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Abstract

In this Thesis we model theoretically the spin-triplet real-space superconducting
pairing in orbitally degenerate narrow-band systems, induced by the intraatomic fer-
romagnetic exchange (known under the term “Hund’s rule” in atomic physics). This
type of pairing introduces spin-triplet superconductivity to the models analysed tradi-
tionally in the context of itinerant ferromagnetism and the orbital ordering effects. The
main purpose is to discuss the feasibility of such novel pairing mechanism in a model
situation and involves both analytic and numerical aspects of the problem in the weak-
coupling limit. We consider three possible phases - B, A, and Al, introduced in the
context of superfluid He®. We have determined a relative stability of the phases as a
function of either applied magnetic field (in the paramagnetic state) or as a function of
an equilibrium magnetic moment in a weakly ferromagnetic metallic phase. Particular
attention has been paid to the stability of the phases near the Stoner threshold, i.e.
the point, at which the band ferromagnetism sets in. It has been shown that the A type
of pairing induces a weak ferromagnetic moment below the Stoner threshold. Therefore,
the Stoner point becomes a hidden critical point, here analysed in the weak-coupling
limit (the combined Hartree-Fock and Bardeen-Cooper-Schriefer (HE-BCS) approxima-
tion). A detailed numerical analysis is carried out and a generalized four-dimensional
formalism of Bogolyubov-Nambu-de Gennes type is developed, which makes the whole
analysis more compact. Both ground-state and selected thermodynamic properties are
calculated. Only spatially homogeneous state is considered.

A detailed behavior of the single Cooper pair in a two-dimensional confined system
(“quantum dot”) is considered in the Supplement, where the singlet-triplet transition is
observed when the Coulomb repulsion interaction is included. Such a transition occurs

also under the influence of applied magnetic field.

Keywords: spin-triplet pairing, Hund’s rule exchange, exchange mediated pairing,

superconducting ferromagnets.






Streszczenie

W rozprawie rozwazono parowanie trypletowe elektronéw w modelowych uktadach
waskopasmowych z degeneracja orbitalna, ktére jest zaindukowane wewnatrzatomowym
oddzialywaniem ferromagnetycznym (znanym w fizyce atomowej jako regula Hunda).
Ten typ parowania wprowadza parowanie trypletowe do modeli uzywanych tradycyjnie
do opisu ferromagnetyzmu i uporzadkowania orbitalnego. Gléwnym celem ogdlnym jest
przedyskutowanie teoretyczne mozliwosci realizacji tego nowego mechanizmu parowa-
nia w sytuacji modelowej, zaréwno jego aspektéw analitycznych, jak i numerycznych -
w granicy stabego parowania. Przebadano stabilnos¢ przestrzennie jednorodnych trzech
stanéw nadprzewodzacych (A, B, A1) w polu magnetycznym, zwlaszcza w poblizu progu
Stonera - przejscia fazowego do stanu ferromagnetycznego. Wykazano, ze parowanie try-
pletowe prowadzi do pojawienia sie stabej polaryzacji spinowej w poblizu tego kwantowe-
go punktu krytycznego. Okre§lono stany kwaziczastkowe w stanach skondensowanych
i pokazano, ze dla fazy typu B i Al wystepuje galaz bezprzerwowa prowadzaca do
liniowego ciepta wlasciwego w stanie sparowanym. Obliczenia przeprowadzono w przy-
blizeniu Hartree-Focka polaczonym z przyblizeniem Bardeena, Coopera i Schrieffera
(BCS) w uogdélnionej notacji czterowymiarowej typu Bogoliubowa, Nambu i de Gennes’a.
Zaréwno wiasnosci stanu podstawowego jak i wybrane wielkosci termodynamiczne sa
uwzglednione w szczegélowej dyskusji. Uwzgledniono w niej jedynie stan przestrzennie
jednorodny.

W Suplemencie opisano zachowanie pojedynczej pary Coopera w dwuwymiarowe;j
kropce kwantowej. Obserwuje sie w niej przejécie od stanu singletowego do tryple-
towego pary w obecno$ci odpychajacego oddzialywania kulombowskiego. Przejsécie takie

zachodzi takze pod wplywem pola magnetycznego.

Stowa kluczowe: parowanie spinowo-trypletowe, wymiana typu reguty Hunda, parowanie

zaindukowane oddzialywaniem wymiany, nadprzewodzace ferromagnetyki.
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Chapter 1

Introduction

1.1 Spin-triplet pairing of fermions: A historical

perspective

In this chapter we provide a brief historical survey of the spin-triplet pairing in
condensed matter physics, which involves both superconducting and superfluid types of
pairing. Then, in Chapter 2, our model of spin-triplet superconductivity induced by the
Hund’s rule coupling will be derived for a doubly degenerate narrow-band Hamiltonian.
As a next step, the results for the basic electronic properties of the paired-state will be
presented. Finally, after introducting the term typical for ferromagnetism appearance,
the coexistence of the spin-triplet superconductivity with band ferromagnetism will be
investigated.

The possibility of the spin-triplet pairing has been considered first by Layzer and
Fay [1]. This mechanism of pairing induced by spin-fluctuations (in a paramagnet)
was applied subsequently to explain superfluidity in liquid ®He [2]. The spin-triplet
superconductivity has also been proposed involving the same mechanism of pairing [3].
The spin triplet real space-pairing has been suggested by Baskaran as applicable to
SryRuOy [4], following the suggestion by Rice and Sigirst (1995) that SroRuQ, is similar
to liquid ®He. The importance of the Hund’s rule in the pairing has been noticed even
earlier [5], where it was applied to the Andersson lattice with degenerate f-level to
account the properties of heavy-fermion superconductors such as UPt3. The role of
of interorbital Coulomb interactions has been also considered [6]. A number of recent
papers utilize simply the BCS-like form of the pairing potential, adopted to the spin-

triplet situation, and analyse the system properties without asking about the nature of
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such form of attractive interaction. We consider one specific microscopic mechanism.
The current research on the spin-triplet pairing is largely based on the phenomeno-
logical models involving attractive Coulomb intra-, and/or inter-orbital interactions in
real space (cf. e.g. [7], [8]). This type of models as applied to multiple-band models,
started with the work of Klejnberg and Spalek (1999 and 2000). Its analytic structure
has been summarized by Spalek (2001). The theoretical research on new ferromagnetic

superconductors UGesy, U RhGe, and ZrZny is only beginning.

1.2 Aim and scope of the Thesis

The aim of the Thesis is to introduce and discuss the local spin-triplet pairing in-
duced by the intraatomic interorbital ferromagnetic exchange interaction (the Hund’s
rule) and to examine the coexistence of such paired state with the weak band ferro-
magnetism induced by either intraatomic Coulomb interaction (the Hubbard term) or
by the two factors combined. For a detailed discussion of this mechanism of pairing we
employ the simplest method of approach namely, combine the Hartree-Fock approxima-
tion for the diagonal (ferromagnetic) ordering with the off-diagonal (superconducting)
paired state. The stability of different states without and in the presence of a weak
applied magnetic field is discussed and the quasiparticle electronic structure is detailed.
For the simplicity only a doubly-degenerate and narrow band situation is discussed in
detail, as the main purpose of the Thesis is to provide an argument for feasibility of this
mechanism. The application of this mechanism to concrete systems would require an
incorporation of realistic band structure, which should represent the next step, unfor-
tunately going beyond the scope of this Thesis. Also, only the spatially homogeneous
BCS type of state is considered. The Supplement provides an additional argument in
favour of the idea that repulsive Coulomb interaction can lead to a spin-triplet bound
state of a Cooper pair. The argument presented there illustrates the old idea of Kohn
and Luttinger (1965) that the repulsive interaction can lead to a nontrivial type of pair-
ing. After all, the direct exchange interaction is a part of Coulomb repulsive interaction,
selecting only the type of optimal spin configuration in a pair of orbitally distinguishable

states.
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Chapter 2

Two-band model of spin-triplet

superconductivity

In this chapter a two-band model of spin-triplet superconductivity is formulated. Asa
leading pairing mechanism the direct exchange interaction in the form of the Hund’s rule
coupling is proposed. The Hartree-Fock-BCS approximation for the model Hamiltonian
is introduced reflecting the situation in the weak-coupling regime. The obtained Hartree-
Fock Hamiltonian is then rewritten in the four-dimensional notation, used subsequently
to obtain a set of self-consistent equations for the parameters describing basic system
properties: the ground state energy, the energy gap, the magnetic moment, and the
chemical potential. Possibility of a coexistence of the spin-triplet state with a weak

ferromagnetism is discussed later.

2.1 The theoretical model

The theoretical model is formulated on the basis of the results obtained in the pa-
per of A. Klejnberg and J. Spatek [9], where the pairing mechanism together with the
Hamiltonian expressing this pairing for the two-band system have been proposed and
discussed within the slave-boson approach. For the needs of the investigation on the
influence of ferromagnetism on the spin-triplet superconductivity and possible coex-
istence of both phenomena, we have considered the system in the weak coupling limit
(modified Hartree-Fock-BCS approximation) to include also the averages emerging from
the ferromagnetic-interaction ordering. In other words, our system will have two order

parameters arising from a single interaction - the ferromagnetic exchange.
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We start from an extended Hubbard model of correlated and orbitally degenerate

electrons characterized by the Hamiltonian:

’ 1
H = Z tilg a;laail’o +U Z napnay, + U’ Z Nitg il o'
ij(i#5)ll o il (£ Yoo
- ~ S — ~ P
(i) (i) (i)
3
—J > (Sz’l S+ nil”z‘ﬂ) +J Y alyal awians (2.1)

il (1) il (1)

~ v ~ J
~~ ~~

(iv) (v)

The first term (i) describes electron hopping between atomic sites ¢ and j and orbitals
[, I'. The hopping integral tﬁl; is written in the most general form and for the case of
I # 1" introduces hybridization into the system. The second term (i7) describes direct
Coulomb interaction between two electrons localized on the same orbital [ (intra-orbital)
- due to the Pauli exclusion principle both particles must have opposite spins. The third
expression (7i7) is responsible for the interorbital Coulomb interaction for [ # [’. In
that case all spin orientations are allowed. The coefficient 1/2 at the front of (4i7)
prevents us from counting the same electrons’ configuration twice. The fourth term (iv)
introduces the Hund’s rule ferromagnetic exchange between electrons localized on the
same site 7, but on different orbitals [ and I’. This rule reflects well known fact, that
electrons first choose to occupy different orbitals (on the same energy level) with the
same spin orientation and then tend to fill up the remaining “spaces” according to the
above mentioned Pauli exclusion principle. The fifth term (v) describes hopping of pair
of the electrons between the orbitals. Note that in both (iv) and (v) Hund’s coupling
constant J is present but with opposite sign. The reason is that for (iv) J corresponds
to the energy gained by the system from adopting to the Hund’s rule, whereas in the
case of (v) it describes the energy loss caused by violating that rule as the pair hopping
is possible only under this circumstance.

The Hamiltonian (2.1) is very difficult to solve rigorously. In this Thesis we inves-
tigate the weak coupling limit of the model, e.g. we assume that W > U > J, with
W being the bare bandwidth. Under this assumption the terms (ii7) and (v) can be
neglected. The term (i7i) plays in that case only a minor role in comparison to the
leading second one (i) (e.g. U' = U — 5J for d orbitals). Therefore, it may be dropped
out, as it does not differentiate between different local spin configurations at least in
the weak coupling limit. The same is valid for (v), since the hopping of electron pair

is automatically connected to the condition that both of them must occupy the same
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orbital, but such local spin-pairing is not possible in view of the fact that U > J. Then,
the simplest nontrivial Hamiltonian of the system reduces to the form

3
Z (Szl : Sill + Z nilnil/) (2.2)

H= Z t% a;zaail’a +U Z NinTiry, — J
il A (IA)

ij(i£§)l o
Since we are interested in the qualitative aspects of the paired state, we will consider
the two-band system as the least complicated one, for which all terms from the above
Hamiltonian are still applicable. For the one-band system the Hund’s term will not
appear (the intersite exchange interaction will appear instead).
In the case of the two-band system, the orbital index assumes two values, [ = 1 and
2. If the hybridization of the bands is very weak or does not appear (i.e. t'? ~ 0), the
term representing hopping of a single electron between the neighboring atomic sites can
be transformed to the momentum (reciprocal) space according to the prescription
Ztija;'rlgaila — > (B — 1) nio
ijlo kio
where the quantity Ey; = Ey; — i is the single-particle energy in the I-th band (I = 1, 2)
and p is the chemical potential. Hence, we can rewrite the Hamiltonian (2.2) for the
canonical bands in the form

H o= > (Bu—p) o

kio

3
-+ UZ Nyt NG, — J Z (S,l - S + Z nlml:,) . (23)
I3

Wi, (1£1)

In the new Hamiltonian hybridization of the orbitals (if exists) have been incorporated
already in the single particle energies FEy;; the Coulomb interaction U and the Hund’s
coupling parameter J are regarded then as effective parameters, which include hybridiza-
tion. Such an assumption results in k-independent U and J and in a longer run - in the
isotropic gap parameter A.

