4
∫ ∞

λp

dλr

e−αRjiλr

(
1 + αRjiλr +

α2R2
ji

2

(
λ2

r − 1
3

))
α3R3

ji

· 1

λ2
r − 1
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=
2

α3R3
ji

· e−αRjiλp

(
1 + αRjiλp +

α2R2
ji

2

(
λ2

p −
1

3

))
ln
λp + 1

λp − 1

− 2

α2R2
ji

· e−αRjiλp

− 2

α3R3
ji

· eαRji

(
1− αRji +

α2R2
ji

3

)
Ei (−αRji (λp + 1))

+
2

α3R3
ji

· e−αRji

(
1 + αRji +

α2R2
ji

3

)
Ei (−αRji (λp − 1)) , (C11)

and

I3 =
∫ ∞

λp

dλre
−αRjiλr · λr =

1

α2R2
ji

· e−αRjiλp (1 + αRjiλp) . (C12)

Now, we combine these partial results together and substitute them into

Eq. (C9). We obtain:

I =

[
ln
λp + 1

λp − 1

(
1− 9

4

(
µ2

p −
1

3

)(
λ2

p −
1

3

))
+

9

2

(
µ2

p −
1

3

)
λp

]

× 2

Rji

{
Sji − e−αRjiλp

(
1 + αRjiλp +

α2R2
ji

2

(
λ2

p −
1

3

))}

+
[
1− 9

4

(
µ2

p −
1

3

)(
λ2

p −
1

3

)]

×



2
Rji

· e−αRjiλp

(
1 + αRjiλp +

α2R2
ji

2

(
λ2

p − 1
3

))
ln λp+1

λp−1

−2αe−αRjiλp

− 2
Rji

· S̃ji · Ei (−αRji (λp + 1))

+ 2
Rji

· Sji · Ei (−αRji (λp − 1))


+

9

2

(
µ2

p −
1

3

)(
λ2

p −
1

3

)
· αe−αRjiλp (1 + αRjiλp) . (C13)

By reorganizing the above expression we arrive at the form used in the com-

putations:

I(Rji;λp;µp) = −2αe−αRjiλp
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+
9

Rji

(
µ2

p −
1

3

)
·
{
λpSji − e−αRjiλp

(
λp +

αRji

3

)}
+

2

Rji

[
1− 9

4

(
µ2

p −
1

3

)(
λ2

p −
1

3

)]

×


Sji · ln λp+1

λp−1

−S̃ji · Ei(−αRji(λp + 1))

+Sji · Ei(−αRji(λp − 1))

 , (C14)

where the Ei function means the first-order Euler integral. The other ex-

pressions are

S̃ji ≡
[
−αRji

(
1− αRji

3

)
+ 1

]
eαRji , (C15)

and the overlap integral

Sji ≡
[
αRji

(
1 +

αRji

3

)
+ 1

]
e−αRji . (C16)

As we can see, the result (C14) has a complex form, as it contains a non-

analytical function, and thus, is a major obstacle to calculating the 3- and

4-site interaction coefficients analytically.

C.2 The Euler integral

The first-order Euler integral is a non-analytical function and in the nu-

merical computations needs to be estimated accurately. The estimation is

essential, since the integral appears in the expression for the Hamiltonian

parameters. The definition of the integral is as follows:

Ei(−x) ≡ −
∫ ∞

x

dt

t
e−t. (C17)

To estimate the integral we can use either the power series expansion or

the asymptotic expansion. The power series has the form

Ei(−x) = γ + lnx+
∞∑

n=1

(−x)n

n · n!
, (C18)

where γ ≈ 0.5772156649 is the Euler constant. On the other hand, the
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asymptotic expansion is of the form

Ei(−x) = −e
−x

x

∞∑
n=0

n!

(−x)n . (C19)

The power series works well for small values of x, whereas the asymptotic

expansion is rapidly convergent for large x values. The limit for their use is

approximately equal to | lnEPS|, where EPS is the required relative error.

C.3 The microscopic parameters

We now provide the explicit expressions for these microscopic parameters of

the Hamiltonian that can be determined analytically. All of the interaction

coefficients, except the 3- and 4-site interaction terms, have the analyti-

cal form. Obviously, the microscopic parameters depend on the variational

parameter α, which is determined by minimizing the system ground state

energy once the interaction among particles is included. The expressions for

the atomic energy and the hopping parameters in the atomic representation

are, respectively

t′ii = α2 + 2αZ ·

 ∑
Rm 6=Ri

(
1 +

1

αRmi

)
e−2αRmi − 1

− ∑
Rm 6=Ri

2Z

Rmi

, (C20)

and

t′ij = −α2 · Sji + 2α (α− Z) [1 + αRji] e
−αRji

− Z ·
∑

Rm 6=Ri

I

(
Rji;