We are interested in the spin-triplet correlations and the corresponding electron
pairing. In such situation, we construct first the effective BCS Hamiltonian with the
spin-triplet pairing with inclusion of the intraatomic Coulomb interaction U. We intro-
duce the local real-space spin-triplet pairing in terms of the pairing operators A, ,,, A;’m

defined as follows

a}magm form=1(S%,=1)
Ao = iy s for m = —1 (Sjp = —1) (24)
% (anga;2¢ + a;-LlJra;-LZT) form=20 (Sfot =0),
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with m = 57, = S3 + S5 being the z-component of the pair spin operator. It can be

shown (see Appendix A) that

3
> (Sz’l S + — nlz’nl’z’) =2 ZAZmAim . (2.5)
Wi, (1£0) 4 i,m

With help of the above relation, the Hamiltonian (2.3) can be written down in a compact

form

H = Z(Ekl — ,U,) Nkle + UZ N4 Ngy — QJZ A;rmAzm . (26)

kio 143 i,m

The physical contents of this model is as follows. The third term represents a local
spin-triplet pairing correlations. The repulsive interaction of the magnitude U > 0,
while suppressing a local spin-singlet pairing with the amplitude <aLTaL ¢> # 0, is not
harmful to the interband off-diagonal long-range order with the amplitudes <Ajm> #0,
which describe the spin-triplet pairing. However, the role of the second term is highly
nontrivial if a ferromagnetic ordering is taken into consideration together with the the
local spin-triplet pairing. The model represented by the Hamiltonian (2.6) can describe
thus a combination of the diagonal and off-diagonal types of ordering coexisting with
each other. A separate question is related to the incorporation of the orbital ordering
(cf. Klejnberg and Spalek, 2000; [10]).

The simplest solution of the model is to execute the Hartree-Fock approximation
combined with the BCS approximation [11]. This approach is justified qualitatively
by the circumstance that the single-particle excitations contribute to the temperature
dependence of magnetization M ~ T2, where T is the temperature; this contribution
is markedly visible in the temperature dependence of the magnetization for URhGe
[12]. A simultaneous implementation of the BCS approximation is justified a posteriori,

since the Curie (i.e. magnetic transition) temperature T ~ J/10 turns out to be

_1
Jp

T% is the effective Fermi temperature. Hence, it is proper to consider the BCS approach
to the pairing part [13], [14].

substantially larger than the superconducting temperature Tg ~ T3 exp ( ), where

In the next Section the combined Hartree-Fock-BCS approximation will be presented

in detail taking the Hamiltonian (2.6) as a starting point for further investigations.
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2.2 The combined Hartree-Fock-BCS approximation

Following Hartree-Fock-BCS approximation, we make decomposition of pair-electron

operators (the second and the third terms in (2.6)) according to the rule
AB— A<B>+<A>B—-<A><B> . (2.7)

The rule above is actually the consequence of Wick’s theorem. The BCS approximation
is introduced by the assumption that averages of the type < a;j,a;yo» >, which normally
should vanish, assume nonzero values and are calculated self-consistently, whenever such
a state is stable against the normal state.

Following the combined Hartree-Fock-BSC approximation we can rewrite second

(Hubbard) term of effective Hamiltonian (2.6) in the approximate form
U nawnay — U Y {{nay) nay + (nay) nay — (nan) (nay) (2.8)
il il
as we neglect the spin siglet pairing. For [-th orbital on i-th atomic site the following

relations are fulfilled

‘- , (2.9)

7= 5 (nip — nay)

from which expression for n;, can be extracted. Combining both equations we have

{ ng = % (Mirr + mary)

n.
Nilg = 7” + 055 - (2.10)
Substituting this result to the decomposed Hubbard term (2.8), we obtain
UZ NNy, — (2.11)

il
< ny >?
1 .

<n; >
2

UZH { Znilg— < Slz > ZUTL“U+ < Slz >2 —
o o

The first and the last terms are constant (no charge ordering is assumed) and thus can
be neglected. The first one can be included into the band energy and the last is constant,
since number of electrons in the system is fixed. Thus, both terms lead only to shift of
the reference point of the system energy. In effect, we retain only the nontrivial terms,
ie.
Uannlu — —UZ << S; > Zanil(,> +2NU < Sf >? | (2.12)
o

il il
where N = ), 1 is the number of atomic states. For the two-band system, we have two
possible values of [ (I = 1,2) and therefore ;1 = 2N.
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The Hund’s coupling part of the Hamiltonian requires a more careful treatment. Due
to the relation
> (Sil - Sir + % nli”lfz’) =2 ZA;'LmAz
W, (1A im
derived in Appendix A, both representations (the spin and the pair-operator) of that
term must be taken into account while making Hartree-Fock-type decomposition with

nonzero anomalous averages. Explicitly, we make a decomposition of the Wick type

Z A;'r,mAi,m — Z {<AT >Az,m + A;r,m <A > <AJr > <Az,m>}

+ z {S_zlslzlz + S_zllslz,i - §Zl§2l,} (2.13)
z'll’(l;él’)

+ Z {{naa) muri + (i) mis — (naa) (naes) } -
zll’ (1Al
The above expression contains both the diagonal and the off-diagonal averages. As
before, the terms proportional to average number of particles - (n;;), can be neglected.
We assume additionally, that the energy bands are equivalent and put S, = S%. In
what follows, the Hund’s-rule coupling part of the Hamiltonian (2.6) can be cast into

the form

-2] Z A,}:mAi,m — — Z {AZ i,m + A A }

—(2J) 252> S}, (2.14)
zl
+ N Z ‘ +(2J)2N S,
where we have introduced the gap parameter as
Nig =2 (Aim) - (2.15)

Finally, with the help of (2.12) and (2.14), we can write down the whole Hamiltonian

in the Hartree-Fock-BCS approximation for the system in the form

Hur = Y (B — 1) neo

kio

=S A A + Al Aim ) — 2182 Y S (2.16)
2,m il
Aim|?
N {; el
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where the parameter I = U + 2.J can be identified as the effective magnetic coupling
constant. As one can see, the effective Hamiltonian contains the term responsible for an
appearance of the ferromagnetic polarization, as well as the term describing the local
spin-triplet pairing. Therefore, we may expect ferromagnetism coexisting with spin-
triplet paired phase if both S* and at least one of the gap parameters A, (m = +1,0, —1)
are nonzero simultaneously for the case of an energetically stable solution. Furthermore,
the paired state may have up to three independent superconducting gaps, each of which
being a complex number.

In the following sections the real-space Hamiltonian (2.16) will be transformed to the
momentum space, which is followed by the presentation of the method of determining

its solutions.

2.3 Transformation of the effective Hamiltonian to

momentum space

Before we can proceed further, i.e. introduce the method used for resolving the
eigenvalues and the eigenstates of the effective Hamiltonian, it is convenient to transform
it to the reciprocal (momentum) space. The transformation is carried out with help of

relations between the particle annihilation and creation operators a;, al, used for

ilo
description of the model in the real space and the corresponding operators defined in

the momentum space. These relations have the following form in the lattice case

1 ) 1 )
Ujlg = —— €7ZkRia - and CLT = — €ZkRi G/T . 2.17
il /—N ; ki ilo /_N ; klo ( )

Substitiuting (2.17) into the real-space effective Hamiltonian (2.16), we will obtain

the expression

Hur = Y (B —p—0lS?) ne
klo
2J Pt Pt

N Z Ok, +ka—kg—ks {<ak11Tak22¢> Qky210kg1t + <ak11,|,ak22¢> Okq2| 0k31)
ki;k2,ks ks

1
+3 <GL11¢G1T(22¢ + aL11¢GL22T> (Gxs2) Qig1t + Qrg2tig1y) + HC }

2J
N > 5k1+k2—k3—k4{<GL11TGL22¢> (ak42¢akm>+<GL11¢GL22¢> (Oxq2)Ocz1y)
ki ka,ks ks

1
+ 9 < Lna;rozu + GL1¢GL22¢> (Qxq21 0051 + ak42¢ak3m)}
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+ 2NIS?,

where Ok, +k, k;—k, 15 & Kronecker delta defined by the identity

1 .
5k1+k2—k3—k4 = ﬁ Ze_l(k1+k2_k3_k4)Ri . (218)

i

Averages <GLUCLL l,a,>, which have appeared in the momentum space, represent the am-
plitudes for the paired states in the momentum space and will be used subsequently in
the definition of the superconducting gap A.

For simplicity, we consider the system in equilibrium, i.e. assume that the center-
of-mass momentum of a single pair (or paired state) is equal to zero (K = 0). This
assumption corresponds to the situation when e.g. no spontaneous current is present
in the system. In that case the wave vectors ki, ko, ks and k, fullfil the relation

ki + ks = ks + k; = 0. Hence we can make the following substitution
ki, — k ks — kK
! and ’ . (2.19)
k2 — -k k4 — =K

With its help the transformed Hamiltonian can be rewritten to the form
Hur =Y (B —p—0IS?) nie

2J

+ Z { _ﬁ Z <aL,1TaT_k,2T>> 0_kot0k14 T <—W Z <(1,L,1¢G,T_k/2¢>> a-k2|0k1]
kl

k K’
+ - = Z <a1];'1¢“f—k'2¢ + aLf1¢aT—k2T> i (a—xoyaK11 + G_x2rax1)) + HC
V2N V2

. { (3&7 ¥ (oba! m>) (—% > <akmfm>)

kl
2J 2J
+ (—N ; <CLI<1¢CLT_1<2¢>> <_W ; <a_k12¢ak11¢>>
2J 2]
+ <_—\/§N %: <aL/1¢aT,k12¢ + CLL1¢CLT1{2¢>> <—m ; (a_koyar1y + ak2¢ak1¢>> }

+  92NIS# .

The spin-triplet pairing operators can be defined in the momentum space similarly
as those in the real space presented in expression (2.4). Using the analogy, we can write

the following relations for ALm

Al = af1 0l o, form = —1 (% = 1) . (2.20)
% (aLmaT_ku + aLuGT—kQT) form=20 (Sz = O)
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We recognize here the physical entities very similar to Cooper-pair operators [15], since
for the pairs of particles defined by the above expressions wave vectors k are oriented
in the opossite directions and thus their center of the mass momentum is equal to zero
(K = 0). However, the spin orientation is here different - the usual Cooper pair describes
spin-singlet case, whereas the objects defined by (2.20) have an odd spin parity (i.e. the
total spin S = 1).

Using the newly defined spin-triplet operators Ay,,, we can write the Hamiltonian

transformed to momentum space in more compact form, namely

Hur = Y (B —p—0lS?) nue

kio

+ Y {AnAkm+ALLALY+ Y {V2A5 Ak + AL V2A0) (2.21)

k,m=-1,1 k,m=0

2 2 2
N{|A1| + A7 + 2| Ay +2]§z2} ,

+ 57

where we have introduced the gap parameters A,, defined by expressions

2J 2J
Am:l = —N Z <Ak’,]_> = —W Z <a_k/2T ak11T> (222)
k' k’
2J 2J
Ap=—1= N > (A1) = N > (e awny) (2.23)
kK k’/
and
1 2J
A=Ay = —F5=— Z <Ak’,0>
V2 N
12J
= 3N > {{acwoy arny) + (a—war arny)} - (2.24)
kl

For Ap,—o , the averages (a_yro| axr1+) and (a_wor aw1y) are equal, since both describe
amplitude of a paired state of indistinguishable particles located on different orbitals
with their spins and wave vectors oriented in antiparallel. This results in a simplification
of (2.24), which reduces to

2

Am:O = N Z <a,,k12¢ ak:m} . (225)
kl

Now we can write (2.22), (2.23) and (2.25) in a simpler form

2J

Ay = N Z <a7k’20 ak'la’) ) (2-26)
kl
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where m = (0 + 0')/2 and o, ¢’ = £1. All gap parameters are k independent, i.e.
A, # Ap(k). This is a consequence of neglecting the hybridization of the band states
in the described model.

The Hamiltonian (2.21) derived here will be used in the next Section as a start-
ing point for introducing a generalized Bogoliubow-Nambu-de Gennes (4-dimensional)
notation introduced by Klejnberg and Spalek (1999).

2.4 Generalized Bogoliubow-Nambu-de Gennes (four

dimensional) notation

A generalized Nambu-Bogoliubow-de Gennes notation [9, 10, 16] is used in our
approach in order to write down the Hamiltonian in a matrix form allowing an easy
determination of its eigenvalues and, as a consequence, to determine the system of self-
consistent equations for S%, A,, and the chemical potential y. It was originally used
in a 2-dimensional form to describe the spin-singlet pairs [13], [17]; here we adopt it to
the case of spin-triplet pairing, which is quite nontrivial. The main benefit coming from
using this approach is that the Hamiltonian written in matrix representation us to use
standard algebraic methods for determining the energy eigenvalues and the eigenstate
of the system in the paired state. One should note that in the following we regard the
ground state with the filled Fermi volume as a vacuum state. In effect, the operator alta
will describe the particle excitation, whereas the operatore a_x, the hole creation. This

frazeology will be used in the remaining part of the Thesis.

We start from a slightly modified form of the Hamiltonian (2.21), namely

HHF = Z {(Ekl A O'I;STZ) ai‘;lo’aklo— + (EkZ L JIS_Z) a’;rdoa’kQU}

ko
+ Z {AiakaTale + Ao woyaiy + Af (0 k21 0k14 + 0 Kkotlic1y) + H-C-}
Kk
A2+ A2+ 2|A]? _
L N {BE AP+ 2R e |
2J
.l_

where we used the explicit expressions for spin-triplet pairing operators Ay, and A, as
well as have groupped the terms for convenience. If we count number of possible particle
and antiparticle states represented by the operators aLla and a_y,, respectively, for wave
vector k, we will obtain 8 independent operators (i.e. a;fm, al, I a;fm, al, 1» G-kt G-kl

a_kot, and a_go, ) that could appear in the matrix representation. However, we can
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reduce it to 4 x 4 form, if we make use of the mixed electron-hole picture considering
particle from the band 1 and a hole from the band 2. In the other words, we simply
convert the term representing particle energy in the 2nd band in the following manner

Z(Ekg —p — olS?) aﬂzgakgg =
ko

— Z(Ekg ) O'IS_Z) a_kg,,at_k% +2 Z Ekg , (2.27)
ko k

where we have substituted the identity a;r(%akg,, =1- akgga;'da arising from fermion
anticommutation relations. We have also changed the sign of k. Since the summation
in (2.27) goes over all wave vectors k available in the momentum space, we have written
> k — Yk The prefactor 2 in the front of the term ), Fyxs results from the two
possible spin orientations (¢ = +1 =1, ).
In mixed particle-hole picture the Hamiltonian has the form
Hgr = Z {(Ek1 — pu—olS?) aTklaakla — (Byg — pp— oI5%) aTkQUakga}
ko

+ Z {Afa—kﬁakm + A ja_xoyax1) + Af (G—k2 k14 + G_k210k1))
k

+ AlaLnaikﬂ + A—la;r(uatldi + Ao (aIclTaikZJ, + a;rcliaikm*)}

A2+ A2+ 2|42 -
+ 22Ek2+N{| i+ 2}' + 214 +2ISZ2}. (2.28)
k

Now, we can introduce the four-dimensional notation by defining a composite creation
operator (see Klejnberg and Spalek 1999, [9]) £ = (aTle,aLu, a_kat,0_x2,), and the
annihilation operator as a column f, = (£1)f. With their help we can construct 4x4
matrix representation of the Hamiltonian. Namely, it is straightforward to show that

AL 4 JA]? + 2| A)?
2J

Hur =Y HHf+2Y B+ N { + 21522} (2.29)
k k

with the Hamiltonian matrix of the form (for selected k)

Eya — 157, 0, Ay, Ay
0, B + 157, Ay, A
H, — ki 0o ! (2.30)
A%, A, —Fyo + 157, 0
A%, A* |, 0, —FEy — 157

The quantities Fyx; = FEyx; —p and Eyy = Fyo— i are the band energies with the chemical

potential as a reference point.
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The Hamiltonian Hy can be written down in the compact form of 2x2 block matrix
Ewi69 — IS%0,, A
He=| 7% ? i , (2.31)
A*, —EkQ(S'O—f—ISZO'Z
where 6y = 1 stands for the unit 2x2 matrix and o, is one of the Pauli matrices. The
matrix A can be also defined in that case as

~ _d;c d ) dz
A=id-5)o, = ( d“ y L ) , (2.32)
29 T y

with the operator ¢ = (04, 0y, 0,), which consists of the three Pauli matrices

0, 1 0, —i 1, 0
Op = , oy =1| , and o, = , (2.33)
1, 0 i, 0 0, —1

and the vector d described in the spin space by the nonunitary-gap-parameter compo-
nents d, = (A1 — Ay)/2, dy = —i(A_; + Ay)/2 and finally d, = Ag. The form of the
Hamiltonian presented in Eq. (2.31) and parametrized with the help of the expressions
introduced above is a generalization of the Nambu representation to the spin-triplet case
with the three gap parameters A,,.

In the case of the degenerate energy bands (Ex; = Fkxo = Ex) and the real gap
parameters (A,, = A¥ ), we can express (2.31) in terms of the 4x4 Dirac matrices (cf.
Spatek (2001), [16])

~ 1, 0 ~ Oa oy
ﬂ:(O, _1) and ai_(ai, 0).
Hy = f[(Ex— 1) 1 1S S5] +i (d- @) 5a (2.34)

0, 2y 0
5, = %y and  Ny=| 7
oy, 0 0, o,

are the y and z component of the relativistic spin operator, respectively.

Hence, we have

where

In order to find the eigenstates of the matrix Hamiltonian Hy describe by the equa-

tion (2.34) we introduce the four component wave function

(0 ak1t
- 1 Yo agiy [ . ( Ex )]
U(x,t) = — exp|i|lk-x——1 2.35
( ) \/N ; ¢3 at_kgT P h ( )
1;[14 CI,T_k2¢
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representing a single quasiparticle in the real space, with 1), describing the quasiparticle
amplitudes. The time-dependent Schrédinger equation written for that wave function
yields

iho W (x,t) = ijy_;\if(x, t), (2.36)

where the wave vector k has been replaced in Hy by the differential operator (1/i)V.
Inserting (2.34) and (2.35) into (2.36), we obtain the Bogolyubov-De Gennes equation

in the form
ihdp0(x,t) = B{(Fysw — ) 1= IS* N3} W(x,t) +i (d- &) Do U(x,1) . (2.37)

Assuming the effective-mass approximation (i.e. energy of a quasiparticle can be es-
timated by its kinetic energy with the mass renormalized by the interactions) and the
stationary case (then we limit our we considerations to the time-independent Schrédinger
equation, i.e. Hké%\i/(x, t) = )\\if(x, t) ), we can finally write the wave equation for a

single quasiparticle

(1 (1 A1tz + Aoty
2
N Yo | _ _{( h V2 +M> 1415 23} Vo N Agths + A1y (2.38)
V3 2m —13 Ay 4+ Aoty
Py —14 Agthr + A1)y

where ¢, = 1,(x) and X is an eigenvalue of a quasiparticle state.

With the help of the wave equation derived above, eigenvalues and eigenvectors
of Hamiltonian (2.29) can be found analytically. They will be used to derive system
of nonlinear self-consistent equations for S?, A,, and the chemical potential x. The
knowledge of these quantities is necessary to determine the energetically stable solutions
or, in the other words, the energetically preferred phases. A detailed discussion of these
solutions is the subject of the following chapters. Our analysis of the model relies on
the presumption that the isotropic part of the pairing leads already to qualitatively
new features, which are only altered quantitatively when the realistic band structure is

included. Hence, the hybridization among the bands can be neglected at this stage.
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Chapter 3
Spin-triplet superconducting state

In this chapter we concentrate on discussing the basic properties of the supercon-
ducting spin-triplet state and its possible phases, which may appear in the system. Our
considerations are based on the model formulated in the preceding chapter. For the
sake of simplicity, we will neglect - for the time being - the ferromagnetic ordering and
thus put S# in the Hamiltonian (2.29) equal to zero, if an applied magnetic field is ab-
sent. We will include it later, when investigating the possibility of a coexistence of the
spin-triplet superconducting state with the itinerant ferromagnetism and then behavior

in an applied magnetic field.

For simplicity, we will also assume that the gap parameters do not have an imaginary
part i.e. put A, = A . This assumption is justified as long as the described system
is spatialy homogenous - in that case the phase of the superconducting gap parameter
can be neglected. Since we are focused rather on qualitative features of our results, we
will limit our considerations to the case of the system with degenerate energy bands
Eyx1 = Eyxs = Ex (the analytic solution for Ey; # Eyxs was discussed in [16]; see also
Appendix B).

Starting from the wave equation (2.38) with S* = 0, we will derive the results for
the three principal phases: isotropic (all gap parameters A,, are equal), with equal spin
pairs (only nonzero are the gap parameters with m = —1 and 1), and finally - totally
polarized phase (only the gap parameter with m = 1 is nonzero). All these phases
correspond to the phases B, A and Al respectively, used for description of superfluidity
of *He (see e.g. [18], [19]). This correspondence with ®*He should not be surprising,
since in both systems the spin-triplet pairing is the main factor responsible for their

extraordinary properties. Obviously, in the *He case the Cooper pairs are in the p-
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orbital state (i.e. their angular momentum is [ = 1). Here the pairing is intraorbital
in nature, so the Copper pair has [ = 0, if only orbital momentum of the electrons is
either zero or quenched. For the convenience, we still use the nomenclature developed
for superfluid >He to label the phases. The spin-orbit coupling is not important under
these assumptions.

At the end of this chapter, we compare the properties of all three phases. We inter-
prete the obtained results and discuss briefly their validity in the light of experiments

performed on systems considered as candidates for the spin-triplet superconductors.

3.1 Solutions for the principal phases of the system

A brief analytical discussion of various superconducting phases, as well as the deriva-
tion of sets of self-consistent equations used to determine their basic parameters, can be
found in [16]. Here we present briefly main results developed in that paper, as they will
serve us as a starting point for detailed numerical calculations.

Following [16], we take the particle stationary amplitudes in the form %,(x) =
% Y exp(ik - x), where V is the volume of the system, and substitute them into
the wave equation (2.38) with S* put equal to zero, as assumed in the introduction
to this chapter. In the effective mass approximation, we can also use the relation
—2?: -V%),(x) = Ext,(x), in which Ey is the band energy of particles. In effect, the

wave equation transforms to

(0 (0 A1tz + Agtfy
o (0 Aoths + A_19y

A = (Bx — + 3.1
v | TR, Avipy + Doty 3
(N —y Aot + A1)y

In the general case we combine its components, handling particle (¢; and 15) and hole

(3 and v,4) amplitudes separately. As a result, we obtain

{ AWy — 12) = (B — 1) (b1 — 12) + (A1 — Ag)ths + (Ao — A 1)y 5.
Atz — bs) = —(Bxe — 1) (03 — ¥a) + (A1 — Do)ty + (D — A 1)y '
and
{ A1 + 1) = (B — 1) (91 +12) + (A1 + Ao)s + (Ao + A1)y 3.3
A(tp3 4+ 1) = —(Ex — 1) (3 4+ ¥a) + (A1 4+ Ag)th1 + (Ao + A1)ty '

The sets of equations developed above are used in the following sections for the calcu-

lation of particle (and hole) eigenstates.
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3.1.1 Phase B - isotropic paired state

At the beginning, we consider the case of isotropic pairing in the system. It appears,
when for all m the gap parameters are equal to each other, i.e. Ag = A ; = A; = A.
Then Egs. (3.2) and (3.3) take the from

{ /\(101 - ¢2) = (Ek - M)(% - ¢2) (3'4)
Atz — Pa) = —(Ex — 1) (Y3 — a)
and
{ A1 +1b2) = (Bx — p) (1 + ¥2) + 2A(1)3 + 94) (3.5)
A3 + ) = — (B — 1) (3 + ) + 2A (1 + tho) '

Eigenvalues A constitute two classes of solutions - gapless and with a well defined energy
gap in the energy spectrum.