Rmi +Rmj

Rji

;
Rmi −Rmj

Rji

)
, (C21)

where I(Rji;λ;µ) represents the 3-center contributions (C14) to the hopping

parameter. The Slater (1963) integrals define the two-particle interaction

parameters, namely the single-site (intraatomic) Hubbard term, the two-site

(interatomic) Coulomb term, the Heisenberg exchange integral, and the so-

called correlated hopping term, which have the respective forms:
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U ′
i ≡ V ′

iiii =
5

4
α, (C22)

K ′
ij ≡ V ′

ijij =
2

Rji

− αe−2αRji

[
2

αRji

+
11

4
+

3

2
αRji +

1

3
α2R2

ji

]
, (C23)

J ′
ij ≡ V ′

ijji =
12

5Rji


S2

ji · (λ+ lnαRji)

−2SjiS̃ji · Ei(−2αRji)

+S̃ji

2
· Ei(−4αRji)


+ αe−2αRji

[
5

4
− 23

10
αRji −

6

5
α2R2

ji −
2

15
α3R3

ji

]
, (C24)

and

V ′
ij ≡ V ′

jiii = α

 e−αRji

[
2αRji + 1

4
+ 5

8αRji

]
−1

4
e−3αRji

[
1 + 5

2αRji

]
 . (C25)

The above microscopic parameters are the only appearing for the H2

molecule (two sites). For N ≥ 3 atoms, the 3-site and for N ≥ 4 atoms,

the additional 4-site terms appear. Although they cannot be calculated an-

alytically we still can include them using an ansatz explained in detail in

Appendix B.2.

C.4 The transport amplitude

In order to determine electronic transport through nanosystems we need an

efficient method of calculating the electron current in the second quantization

language. The definition of the current density operator ĵ, expressed with

the use of the field operators, can be written down as follows

ĵ = Ψ̂+ (p)
(
− e

m
p̂
)

Ψ̂ (p) , (C26)

where p̂ is the single-particle momentum operator, Ψ̂ (p) and Ψ̂+ (p) are the

field operators expressed as functions of the momentum space, not the real
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space as is usually the case. The choice of the momentum-space representa-

tion of the field operators simplifies significantly the calculations, since the

single-particle momentum operator is of the straightforward form p̂ ≡ p. The

field operators, similarly to Eq. (3), can be described within this complete

single-particle basis as follows

Ψ̂ (p) ≡
∑
iσ

wi (p)χσ · aiσ, (C27)

where {wi (p)} is the orthonormal basis that is the representation of the

Wannier basis in the momentum space. Its relation to the real-space Wan-

nier basis representation is defined with the equation

∫
d3rwi (r) |r〉 = |wi〉 =

∫
d3pwi (p) |p〉 . (C28)

The real-space representation {wi (r)}, according to Eq. (B1), yields

∫
d3rwi (r) |r〉 =

∫
d3r

∑
j

βijΦj (r) |r〉 =
∑
j

βij |Φj〉

=
∑
j

βij

∫
d3pΦj (p) |p〉 , (C29)

and hence

wi (p) =
∑
j

βijΦj (p) . (C30)

One should note that the β coefficients are the same for both the represen-

tations. The momentum-space representation of the atomic wave functions

can be obtained through the relation

Φj (p) = 〈p|Φj〉 =
∫
d3rΦj (r) 〈p|r〉 =

(
1

2πh̄

)3/2 ∫
d3rΦj (r) e−

i
h̄
p·r, (C31)

where Φj (r) ≡ Φ (r−Rj) is the real-space atomic wave function (11). As

we can see, calculation of the momentum-space representation of the atomic

wave functions is the starting point in the electronic transport determination.
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The result is obtained by applying Eq. (11) to the relation (C31), what yields

Φj (p) =
(

1

2πh̄

)3/2
√
α3

π

∫
d3re−α|r−Rj |− i

h̄
p·r

=
(

1

2πh̄

)3/2
√
α3

π
e−

i
h̄
p·Rj

∫
d3re−α|r|− i

h̄
p·r

=
(

1

2πh̄

)3/2
√
α3

π
e−

i
h̄
p·Rj

4πh̄

p

∫ ∞

0
drre−αr sin

(
pr

h̄

)

=
(

1

2πh̄

)3/2
√
α3

π
e−

i
h̄
p·Rj

8πα(
α2 + (p/h̄)2

)2 , (C32)

and finally the result is

Φj (p) =
(

2α

h̄

)3/2 α

π

1(
α2 + (p/h̄)2

)2 e
− i

h̄
p·Rj . (C33)

The current density operator can be obtained then with the use of the above

result. The expression is

ĵ = − e

m

∑
ijσ

a+
iσajσ · w∗

i (p) pwj (p) . (C34)

Substituting Eq. (C30), we have

ĵ = − e

m

∑
i′j′

∑
ijσ

a+
iσajσβ

∗
ii′βjj′ · Φ∗

i′ (p) pΦj′ (p) . (C35)