The first two equations above lead to the gapless mode
Akl’g = :f:(Ek - [L) . (36)

Substituting the expression for Akio into (3.1), one can show that particle and hole
amplitudes are equal to each other, i.e. 9; = 1 and 3 = 1. The equation (3.1)
is also used for derivation of the form of the antisymmetric quasiparticle operators
corresponding to the gapless mode (we must incorporate the normalization condition

during the calculations additionally). Explicitly, we have

— L (g —
{ e = 75 (@ — aiay) (3.7

5T—k = % (aT—kZT - aT—kQ,L)
The last two equations (3.5) lead to the modes with the energy gap equal to 2A

Mg = £/ (Bx — )2 + (2A)2 = £, (3.8)

with the new quasiparticle operators (derived in the same manner as the operators found

for the gapless mode) in the form

{ g = Uk% (ale + aku) + Uk% (at_sz + CLT—ku) (3 9)

gl = —V s (Gt + axay) + Uz (aikﬂ — aik%)
Coeflicients uy and vy are the Bogolyubov coherence factors (well known from Bogolyubov-

Valatin transformation used in the solution of classical BCS model)

1 B, — 1/2 1 E. — 1/2
Uk = ﬁ <1 + k)\k ,U') s Vk = % (1 — k)\k ,U:) s (310)
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fulfilling the condition u2 + vZ = 1. One can verify, that the operators ay, Bk, 7 and
Oy fulfil the fermion anticommutation relations.
The relation between “old” (we have started with) and new quasiparticle operators

is defined by the transformation

axiq uk, —Uk, 1, 0 Ok
a 1 Uk, —Vk, —1, 0 T
= | (3.11)
0_kor V2 | o, w0, 1 Yk

With its help we can express the Hamiltonian (2.29) in the diagonal form

Z Ak (OZLO!k — kﬂT ) + Z (’}’lt’yk — 5_k5T_k) (3.12)
k

(24)?
+22 — )+ N~— 57

and after making use of anticommutation relations, it can be reduced to

> M (alak + BB — 1) +> (B, — p) (’y,‘:’yk + 5T_k<5_k) (3.13)
k k

(21
2J

+> (Bx—p)+N
k
In order to determine the ground state energy of the phase, we have to find expressions
on the gap parameter A and the chemical potential p.
Self-consistent gap equation.

Self-consistent equation for A can be derived from the definition (2.26). As we are
considering isotropic phase, we can simply put e.g. A = A, = —% >k (a—wor axit)
and substitute the original operators ay;,, expressed via new (quasiparticle) operators

defined by the relation (3.11). Hence, the gap equation takes the form

_ __Z< (kaa/k/ + U By + O k’) X

1
——— ! ! — ! T !
X \/5 (uk o — U Bl +’)/k)> .
The average <> is taken over the quasiparticle states and therefore, the only nonzero

averages are proportional to <04L,ak:> and < By ﬁik,>. Thus, our self-consistent equation

for A reduces to

= —— Z <(uk:vk:ak,akf — Vi Uk B k’ﬁik')> . (3.14)
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Using anti-commutation relation for oy operators, we can rewrite (3.14) as follows
J
- — 1 V! t ! t 7y —
A= g 2t ((ofoane) + (BlBa) 1) . (3.15)

Since both types of the quasiparticles defined by the operators ap and [_y fulfil
the same dispertion relation (3.8), the averages in the equation above are equal, i.e.
<a1‘;ak> = <Bikﬂ_k>. The same type of identity can be written for the quasiparticles
with gapless spectrum (v and § /). Therefore the gap equation simplifies to

A= —% gukka: (2 <oz;r(,ozk:> — 1) : (3.16)

The average number of the quasiparticles <aL,ak'> is described by the Fermi-Dirac
distribution function f(M\) = 1/(exp (8Ak) + 1), where 8 = (kgT)™'. The quantity
kg is the Boltzmann constant and 7" stands for the absolute temperature. When we

substitute this function into (3.16), we will obtain gap equation in the form

J A/
N Z Uk’ V! tanh (ﬂQk ) . (317)

k/

Alz

In the last step, we shall expand the expression uy vxs substituting definitions of Bogoli-

ubov coherence factors (3.10). As a result we will obtain gap equation very well known
from BCS theory

J A BAw
A= NZAk, tanh( 5 ) . (3.18)

kl
The solution of (3.18) with A = 0 can be neglected as it represents the normal state.

Therefore, the self-consistent equation for A takes the final form

J 1 By (Bro — )2 + 442
1== tanh . 3.19
Ng\/(Ek’_NV—i—élA? an ( 5 ) ( )

Self-consistent equation for the chemical potential.

We determine now the self-constistent equation for the chemical potential p starting
from the condition that the number of particles in the system is fixed, i.e.
n= > <a1‘;laak10 + aLQUak20> , (3.20)
ko
where n represents the number of particles per atom. Inserting quasipaticle operators
to the above equation, in the same manner as in the case of derivation of the self-

consistent equation for the gap parameter A, and making use of the identities for the
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corresponding expectation values of the operators (namely: <04Lock> = <Bikﬁ—k> and
<71]:’Yk> = <5T_k5_k>) we obtain

n= > { (ui - vﬁ) <o¢};ozk> + vg + <7117k>} . (3.21)

After substitution of the expressions for the Bogolyubov coherence factors (uy, vy), the

above equation transforms to the form

n— = l Ek_yl ofozk — Tk
Y TR

_ 1 Ey —p - -
- N;{\/(Ek—u)2+4A2 (2F(h) = 1) + 2f (B M)}- (3.22)

Equations (3.19) and (3.22) constitute a set of self-consistent equations, which will

be used to determine the values of the gap parameter A and the chemical potential

_J 1 BN By —p)*+4A2
= B s tanh (P2
Fx—p

n=1= 4 S { it (2f W) - )+ 2f (B - )}

(3.23)

In the case of nonzero magnetic moment, the set should be supplemented with the
self-consistent equation for S* (c.f. the Section on coexistence of spin-triplet supercon-
ductivity with ferromagnetism).

Finally, we write expression for the ground state energy of the system, which is

Eq H 1 2A)?
Y= =Tl )+ B LGl )+ 5
= %Z { M 2f (M) = 1) + (B, — ) (2f (B — ) + 1)} + (22)2 . (3:24)

Its minimal value selects the stable phase of the all the three possible discussed in this
and the following chapters. This in turn, will allow for determining other properties of

the system, such as e.g. specific heat.

3.1.2 Phase A - equal-spin paired state

Phase A is characterized by the condition that the gap parameter A,,—y is equal

to zero and those with m £ 1 are nonzero, namely A,,— ; # 0 and A,,—; # 0. In the

34



absence of magnetic field these two gaps are equal. However, when the applied magnetic
field is switched on, they differ.

As previously, we start from the equation (3.1), but this time we combine first with
third and second with fourth component. After adding and subtracking the correspond-

ing terms, we obtain

{ (Ap = A) (%1 +43) + (B — p) (1 — 2p3) =0 (3.25)
(Bx — 1) (1 +93) — (A1 + A) (Y1 — 4p3) =0
and
{ (ALt = N) (s + ) + (B — ) (62 — thy) = 0 526)
(B — 1) (2 4 tha) = (A1 + X) (2 — 1hs) = 0

The solutions of the above equations separate into two - one for spin up and one for

spin down. The eigenvalues are

/\k1,2 = :I:\/(Ek — [1,)2 =+ A% = :I:)\S_), )\k3,4 = :l:\/(Ek — /L)Q + A2_1 = :i:Al(<_) y (327)

with corresponding quasiparticle operators characterizing, respectively, the eigenstates

o = ul(j)akm + vl(f)aik% oy = uf)akl 1+ vl((_)atkz 1
T +) (+) o and 9 ) (gt 0 B28)
Bl = —Vk 'Giar + Uy Gy Bluy = —Ux “Giay + Uy "0y,

where (+) stands for the spin up and (—) for the spin down state. As we can see, the

Bogolyubov coherence factors are dependent on the pair-spin orientation. Explicitly, we

have
1/2 1/2
(+) _ 1 E—pu (=) _ 1 E—up
Uk = \/5 (1 + )\}(:_) > uk = \/5 1 + )\1(:)
v(+) — 1 (1_ Bxp v(_) — 1 (1_ Bep
k /2 R k 3 A

Similarly, as in case of phase B, they obey normalization condition but this time written

separately for spin “up” and for spin “down” case, i.e.
2 2 2 2
w4+ (i) =1 and uN () =1 3.30
Kk Kk Kk Kk

Thus the coherence factors, as before, set the degree of mixing of particle and hole
components in the pair bound state, expressed in the quasiparticle language. Using the
conditions above, one can prove that the quasiparticle operators aut, o, ﬂT_kT and ﬁT_k |

fulfil fermion anticommutation relations.
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All quasiparticle states have their spectrum gapped and this constitutes the main
difference with the phase B considered in the preceding Subsection. The transformation

between the bare particle and the quasiparticle representations is defined by the relation

(+) (+) 0’ 0

ax1t U ", —V Okt
ak1| o 0, 0, US) ) _Ul(;) 511@
e (3.31)
a_xot Vg Uk, 0, 0 Ok|
aJr—k2¢ 0, 0, Ul((_) ) U1(<_) 511@

With its help we can derive the set of self-consistent equations for the gap parameters
and the chemical potential p in the same way as previously. This time, however, we have
to consider two gap parameters - for spin up (A;) and spin down (A _;) orientations.
Following the procedure presented in the preceding Subsection, we obtain the following

set of equations:

e for the gap parameter A;:

J 1 BV (B — )2 + A2
=5 ; \/(Ek' T tanh ( ) (3.32)

e for the gap parameter A_:

o J 1 . By (B — w)? + A%,
1= N%:\/(Ek:—u)2+A21t h( ) (3.33)

e for the chemical potential u:

= e ) )

)

The equations, as noted before, above are written for the cases of magnetic field absence

and lack of ferromagnetic ordering. From analysis of (3.32) and (3.33), we come to the
conclusion, that there is actually no difference between both the gaps, i.e. Ay =A_; =

A. Therefore, the set of equations reduces to two

2T (AT
N G (3.35)
_9_2 Bep _ ’
n-2= 45 et of (W) - 1)
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where A\, = \/ (Ex — 1)? + A%, Obviously, this is not true when the magnetic field is
present.
We derive next the expression for the total energy of the system (per site) starting

from the effective Hamiltonian for the phase A in the diagonal form, i.e.

Ho= > {/\S) (OZLTO‘kT - ﬁfkTﬁikT) + /\1(:) (OJTMCVM - 57k¢ﬁik¢)} (3.36)
k

NA§+A2_1 _

2 27

With help of anticommutation relations for the operators it can be recast as the expres-
sion

H = Z {/\( ) (akTakT + ﬁ kTﬂ Kkt — 1) + /\1(< ) (ahaki + ﬂik¢ﬁ7k¢ — 1)} (337)
k

A? + A?
+2) (B — p) + N————
k

2J
Hence, the equation for the ground energy of the system in phase A has the following

form

Eq H 1
o= = ST ((ekena) + (Phaoae) 1)
+ M7 ((edyone ) + (BLa B ) — 1)} (3.38)
A2 +A2

2
“ E, — /17 =1
+Nzk( Y,

Since the operators oy, and ﬁT_kU represent the same dispersion relation, we can (again)

make use of the identities <aLTakT> = <,6T_kTﬁ_kT> = f()\l(:’)) and <ahak¢> = <6T_k¢ﬁ_k¢> =
f ()\1(:)). As a result, we obtain

EG

Ze o _ —Z{ A7 2 = 1) +40 (2rol ) - 1)) (3.39)
+N§<Ek—u>+Alj—f—l-

As the parameters specific for spin up and spin down states are the same (e.g. A; =
A41=A=> /\f:r) = 1(:) = Ax). This results in further simplification of expression for

ground state energy. Namely, we have

E(;_
N

N Z (A 2f (M) = 1) + (B = )} + % . (3.40)
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Next we use this equation for comparing the energies of phase A with those for the other
two phases.
The main difference between the phases A and B is that the former does not posses

gapless modes - both its quasiparticle branches does have a gapped spectrum.

3.1.3 Phase Al - spin polarized state

As the last case we consider the spin-polarized or Al (according to the superfluid ®He
nomenclature) phase. It is introduced by the assumption that only the gap parameter
for the spin orientation corresponding to the magnetic field direction is non-zero, i.e.
A; # 0, whereas the remaining two gap parameters are equal to zero, A_; = Ag = 0.
This case is the most promising, since it is most likely the phase, where the coexistence
of superconductivity and ferromagnetism can be realized.

We use the same set of equations as for phase A, namely (3.25)-(3.26), and put

A_; = 0. As a result, the first two equations remain unchanged

{ (A1 = N (W + 1) + (B — ) (1 — ) = 0 (3.41)
(Bx — p1)(th1 +93) — (A1 + A) (%1 —2p3) =0
and the last two take the simplier form
{ —A(W + 1) + (Bic— ) (2 = ¢) =0 (3.4
(B — p) (b2 +ths) — M2 — 904) = 0

In contrast to the situation in phase A, we now obtain “gapped” and gapless quasiparticle

branches for spin up and spin down subspaces, respectively

Map =t (B — 2+ AT =£" and  Aga=+(Fa-p).  (343)

The corresponding eigenstates are

+ +
Ot = Ui )akn + U1(< )aT—k% and Ok = Okx1) (3.44)
ﬂm = —v ey + Ug)aim mu = “T—ku

where (+) stands for the spin up state. The definition of Bogoliubow coherence factors
is exactly the same as for phase A (see Eq. (3.29)) and with the same normalization

2 2
condition imposed on them, namely (ul(:r)) + (Ul(j)) = 1. The relation between the
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bare particle and the new quasiparticle states is described by the transformation

(+) (+)

akm 0, 0, U "y —Ug a’ki,
1, 0, O, 0 t
= Do || (3:45)
a:_kQT 0, O, ,Uk ) ’U,k OfkT
a' 1, 0, 1, 0, 0 Bt

Using the results presented above, we can derive the set of self-consistent equations
for the gap parameter A; and the chemical potential p. We follow exactly the same
procedure as for the phases B and A. Explicitly, we have

_J 1 B/ (Exr—p)*+(A1)?
R R rvmrm A ( 2 )
_ Ey—p (+)) _ _
n—1= 4 S { st (2f (W) — 1) + 2 (B - )}

w)2+(A1)?

(3.46)

Finally, we will write expression for the ground state energy of the system for the A1l
phase. As previously, we start from the Hamiltonian in diagonal form (obtained with
help of the transformation (3.45)), which yields

H o= S {7 (el — BoaBlis) + (B — 1) (of om0 — B Blyy) ) (3.47)
k
2

A?
25 (B — N—L
+ij(k W) + 57

and after application of the anticommutation relations (obeyed by quasiparticle opera-

tors) transforms to the form

Ho= 3" (afraur + BB — 1) (3.48)
K
A2
+(Ex — 1) (O‘walw + Bik¢ﬁ—k¢ + 1)} + Nﬁ :

Hence, the equation on the ground state energy yields
Ee _ 1 () (9 (1D AT
NN IO = 1) + B ) @F (B —m) + D} + 55 (349)
Now, we have a complete set of equations we use to compare the energies of the three
principal phases of the system. We have already pointed out similarities and differences
of phase A1l to phase A. When comparing phase A1 to phase B, we notice that both
of them have gapless quasiparticle branch, but only the phase Al quasiparticles posses
well defined S* value.
In the next Section we will present the numerical results obtained for all three phases.

As a starting point, we use the equations derived in the last three sections.
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3.2 Numerical results

The numerical calculations are performed for the theoretical model developed so
far. Here we consider the system in the absence of applied magnetic field and without
ferromagnetic ordering, i.e. we assume that both B, = 0 and S* = 0. This last
assumption eliminates the contributions coming from either the Zeeman term or the
ferromagnetic-exchange field, responsible for ferromagnetic ordering. We include them
in the next chapter when concentrating on the coexistence of superconductivity with
itinerant ferromagnetism (cf. Chapter 4).

First, we transform the sets of self-consistent equations for the gaps and for the
chemical potential y to the dimensionless form, preparing the ground for numerical
calculations. As the next step, we present the results for the numerical solutions of
those equations for the case of nonzero temperature (7" # 0). Finally, we compare basic
physical quantities, such as the ground-state and internal energies and the specific heat

for all three principal phases of the system.

3.2.1 Dimensionless form of the self-consistent equations

We recall once again the sets of self-consistent equations for the three considered phases:

e phase B
Cae 4 (6
==~ Ek \/m tanh ( 5 )
n—1= Nzk{ﬁm(Qf()\k)—l)-F?f(Ek— )}
e phase A
- 1 By (Byr —p)?+(AE)?
= ¥ 2K T am): tanh( 5 )
- B p (Y _ ’
no2s NZk{\/Ek AT (2f (’\k ) 1)}
e phase Al

Nzk{ \/Efk b (27 (W) — 1) + 2 (B - )}

)2 +(
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The summation over the wave vector k in the above equations can be replaced by

an integration performed over the band energy E, according to the rule

1

— Y — [ dEp(E

N ; / p(E)
where p(E) represents density of states (per atom per spin). For simplicity, we consider
the case of “flat” density of energy states with p(F) = 1/W, where W is the bare
bandwidth. If we set the integration range within the interval [—-W/2 W /2|, we are be
able to write the transformation rule in the form

/ " (3.50)

W/2
Therefore, the most natural choice, when introducing dimensionless form of the equa-

tions, is to normalize all quantities to the bare bandwith W. In that case, the integral

(3.50) can be rewritten as follows
— dE — / de , (3.51)

where we have introduced dimensionless parameter e representing the energy of quasi-
particle relative to the energy bandwidth, i.e. ¢ = E/WW. We redefine all other quantities
in the similar way, e.g. redefine A — A = A/WW. As a result, we obtain the dimen-
sionless form of the equations recalled at the beginning of this Section (note that all
tilde-marked quantities are normalized according to the scheme presented above for the

gap A). Namely,

e phase B

A
1:J/ d~th
1/2 ‘ a (20)

n—1 = /_11//22616{6;“(%(})—1)+2f(e—;1)}, (3.52)

where \ = \/(e — )2 + (2AB)%
e phase A
v d h A
1 = =
J /1/2 € = tan (20>

n—2 = 2/1/2 2f<) 1}, (3.53)

1/2

where A = \/(e — )2+ (A4)?;
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e phase Al

1 =J /1/2 de ~tanh <25\0>
/_11//22 de { £ (2f (A) - 1) +2f(e - ﬂ)} , (3.54)

where \ = \/(6 — )2+ (A2

n—1

The parameter #, which appears in the equations above, plays the role of dimensionless
temperature defined by the relation 6 = kgT'/W.

We use the equations (3.52) - (3.54) to determine the solutions for the gap parame-
ter(s) A and the chemical potential i for each phase. Altering the parameter 6, we will
be able to investigate their temperature dependence as well. From the technical point

of view, this problem consists of solving a set of two non-linear integral equations.

3.2.2 Solutions for the gap parameters and the chemical po-

tential

Solutions of Egs. (3.52) - (3.54) are found with help of the self-consistent, or rather
- the iterative method. The procedure is very straightforward. We describe it, taking as

an example, the set of equations for the B phase, namely

1 = J/ll/; de~ tanh <2A9>
n—1 = /_11//2de{ (2f(X)—1)+2f(e—,1)}.

In the first step, we determine the gap parameter A,_; for the dimensionless temperature

6 ~ 0 (note, that putting exactly # = 0 will cause the “division by zero” error). For
this purpose, we solve the first equation from the set presented above using one of the
standard numerical methods for root finding (e.g. false position or secant method). As
the initial values of fi;—o and A,_o, we take the chemical potential calculated for the
normal state and the gap parameter obtained for that value of the chemical potential;
in the case of 8 = 0, both expressions can be evaluated analytically. Once we have
A;—1, we substitute it - together with fi;—¢ - into the second equation, and determine
the next value ji;—1. We repeat this procedure until a satisfactory accuracy is achieved,
taking as an input for the next iteration (: = j + 1) the values of the gap parameter

and the chemical potential obtained in the previous step (i = j). In order to obtain the
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temperature dependence of both parameters, we simply repeat all steps presented above
for the increased value of #. We continue, until the critical temperature is reached, i.e.
the obtained value of the gap parameter is equal (in terms of chosen accuracy) to zero.

In this section, we present the results obtained for J/W = 0.1 and for the band filling
n =1 (we should be away from the half filling, since the antiferromagnetic Slater state
is stable then). The Hund’s coupling constant J/W equal to 0.1 is chosen to satisfy the
weak coupling limit. The case of n = 1 corresponds to the situation, when both bands
are quarter-filled. One can easily show, that then the chemical potential value for the
normal state in the limit of # = 0 is equal to —1/4 for the flat (rectangular) form of the

bare density of states.

The chemical potential for the normal state

The expression for the chemical potential for the normal state can be derived from the
equation (3.20), excplicitly
1

n=2. (ol 010 + Aoy tcae ) -
ko

The averages <aL10ak10> and <ak20ak2(,> are described by the Fermi-Dirac distribution
function f(Fx; — pu) and f(Fxe — u), respectively. For the case of degenerate energy
bands, we can write f(Ex; — i) = f(Fxo — 1) = f(Ex — 1), and then the equation above

transforms to A
=N S f(Bx—p), (3.55)
k

where the prefactor 4 results from the summation over the spin and from the degeneracy.
The dimensionless form of (3.55), obtained following the procedure presented in the

previous Section, yields
1/2
n= 4/ de f(e— i) . (3.56)
~1/2
In the limit of § — 0, Fermi-Dirac function reduces to Heaviside step function H(ji— €).

Hence, we have

1/2 1
n—4/ de H(ji — € _4//de 1—4(,u+2). (3.57)
1/2

Substituting n = 1, we obtain gy = —1/4.

Before we proceed with presentation of the results, we compare the sets of equations

for the phases A1 and B. We notice, that they differ in definitions of the gap parameter
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only. Hence, we can find the relation
Ap =2 Ap. (3.58)

With its help, we can evaluate the numerical results for both phases using only one

common set of equations. As a consequence, we obtain the same chemical potential
behavior for both A1 and B phase.
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Figure 3.1: Temperature dependence of the gap parameter for all three superconducting

phases.
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The results evaluated from the numerical calculations are shown on Fig. 3.1 and
3.2. The gap parameters presented on both figures have been normalized to their values
obtained for the # ~ 0 case. The temperature has been presented in terms of the
critical temperature 6, - then, using the definition of § = kgT /W, we can write directly
6/6. = T/T.. The chemical potential shown in the inset of Fig. 3.2 has been expressed
in the units of the energy bandwidth W.

The approximate values of the parameters characterizing each of the phases at the

limit of T = 0 are as follows:

Parameter Phase A Phase Al Phase B

Aro 0.005835499 | 0.00583588 | 0.002917794
Ar=0 - 0.2500227 | - 0.2500113 | - 0.2500113

Table 3.1: The gap parameter and the chemical potential values for 7" = 0.

The gap parameter has nearly the same value (in terms of accuracy of numerical
calculations) for phases A and A1, but is two times lower for the phase B. The chemical
potential is the same for the phases A1 and B, whereas it is lower for the phase A. This
means that the A phase is most stable energetically out of the three. If we consider this
difference in relation to the chemical potential value for the normal state (iy = —0.25),
we notice that the chemical potential shift, defined as Aji = ji— fiy, is two times greater
for the phase A.

The critical temperature 7}, determined by the condition A = 0, has the same value
for all three phases, and is equal to 8, = kgT./W = 3.31x103. In this case, Fermi-Dirac
distribution function for the bare particles can be still well approximated by Heaviside
function and therefore, the chemical potential value for the normal state for 6§ = 6, is
practicaly the same as calculated for # = 0, namely iy = —0.25.

Having calculated the values of the energy gaps at 7" = 0 and the critical temperature,

we can check that the universal ratio
2A71—0
kgT,

characteristic for the BCS theory is fulfilled for all phases in our model. Namely, for

= 3.52 (3.59)

the values of A7—y and 7, presented above, we obtain the ratio value 3.53. Note, that
for the phase B, its energy gap is equal to 2Ap (see Eq. (3.8)), and thus the relation

(3.59) is conserved for this phase as well.
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Analysing Figs. 3.1 and 3.2, we notice that the temperature dependence of gap
parameters obtained in our model exhibits a typical behavior characteristic for the
BCS theory, which represents the mean-field theory, the same in all cases. All three
gap parameters acquire the highest value at 7' = 0, and decrease gradually with the
increasing temperature. All of them vanish, when the critical temperature 7, is reached
- at this temperature the system undergoes the second-order phase transition from the

superconducting to the normal state.
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Figure 3.2: Temperature dependence of the gap parameters for the A and Al phases.
The inset shows the behavior of the chemical potential for all three superconducting

phases.

46



The chemical potential behavior is complementary to the picture presented above.
For T" — 0, it is lower for all three superconducting phases comparing to the normal
state. This is a direct consequence of the existence of energy gaps in the system, what
results in shifting of the chemical potential below its value characteristic for the normal
state. The difference in the chemical potential shift between the phase A and the
remaining phases arises from the fact, that only A phase has all quasiparticle modes
gapped, whereas in the case of the phases A1 and B half of them is gapless. Hence, we
can expect that the shift may be approximatelly two times greater for the phase A (cf.
Fig. 3.2).

With the increasing temperature, the chemical potential for all three superconducting
phases increases gradually and finally, for the critical temperature 7, reaches the value
characteristic for the normal state (fiy ~ —0.25).

The results presented agree well with the standard behavior of a superconducting
phase known from the BCS theory. They will be used in the next section as an input

for the numerical calculations of the ground state energy for each phase.

3.2.3 Ground-state and internal energies and the specific heat

The internal energy for the phases B, A and Al is determined from the Eqs. (3.24),
(3.40), and (3.49), respectively. We transform them to the dimensionless form using the
same procedure as presented previously in the Section 3.2.1. In effect, we obtain the

following expressions

e phase B
o= [ e B0y 1)+ 2= st + (e )+ B22E oo

where \ = \/(6 — )2+ (2AB)?%;

e phase A
E_:2/1/2 e {S\(Qf(j\)—l)'f‘(e_/:")}—{_A—”A’ (3.61)

where A = /(e — )2 + A% ;

e phase Al
EAI 1/2 B B AQ
5= [ de PRAG=1) 2= fe-+ -} + T2, (362)
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where \ = \/(e — )2+ A% .