To simplify the above expression, we introduce the effective hopping operator

Ĉeff
i′j′ and the current density amplitude ji′j′ (p) as follows

Ĉeff
i′j′ ≡

∑
ijσ

a+
iσajσβ

∗
ii′βjj′ , (C36)

and

ji′j′ (p) ≡ − e

m
Φ∗

i′ (p) pΦj′ (p) . (C37)

Then, finally
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ĵ =
∑
i′j′

Ĉeff
i′j′ · ji′j′ (p) . (C38)

One should note that the current carried by the system can be obtained

by integrating over momenta and averaging the result in the ground state of

the system. The ground state is determined from the EDABI approach on a

regular basis. The average current through the system is then

I =
∑
i′j′

〈
Ĉeff

i′j′

〉
·
∫
d3pji′j′ (p) , (C39)

and it is obvious that

∫
d3pji′i′ (p) ≡ 0. (C40)

On the other hand, both the effective hopping operator and the current den-

sity amplitude are hermitian with respect to their indices i′ and j′. Therefore,

the overall current is

I = 2
∑
i′<j′

Re
{〈
Ĉeff

i′j′

〉
·
∫
d3pji′j′ (p)

}

= 2
∑
i′<j′

Re
〈
Ĉeff

i′j′

〉
·Re

∫
d3pji′j′ (p)

− 2
∑
i′<j′

Im
〈
Ĉeff

i′j′

〉
· Im

∫
d3pji′j′ (p) , (C41)

and obviously, we have

Re
∫
d3pji′j′ (p) ≡ 0. (C42)

The above allows us to write the simplified form of the expression for elec-

tronic transport

I = −2
∑
i′<j′

Im
〈
Ĉeff

i′j′

〉
·
∫
d3pIm {ji′j′ (p)}
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=
2e

m

(
2α

h̄

)3 (α
π

)2 ∑
i′<j′

Im
〈
Ĉeff

i′j′

〉

×
∫
d3p

p(
α2 + (p/h̄)2

)4 sin

(
p ·Ri′j′

h̄

)
. (C43)

From, the above expression for the current follows that the vector I has to

be parallel to the vector Ri′j′ . This simplifies the calculations even further,

since we can determine just the scalar value of the current. The momentum

vector p can now be represented by its components p‖ and p>. Thus, the

last integral can be rewritten as follows

∫
... ≡

∫
dp‖p‖ sin

(
p‖ ·Ri′j′

h̄

)∫
d2p>

1(
α2 +

(
p‖/h̄

)2
+ (p>/h̄)2

)4

=
∫
dp‖p‖ sin

(
p‖ ·Ri′j′

h̄

)
h̄8π

3
(
α2h̄2 + p2

‖

)3

=
h̄4π2R2

i′j′

24α2

(
1 +

1

αRi′j′

)
e−αRi′j′ , (C44)

and hence, the current is

I =
2e

m

(
2α

h̄

)3 (α
π

)2 ∑
i′<j′

Im
〈
Ĉeff

i′j′

〉

×
h̄4π2R2

i′j′

24α2

(
1 +

1

αRi′j′

)
e−αRi′j′

=
∑
i′<j′

Im
〈
Ĉeff

i′j′

〉
· 2eh̄

3m
α2Ri′j′ (1 + αRi′j′) e−αRi′j′ . (C45)

The last term in the above expression represents contribution of the indi-

vidual pair of sites to the overall current through the system. Therefore, by

defining

Ii′j′ ≡ 2eh̄

3m
α2Ri′j′ (1 + αRi′j′) e−αRi′j′ , (C46)
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we can finally write down the expression for the electronic current in the

form

I =
∑
i′<j′

Im
〈
Ĉeff

i′j′

〉
Ii′j′ . (C47)

As we can see, the expression for the current for the nanosystems de-

scribed with the EDABI approach, is an analytical function and depends on

both the interatomic distance Ri′j′ and the variational parameter α. Another

interesting feature of the result is that it depends on the imaginary part of the

average value of the effective hopping operator only. This indicates that the

current is zero for the systems with the Hamiltonian lacking any imaginary

parameters.
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correlations at nanoscale”, in: Highlights in Condensed Matter Physics,

pages 291–303. Melville, New York, 2003. 11

[27] S. Jacobi and R. Baer. The well-tempered auxiliary-field Monte-Carlo.

J. Chem. Phys. 120(1) p.43, 2004. 18

[28] J. Tennyson, M. A. Kostin, H. Y. Mussa, O. L. Polyansky, and R. Pros-

miti. H+
3 near dissociation: theoretical progress. Phil. Trans. Roy. Soc.

A 358 p. 2419, 2000. 50

[29] E. Herbst. The astrochemistry of H+
3 . Phil. Trans. Roy. Soc. A 358 p.

2523, 2000. 50

92



BIBLIOGRAPHY BIBLIOGRAPHY

[30] B. J. McCall and T. Oka. H+
3 – an ion with many talents. Science 287

p. 1941, 2000. 50
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