Taking into account the relation between the gap parameters for the phases Al and B,
namely 2A 5 = A 41, we notice that the ground state energy for these phases is described
by the same equation, and thus is the same for both of them. Therefore, the phases Al
and B are energetically equivalent. As a result, we consider only two of the above three

expressions, explicitly

e phase A )
EA 1/2 ~ - A2
Tr=2 [ ded(2/() = 1) =2+ =4, 3.63
W _1/26<f() ) gt (3.63)
e phases Al and B
EAl 1/2 N B ) i i AI%H
ST s de {/\ (Qf(/\ — 1) +2(e—f)f(e— ,u)-i—} — i+ o7 (3.64)
where we have additionally evaluated the integral fi{% de (¢ — i) = —fi. In order

to obtain the temperature dependency of the internal energy, we simply calculate the
expressions above for the temperatures from the interval (0,6.). For each considered
temperature, the gap parameter A and the chemical potential [ must be evaluated
according to the procedure presented in the previous section.

For the sake of comparison, we need to derive the equation for the internal energy

of the normal state. It is defined as

EN = @ = %Z(Ekl — UN) <a;rclaa’kllf>
klo
= %Z(Ekl — un)f(Ew — pn) (3.65)
klo

where f(Ey — puy) is Fermi distribution function and py is the chemical potential for
the normal state. For the case of the degenerate energy bands and after carrying out
the summation over the spin o, we obtain
4
BV = N > (B — pun) f(Bx — p) - (3.66)
k
The dimensionless form of the above equation yields

N /
EW - 4/11/22 de (€ — fin) f(e — fin) - (3.67)
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Figure 3.3: Temperature dependence of the ground state energy for all three supercon-

ducting phases. The normal state case is shown for comparison.

The temperature dependency of the internal energy for the superconducting phases
and for the normal state is presented on Fig. 3.3. We notice, that (as expected) all
the superconducting states are energetically lower than the normal state. Among them,
the A phase is the most stable as it has the lowest ground state energy, since it is the
only one, for which all quasiparticle modes are gapped (cf. interpretation of the results
obtained for the chemical potential in the Section 3.2.2). The energy of the remaining
two phases is higher due to the existence of gapless quasiparticle modes. The internal
energies of all three phases increase gradually with the increasing temperature, since
OF/OT expresses the system heat capacity. In the limit of § — 0. (T — T.), they

converge to the normal state values. At the critical temperature # = 6., a second-order
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phase transition from the superconducting to the normal state takes place.
Another important physical quantity, which will be presented in this section, is the
specific heat (per site). It is evaluated directly from the internal energy by taking its

derivative over the temperature, namely
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Figure 3.4: Temperature dependence of the specific heat (per site per eV) for the phases

A, Al, and B. The normal state values are provided for comparison.

The results from the specific heat evaluation are shown on Fig. 3.4. The shape of

the temperature dependence obtained for the phases A, A1, and B is typical for the
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superconducting phase in the mean-field (BCS) approximation (c.f. e.g. M. Cyrot and
D. Pavuna, [20] - Section 2.5), while the specific heat shown for the normal state exhibits
the linear behavior, characteristic for the metallic state. As previously, the difference
between the phase A and the remaining phases arises from the existence of the gapless
modes in the phases A1 and B. In the first case, the contribution to the specific heat
comes entirely from the exciting the paired electrons, whereas in the latter, it is the sum
of contributions from the ungapped electron (normal) and the gapped states.
Analysing Fig. 3.4 we notice, that the specific heat jump at T, characteristic for the
classical BCS superconductors (AC/Ce = 1.43), is not recovered here. This is firstly
the result of the temperature dependence of the chemical potential, which is not taken
into account in the classic version of the BSC theory. More importantly, for A1 and
B phase we have gapless excitations as well, which provide a contribution to the linear

specific heat also in the superconducting state.

3.3 Summary of the basic properties of the system

In this Chapter we have analysed the basic properties of the two-band model of
spin-triplet superconductivity in the absence of external magnetic field and without fer-
romagnetic ordering effects. We have considered three principal phases of the system:
A - equal-spin paired state, Al - spin polarized state, and B - isotropic paired state. We
have shown, that the phase A is the most stable phase, as it has all quasiparticle states
gapped. For the other two phases gapless modes appear even though the superconduct-
ing gap is k-independent, thus making them less favorable energetically for the system.
We have also shown the energetical equivalence (degeneracy) of the phases Al and B.

In general, all three phases exhibit a typical BCS behavior such as the shape of the
temperature dependences of the gap parameter and of the specific heat However, one
must remember about the differencies between our model and the standard BCS theory;
the most important among them is the different pairing mechanism originating from the
Hund’s rule introduced in real-space. As a result, we evaluate the physical quantities
carrying out the integrations over the whole energy band, whereas in the BCS, the
integration interval is limited by the Debye frequency regarded as a cut-off energy.

In the next chapter we focus on the influence of the applied magnetic field on the
properties of the spin-triplet superconductivity. The main interest will be on the possi-

bility of the coexistence of superconducting and ferromagnetic states.
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Chapter 4

Magnetic properties of the

spin-triplet superconducting state

In this chapter we investigate the magnetic properties of the two-band model of
spin-triplet superconductivity. We assume that the system is spatially homogenouos
and does not contain any impurities or defects. Under these circumstances and in the
limit of weak magnetic field, vortices will not appear in the system. Additionally, we
have shown in the Supplement that the ground state of an isolated spin-triplet pair is
rather of the Landau-type than the p-type state. This means, that only the center-of-
mass of the pair is rotating in the magnetic field, whereas the mutual orientation of the
electrons constituting the pair remains largely unchanged in the space. Therefore, we
can - as was done earlier - neglect the phases of the gap parameters A,,. In effect, all
gap parameters are real, i.,e. A* = A. This assumption is obviously valid only below
the first critical field H,;.

In the first Section, we consider the weak-field limit and derive the paramagnetic
(spin) susceptibility for all three superconducting phases described in the previous chap-
ter. We compare obtained results with those calculated for the BCS theory. In the last
two sections, we focus on the influence of the ferromagnetic term, introduced to the
Hamiltonian of the system, on its characteristic parameters and basic properties. Fi-
nally, we investigate the possible coexistence of the spin-triplet superconductivity with
itinerant ferromagnetism [21, 22, 23]. For simplicity, we consider the absolute zero

temperature case, T = 0.
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4.1 Spin susceptibility in weak magnetic field

In order to derive the expression for the spin susceptibility, we have to add to Hamil-
tonian (2.29) the so-called Zeeman energy term (—upB [ d®r 1*o), which describes
the interaction of spin moment of a particle with the external magnetic field. In the

four dimensional representation (see Section 2.4) it takes the form

0, —o

o,, O
k z

where fli = (GLWCLL 1) 0 k21, @ k2|) is the composite creation operator and o, is the
z component of the Pauli spin operator. Addition of that term into the Hamiltonian
(2.29) results in modification of diagonal elements of matrix Hy, which for the case of

degenerate energy bands and real gap parameters A, yields

Ek - gB,,STZa O: AI: A0
E Sz A A,
Hk — Oa kKt gB,S 3 05 1 : (42)
AI; AO, _Ek + gB,STza 0
Ao, A—l; O, —Ek - gB’S_z

with £ ¢. defined as [ Sz+pupB and Ey = Ey— p. This form of Hamiltonian will be used
in the next sections, as it contains both ferromagnetic and Zeeman energy contributions.
Here, we neglect the ferromagnetic 5% term, as our aim is to calculate the paramagnetic
spin susceptibility.

The eigenvalues of Hy are found in the straightforward manner, by solving the

following eigen-equation

Ek — /LBB — A, 0, Al, AO
0, E B -\, Ao, A
det k+ 4B 0 1 =0
Ay, Ay, —Ey + pupB — A, 0
AO; A—la 07 _Ek - MBB - A

for each phase. Hence, we have

e for phase B

A = i\/Eﬁ + (upB)? + 2A% + 2\/Eﬁ(uBB)2 + A% (upB)* + A, (4.3)

e for phase A

AN =% \/(Bx—pupB)2+ A3 and Ay =+/(Ew+ppB)? + A7, (4.4)
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e and finally, for phase Al

AN =2\/(Bx—pupB)2+ A} and  Xp' = £(Ei + psB) . (4.5)

Note, that phase B (isotropic paired state) can be taken into account only in the weak
field limit. In higher fields, it is impossible to fulfil the condition Ay = A_; = Ay =
Ay = A, since each of the gap parameters will respond differently to the applied magnetic
field.

Now, we can write the expression for the free energy of the system (per site)

FOW, AW = kBT > m(1-f0), (4.6)

k i=1..4
where f (/\E)) is the Fermi-Dirac distribution function and )\E) represents one of the
(four) eigenvalues calculated for a given phase. The index ¢ is has been introduced to
enumerate the solutions. In weak magnetic field, the free energy F can be expanded to

the second order in B only, namely

F B), ... AB) = FOL0), . A0) + (4.7)
. 2
oF oA 1 o2F (oA
+ — = +
(i_12...4 a)\(z) 0B ) 2 { i 124 8( )2 ( 0B
B=0
OF 02\ PF oy oy
+ + : : B?.
i 124 a/\ Y aBQ B=0 i,j:1§, 1<j a/\s)a)‘g) 0B 0B B=0

The minimization condition requires the first derivative of F to be equal to zero, hence
the second term in the expression above is dropped. The last term vanishes, since from

the definition of the free energy (4.6) we have

FO A0 = X FO)
i=1...4
and therefore,
’F
arJary

If we assume additionally, that the energy eigenvalues are considered only to the first
order in B, then we can neglect the last but one term as well. In effect, the equation
(4.7) reduces to the form

FOIB), ... APB) = FOL0), ... AN0) + (4.8)
2 i)\ 2
F 3 S (55)| 2
i=1..4 0 ()\k ) Bt
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By simple reasoning, one can show that 8.7-'/8/\1(2) = —-1/NYy f()\l(f)), what results in

the following final form of the expression for the free energy of the system

FOLB), . N(B) = FN0), .. A00) + (4.9)
(i) (i)
N i=1..4 k 8)\1{ 0B
B=0
The quantity enclosed in the curly brackets is the spin susceptibility x, explicitly
f( )\(Z WEAE
x : 4.10

B=0

Substituting energy eigenvalues calculated earlier for the phases B, A and Al (Egs.
(4.3)-(4.5)) to the above definition and evaluating the derivatives, we obtain expressions

for the spin susceptibility for each phase. The obtained results are as follows

° phase B:
=0 (4.11)
e phase A:
2, 1 exp (M (0)/ksT) Be (4.12)
XA |
kBTN [exp ()\S) (0)/k:BT) N 1]2 E} + A3(0)
exp( ( )/kBT) E12<
[exp (A2(0)/ksT) + 1] B +AT0)
e phase Al:
i 1| e WO/KT) B
XAl = T o |
kgT N - [exp (/\S)(O)/k'BT) " 1]2 E]% + A%(O)

exp ()\(3)( )/ksT)
[exp (A (0)/k5T) +1]

where we have made use of the relations f ()\S)) =f ()\1({2)) and f ()\E;)) =f ()\ff)),
valid for all phases (note the pre-factor 2 in expressions for A and Al phases). As we
have shown in the previous Chapter, in the case of absence of external field (B = 0)

the gap parameters A _; and A; calculated for the phase A are equivalent. Hence, we
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can put A+(0) = A;(0) = A4 and, as a consequence, )\1(:)(0) = /\1&3)(0) = ), where
A = /E2 + A%. In effect, Eq. (4.12) simplifies to

dpp 1 exp (Me/kiT) E}
ksT N < | [exp (M4 /kgT) + 1]* B2 + A%

Xa = (4.14)

Similarly, we notice that the “zero” field case implies the following identities for the

phase Al: A4+(0) = Ayq, what results in AD0) = /E2+ A%, = A, and finally,
)\l(f’)(O) = FEx. Therefore, Eq. (4.13) reads

+ (4.15)

24 1 [ exp (M /ksT) B
XAl = T [

ksT N 4 | [exp O /ksT) + 112 B2 + A%,
exp (Ex/ksT) ]
lexp (Bx/kgT) + 1]

For the flat density of states considered earlier, namely p(E) = 1/W, we rewrite the

above expressions to the form

dyi [1V® de{ exp(M/0)  (e—pp } (4.16)

EWO L™ [exp (/0) +1]7 (= ) + 2%
and
o= s 1 b (7 (6_’1)2 + b () } (4.17)
WEWe L {[exp(”) 1] o= Ay [exp( )+ )

where, as previously, e = E/W, 8 = kgT /W . All tilde-marked quantities are expressed
in units of energy bandwidth W.
Spin susceptibility in the normal state

For comparison, we calculate the spin susceptibility for the normal state. In the external
magnetic field, its energy is modified by the term +ugB, dependently on the spin

orientation of a single particle. Explicitly, we have
ANt = £(Bx — ppB)  and A} = £(Ex + usB), (4.18)

with the derivatives

N2 oAt
a—g = FupB and agi =+ugB . (4.19)
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Substituting (4.19) into (4.10), we obtain

Y = Zzaf )

i=1...4 k k

(4.20)

B=0

2 112 exp ()\(1)( )/ksT) . exp (A (0)/k5T)

2 y

N kgT [exp (AP (0)/ksT) + 1] [exp (AP(0)/k5T) +1]

where we used, again, the relations f ()\1((1)) =f ()\S)) and f (/\1({3)) =f (/\S)). Further-

more, we notice that A0 0) = A¥(0) = FEyx . In effect, the Equation (4.20) reduces to
K Kk

the form

4 us exp (Ex/kgT)

- , 4.21
XNZN kT 4 fexp (Bu/ksT) + 117 (4.21)
which, for the flat density of states 1/W, can be rewritten as follows
442, ri/2
Yy = FB de o (7) (4.22)
WO J2 [exp ( ) + 1]
With help of the relation
1 exp () d 1 d N
T | = e h)
[exp( )+1] € exp( )+1 €
we evaluate the above integral in the straightforward manner, namely
4p% 12 d 3 Ap% N .
== de — — ) =———1f(1/2—-j) — f(—-1/2 — . 4.23
v == [t g e == Q2= i) = f(=1/2 = )] (4.23)

One can easily check, that for the temperature 7'~ 0 (# ~ 0), f(1/2 — z) = 0 and
f(=1/2 — 1) = 1, what results in the following expression for the spin susceptibility for

the normal state

X = 44/ W = (o)’ p er) (4.24)

Note, that xn is temperature independent as it describes the Pauli paramagnetism with

a constant density of states near the Fermi energy.

Now, we express the spin susceptibility for the phases A and Al in terms of xy.
Firstly, we notice that the second term in (4.17) is exactly one half of the expression
(4.22) and thus, it can be replaced by 1/2xy. Considering additionally the limit of
0 ~ 0, we scale x4 and x 41 to the value of xn equal to 4u%/W

1/2 exp ()N\A/0> (e — f1)?
oL { EIREG T
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and

11 e e (3 (c = i)?
XA1/XN—§+% oy € [exp (%)4_1]2 (e_ﬂ)Q_i_A%l .

Taking the values of the gap parameters A4, A 41 and the chemical potential fi4, 141

(4.26)

calculated in the previous Chapter for the case of B = 0, and inserting them into the
above equations, we obtain the temperature dependence of the spin susceptibility for
both phases (as we remember yp = 0). Since the critical temperature # = 0.00331 fulfils

well the condition # ~ 0, the simplified formula for x5 can be used, when normalizing

X4 and xai-

! I ! I ! I ! I ! I

1 |—— APHASE —
—— ALPHASE
| |-—- BPHASE 1
!

08k Jw=o01 -

n=1 ,’

/
" kgT,/W =0.00331 / 1
7/

o
)

SPIN SUSCEPTIBILITY, X, / X,
o
N

0.2

TEMPERATURE, T/ T

Figure 4.1: Temperature dependence of the spin susceptibility for the superconducting
phases: A, Al and B

The evaluated temperature dependence of the spin susceptibilities for the three su-
perconducting phases are shown on Fig. 4.1. The behavior of x 4 (the spin susceptibility

for phase A) is very similar to the results obtained for the classical BCS superconductor
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[24], [25]. It is equal to zero at the temperature 7" = 0 and grows gradually to the value

characteristic for the normal state, which is reached at T =T..

The phase Al has non-zero value of x 41 at 7' = 0, which is approximately equal to
1/2 of the spin susceptibility calculated for the normal state. This effect is caused by
the fact, that nearly half of the Al quasiparticles modes are gapless, and therefore, they

add the normal-state-type contribution to the calculated dependency.

The spin susceptibility for the phase B is identically equal to zero. This is the direct
consequence of the fact, that the phase B quasiparticles are spinless (see the Section

3.1.1) and in effect, do not contribute to xp.
Strictly speaking, the just calculated susceptibility should be modified when the

system approaches the ferromagnetic state (i.e. is close to the Stoner threshold). Namely,

in the weak-field regime we have then

_ Iy
SB!S'Z :ISZ-}-/LBBE (—X+/,LB> B , (427)
guB

where we have assumed that gupS? = ¥B, with the zero field susceptibility ¥ (per site)

to be calculated self-consistently. The self-consistent expression for y reads then

X=X (1 + %) , (4.28)

where x is given by Eq. (4.10).

In effect,

- X
X = . 4.29
1—2Ix/(gus)? (429
Thus, the spin susceptibility diverges at the Stoner point (see next section for the detailed

numerical discussion).

In summary, in this Section, we have considered the weak field limit and thus we
could use again the results obtained in the previous chapter. In the next step, we will
investigate the properties of the system with the ferromagnetic term introduced to the
Hamiltonian. As we will see, this will result in the qualitatively new features of the

presented model.
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4.2 Influence of ferromagnetism on the system at
T =0

So far, we have presented the results obtained for the two-band model of spin-
triplet superconductivity without ferromagnetic interaction taken into account. Now,
we consider the complete Hamiltonian (2.29), written for the case of degenerate energy
bands, real energy gaps and with the Zeeman energy term included (4.1). The isotropic
phase B will not appear in such defined system, since the condition Ay = A_; =
A; = A cannot be fulfilled in the presence of magnetic ordering and applied external
magnetic field. Therefore, only phases A and Al are considered. For simplicity, we
discuss T' = 0 case, which is sufficient for description of the coexistence of spin-triplet

superconductivity with ferromagnetism in the ground state.

4.2.1 The ferromagnetic state - the two-band model

Before we include the presence of the ferromagnetic magnetic moment in the spin-
triplet superconducting state we present briefly basic results obtained for the pure fer-

romagnetic state.

The effective Hamiltonian for the two-band model of ferromagnetic state is derived
from the same starting Hamiltonian (2.3), but this time we do not consider anomalous

T

averages of the type < a_yax > and < aTkafk >, specific for the BCS approach, when

making the Hartee-Fock approximation. Hence, in the four-dimensional representation

it has the form

i =3 fHfi +2) B + 2NIS (4.30)
k k

with the matrix Hy defined as

By, — 157, 0, 0, 0
0, B + 157, 0, 0
H, = K , (4.31)
Oa 05 _Ek2 + ]Sz’ 0
0, 0, 0, —Eyy — 157

For the case of degenerate energy bands and applied external magnetic field, whose

contribution to the energy of the system is represented only by the Zeeman term (4.1)
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(i.e. when the Landau quantization is disregarded), the above matrix transforms to

Ek - EB,STZJ 0, 0, 0
0 By + Ep a, 0, 0
H, = ! kTt Chs , (4.32)
0, 0, —Ex + Ep 52, 0
0, 0, 0, —Ek - gB,gz

where £y g: = I1S% + upB and Ey = Ey — p. Since the Hamiltonian contains only

diagonal terms, its eigenstates and eigenvectors are found immediately. Namely, for the
energy eignvalues we obtain

{ (A ferro = +(Bx — p— 187 — pgB) ,  for o =1 (433)

S jerro = £ (Fx — 4+ IS* + upB) , for o=| ' '

whereas the (quasi-)particle modes remain unchanged. In effect, we can rewrite the

Hamiltonian (4.30) to the form
errro = Z {(Ek — U — LS_’Z — /LBB) (aLlTale + CLLQTCLkﬁ) + (434)
k
Qz T T 7z2
+ (Ek—/j,+IS +/j,BB) (akuaku—f—akuaku)}+2NIS .

Hence, the equation for the ground state energy of the ferromagnetic state yields

Eferro 9 ~ B
. = — > {(Bx—p—IS* — upB)f(Ex — p— I1S* — upB) + (4.35)
N k

N
+ (B — p+ IS + ppB) f(Bx — p+ 1S + ppB) } + 215",

where the chemical potential 1 and the magnetic moment S* have to be evaluated self-
consistently. The chemical potential is derived from the equation for the number of

particles in the system

n = %Z Z < Nkig > (436)

ko 1=1,2
2 ~ _
- N Z{f(Ek_M_ISz—MBB)+f(Ek—,LL+ISz+,uBB)} .
k

The expression for the magnetic moment for the constant density of states near the

Fermi energy is derived in Section 4.2.3 and discussed in detail in Appendiz C.

4.2.2 Spin-triplet superconducting state - modification of equa-

tions for A and u

The Hamiltonian for the spin-triplet superconducting state taking into account both

the ferromagnetic-interaction and the Zeeman terms, has already been introduced in
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Section 4.1. Its energy eigenvalues and eigenvectors can be found by straightforward

diagonalization of the matrix Hamiltonian (4.2). Below we present the results for phases

A and Al, as they are the only stable phases in most cases.

Phase A

e Energy eigenvalues:

N = i\/(Ek — =187 — ppB)? + A2 = £A{"
At =\ /(By — p+ 157 + upB)? + A} = £

e The transformation matrix:

a1t US) ) —U1(<+) ;0 0 Qxct
k1] o 0, 0, UE), _Ult) BT—kT
at—sz Uk+) ; Ul(:r) , 0 0 Qx|
aT_kQJr 0, 0, vl((_) , ul((_) 5ik¢

e Bogolyubow coherence factors:

(+) 1 E 15* B 1/2 (=) 1 E +I15*+upB 1/2
— 1 Ly—p—10"—UBDb ) — _L —M 124
Uy " =75 (1 + = A £ ) L NG (1 + = AL 5
_ 1/2 > _ 1/2
U(+) — 1 (1 _ Bep IS —upB v(—) — 1 (1 _ Bept+IS*+upB
k 2 )\l((+) k V2 NS
Phase Al

e Energy eigenvalues:

Y

)\11(’2 = :t\/(Ek —u— IS’Z — /J,BB)2 + A? = :*:AS—)
Nt = +(Bx — p+ IS* + upB)

e The transformation matrix:

ak14 0, 0, Uy "y —Ug Ok|

aay, || 1,0, 0, 0 B,
- + +

aT_kQT O, 07 Ul(c )a U’l(c ) Okt

al 1o, 0, 1, O, 0 Bl

(+) (+)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

e Bogolyubow coherence factors - u;'’ and v’ - are defined in exactly the same

way as for the phase A.
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The only difference between these solutions and those presented in Section 3.1 lies in
the presence of an extra term 1S*+ upB modifying the expressions for energy eigenvalues
and the coherence factors. So, we can write down the self-consistent equations for the
gap parameters and the chemical potential simply by copying them from Section 3.1

here and correcting them with the extra term, where needed. Hence, we have

e for the phase A:

J 1 BALH

1=2=Y ——tanh
Nzk:/\(H o ( 2 )’
J

k
C I (B
1—N¥)\£_) tanh( 5 : (4.42)
1 Ey—u— 15— ugB
n—2 = NZ{ kK - HB (21 (M) -1)
k )‘k
Fx —pu+1S*+ upB _
¢ BT EIE (07 (3) - 1)}
)‘k
e for the phase Al
_ I Lo (A
1_N¥)\S)tanh< 5 ,
1 Ex—pn—158%—ugB
ot - h B IS )y
k

+ 2f (B — p+I5* + ppB)} .

Note, that for the phase A we have two separate equations for the gap parameters

A; and A 4, since they will have different values in an applied magnetic field.

4.2.3 Self-consistent equation for S*

We define the average value of z — th component of the spin operator calculated per

single state as . .
Sz = — Z( Zl> 5 Wlth Szl = — (Tbim — niu) (444)

2N < vo2
where 7,4 and n;;; represent the average number of particles on 7 — th site and in [ — th
band with the spin orientation “up” and “down”, respectively. The factor 2N, which
appears in the denominator, results from the fact, that the number of states available

is doubled by the orbital degeneracy D = 2.
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The quantity S? can also be regarded as the average magnetic moment per orbital in
the system. We have to evaluate it self-consistently, since as soon as it acquires non-zero
value, the ferromagnetic interaction tends to modify the solutions. Therefore, our set of
self-consistent parameters is enhanced additionally with the appearance of SZ.

Taking the transformation to the momentum space, the equation for S% has the form

5= g7 X ((mar) — () (4.45)

Expressing the operators ng4 and ny in terms of the quasiparticle operators, defined
by the transformation rules (4.38) and (4.41), we obtain the self-consistent equations

for S* for the phases A and Al, respectively. Namely, we have

Si- e { P e ) - 1
B - M-i-)\éks;z + ppB (2f ()\1({—)) — 1)}
and
S R L L O R MY

— 2f (B — p+I5* + upB)} .

At the same time, we can write the corresponding expression for the pure ferromag-

netic state

_ 1 _ _
Sv = 5% ] {f(Bx—p— 18— ppB) — f(Bx — p+ 15 + ppB)} . (448)

Its characteristic property is the existence of non-zero spontaneous magnetization in
the absence of external magnetic field. The condition for appearance of such state is

determined by the Stoner criterion, which reads

Ip(Ep)=1=1, (4.49)
where p is the density of states. For p = %, we obtain
I ~
—=1=1. 4.50
- (4.50)

This means, that usually at I = 1 a continuous transition from the paramagnetic to the

ferromagnetic state occurs. In our case of constant density of states, a discontinuous
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transition occurs at that point. The magnetic moment of the ferromagnetic state for
the case of " = 0 and flat density of states is discussed in detail in Appendix C.

The equations for 5% together with equations for the gap parameters and the chemical
potential constitute the complete set of self-consistent equations. With their help, we
determine the values of the parameters describing the system, which in the next step

are used for evaluation of the ground state energy of each phase.

4.2.4 Complete set of self-consistent equations at 7' = 0 - nu-
merical solutions

In the limit of 7" = 0 the self-consistent equations take the simpler form. For T" — 0,

its reversal 1/T" — oo, and hence the Fermi-Dirac distribution function transforms to

the Heaviside “step” function: f(E) =% §(—E). Additionally, the function tanh(a/T),

which apears under the sum in the equations for the gap parameters, reduces to 1. Now,

we have

e for the phase A:

J 1 J 1
== —: == —
N N0
n—2=—— + 4.51
Ng{ ALD A& (4.51)
gz__iz Ek—u—ISZ—uBB_Ek—u+15z+uBB}
4T AN 4 AP AL

1=2=% —
N%AS)
1 Ey—p—I58*— ugB =
nol1=_Sl_ftxk—H BB 90(j— By — IS8% — ugB) % (4.52)
k k
— 1 1 Ek—/,L—IS_’z—IU,BB =
P pp— 20(p — By — IS% — ugB) Y |

where )\1(:’) and )\f:) are defined as follows

M = (Bu—p+ IS+ pupB)? + A7
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For comparison, we write down the set of self-consistent equations for the ferromagnetic

phase:

n= %Zk{H(M—Ek-i-IS'Z-FMBB)+9(M—Ek_1§z _“BB)}
(4.53)
Sferra = 70 Lac {0 = B+ IS* + psB) = 0(u = B~ 15" = pusB)}

As previously, we replace the sum + 3", with the integral f | /2 dEp(FE) and, for the
flat density of states p(F) = 1/W, transform the equations above to the dimensionless
form. Again, we express all quantities in the units of the energy bandwidth W; tradi-
tionally, we mark them with the tilde sign (e.g. A = A/W). In addition, we introduce
the dimensionless parameter [, defined as ugB/W, representing the contribution of
external magnetic field to the band energy of a single quasiparticle. In effect, we obtain

the following integral equations

e phase A:
1/2 1/2
1=J [ 1=J ¢~
1/2 ~1/2
1/2 —p—I5%— — i+ 157
n—2=—[" g {1 Call “T‘9+5 (4.54)
~1/2 () P G
S’Z__l 1/2d e—ﬂ—fgz—ﬁ_e—ﬂ—{—fgz-{—ﬁ
A7y ~1/2 ¢ A G
e phase Al
1/2
1=J [
1/2
12 e—ﬂ—fS‘z—ﬁ o
1= - ~ 20(ji — ¢ — 157 — 4,
n—1 /_Wde{ 5 Y 20(i—e— I8 ﬁ)} (4.55)
e (e—p-IS-p
- 20 —e—1S* — )
S = 4/1/2 { e +20(h—e—1IS m}

e normal state

n:2/l/2 de {9(/1_6+f§z+5)+9(/1_6_f52_5)} (4.56)
S :1/1/2de {9(u—e+[5’z+,3) o(n —e—ISz—ﬁ)}.
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The integrals above can be expanded analytically. The final form of the above equations

is presented in Appendix D.
For d-electron systems the value of J is of the order 0.1 — 0.3 U. Thus, we take

J = 0.125 ] for numerical calculations. Using the relation I = U + 2J, one can easily
check that then J ~ 0.16 U. As in the previous chapter, we consider the quarter-filled
bands case, i.e. n = 1. According to the discussion provided in Appendix C, this value
of band-filling implies that for the normal state at the Stoner threshold the chemical
potential is i = —0.25 and the saturated magnetic moment is S* = 0.25. The Stoner
criterion takes place at I = 1 and hence, since we have chosen J = 0.1251, at J = 0.125.
Then the paramagnetism is unstable in a discontinuous manner. We understand the
Stoner criterion in this manner, not in the sense of a continuous transition taking place

for this two-band system!

In this and in the following sections we investigate the properties of the system below
the modified Stoner threshold (i.e. for J < 0.125). In the magnetically saturated state
spins of all quasipaticles are oriented parallel to the magnetic field direction (o =1).
Therefore, the energy gap for m = —1 does not appear in the system and we loose

possibility for making comparisons between the phases A and Al.

The numerical results for A,,, fi, and S?, calculated for the case of J = 0.12 are
shown on Fig. 4.2. As we can see, the magnetic moment for both phases (A and Al)
exhibits the linear dependence on applied magnetic field 5, which is characteristic for the
normal (paramagnetic) state. So, in terms of the type of dependence, one can say that
the magnetic properties of the system are not influenced much by the pairing (but as
we will show later on, pairing does modify significantly the character of phase transition

between the paramagnetic and the ferromagnetic states).

The gap parameters A; (or Asy) and A_; (or Ay}) behave differently in an applied
magnetic field. The first parameter increases with the increasing 3, whereas the latter
decreases and vanishes, when the saturation limit is reached. At this limit, no particles
with spin “down” orientation exist, as all of them have already been altered by magnetic
field to spin “up” orientation. Therefore, no pairs (and associated with them energy
gaps) of the type || can be created. Note, that at 5 = 0, both gaps have similar values
(cf. Fig. 3.1).

The chemical potential dependence cannot be probably explained in any simple
manner. The argument, which could be used in case of phase A, is that that with the

increasing magnetic field the quasiparticles migrate from the spin “down” to the spin

68



T I T I T I T I T
- J=01251 SATURATION |
0.25 J/W=0.12 T

L n=1 u

o
[N

0.15

MAGNETIC MOMENT, <§">
o
=

0.05

0.015 3\, A -

-0.25005=
0.005 s .
-0.2501 A .
i L
0 0.005 001
0 L l L l L l L l L
0 0.002 0.004 0.006 0.008 0.01

APPLIED FIELD, p B/W

Figure 4.2: Field dependence of the basic parameters of the system. In the inset we

present the field dependence of the chemical potential in the two phases.

“up” sub-bands. Since at the same time magnetic field shifts the corresponding bands
upwards and downwards, respectively, the chemical potential value remains unchanged.
The difference in the behavior of the phase Al is probably caused by the fact, that
two types of quasiparticles - gapped and gapless - coexist in this phase, and therefore p
reflects that circumstance. The results obtained for the case of § = 0 and T = 0 are
qualitatively the same as those developed earlier in the absence of magnetic field (cf.
Fig. 3.2).

The results presented here are used in the next section as an input in determining
of ground state energy for each state. Afterwards, we will construct phase diagram and

investigate the stability of the phases.
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4.2.5 Ground state energy and the phase diagram

We write down the expressions for the ground state energy of the phases A and A1,
using as a starting point Eqgs. (3.40) and (3.47) derived in the previous chapter for the
case of S = 0 and 8 = 0. This time, we consider additionally the free term 27 (52)2
(cf. Eq. (2.29)) and substitute previously determined energy eigenvalues with those
described by (4.37) and (4.40). Hence, we obtain

e for the phase A

EA 1 B )
N = Ng{w A -1) + X7 2N - 1)) @7
+ %gEk_ A%JA—MFQI(SZ) |
e for the phase Al
ETél = _Z{ NS (2P = 1) (4.58)

+ (B — p+I5* + ppB) (2f (B — p+ IS* + ppB) — 1)}

2 A2
+ Nzkj(Ek— +§+21<Sz)

e for the normal state
EAl _ _
T —Z{Ek—M_ISZ_MBB)(Qf(Ek—M_ISZ_MBB)_l)
+ (B — p+ 18 + ppB) (2f (B — p+ IS* + upB) — 1)} (4.59)

+ %Ekj(Ek — )+ 21 (57
As previously, for the limit of 77 — 0 we notice, that Fermi distribution function
vanishes for the gapped quasiparticles (i.e. f(A¥) — 0), whereas for the gapless modes
it simplifies to the Heaviside function: f(Ex—pu-+1S*+ugB) — 0(n—I15%— upB— Ey,).
Simultaneously, we transform the above expressions to the dimensionless integral form,
with help of the procedure carried out earlier. In effect, the equations for ground state

energy yield

e for the phase A
EA 1/2
¢ — de {—

A+ A2
N o

() _ 1 )2
A =X 42 (e— )} + o7 +2I(S7)",  (4.60)
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Figure 4.3: Exemplary ground state energy of A and Al phases vs. applied magnetic
field. Note a transition between A and Al state with the increasing field.

e for the phase Al

Eél A? .2 1/2 - -
2o _ B o9r(ge / A f(e— -5 — 4.61
~ o7+ (S)+_1/2de{ AP 4 (e—a—I5"—p)  (4.61)

+2(e—p+I8+B)0(L—I5—B—e)}
e for the normal state

EN 1/2 N - 5 S
¢ = 2/1/2656 {e—a—I5 = B) 0+ 15 + 5 o) (4.62)
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Figure 4.4: Phase diagram - transition between A and Al phases below the Stoner

threshold to the totally spin polarized state.

The exact form of calculated integrals (below the Stoner and saturation thresholds)
is presented in Appendix D. Taking the results for the gap parameters, the magnetic mo-
ment, and the chemical potential obtained in the previous section and substituting them
into the corresponding expressions for Fg, we evaluate the magnetic field dependence

of ground state energy for superconducting and normal phases.

The numerical results are presented on Figs. 4.3 and 4.4. In the former Figure, the
dependence of ground state energy as a function of magnetic field is shown. The coupling
constant J and the band filling parameter have been chosen as J = 0.12 and n = 1. As
we can see, at the B = 0 limit phase A has the lowest energy, what corresponds to the

results obtained earlier in Chapter 3. However, at the value of field upB ~ 2 x 1073W

72



a transition from A to Al phase occurs, and the new phase becomes the stable one for
the system. This is probably caused by the fact, that for the phase A1 magnetic field
re-orients the spins of gapless (unbound) quasiparticles very easily, whereas in the case
of the phase A a higher energy is required to re-orient the spins of the pair by destroying

of the bound state with the opposite spin directions.

The field dependence of the phase A and Al stability is shown in Fig. 4.4. The
border line, at which transition between both phases takes place, is marked as a solid
line. It is probably the first-order line, although the confirmation of this conjecture
is not to prove numerically, as the energy differences hit the accuracy (~ 10719) of
the solutions. For the field B = 0, phase A is stable up to the Stoner critical point,
although the value of magnetic field, at which the phase transition appears, decreases
with the increasing coupling constant J, an understandable fact. Thus, close to this
point, phase A is preferred only within very narrow range of the field values. The phase
A disapears exactly at the Stoner point and only the Al phase survives, at least for the
model density of states selected, for which only the jump to saturation occurs. Note,
that the threshold for an appearance of the A1 phase does not coincide with the onset

of saturated ferromagnetic state (marked with a dotted line).

4.3 Coexistence of spin-triplet superconductivity with

itinerant ferromagnetism

One very interesting feature of our mean-field approach should be mentioned. Namely,
the S#(B) in the paired state dependence does not approach exactly the value S* = 0
for B = 0, even though the system is below the Stoner threshold. To test this very
intriguing conjecture that the pairing itself may introduce a uniform ferromagnetic po-
larization, we have calculated the remament value of the spin magnetic moment in the
field B — 0 when approaching the Stoner critical point. The result is displayed in
Fig. 4.5. We observe a beautiful critical dependence of the moment as we approach the
Stoner point. So, indeed, the pairing washes out the critical Stoner point, i.e. makes it
a hidden critical point. It should be noted that this critical behaviour is observed even
though the pure magnetic transition (i.e. in the pairing absence) is discontinuous! It
is interesting to ask to what extent the quantum critical fluctuations can change this

mean-field result. The result also means that the superconducting coherence length
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becomes infinite at the Stoner point.
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Figure 4.5: Magnetic moment per site per orbital near the Stoner threshold. The inset
exhibits the nature of the magnetic transition when the pairing is absent. Note that
the discontinuous magnetic transition is washed out by the effect of spin-triplet pairing

making the magnetic transition point a hidden critical point.

The results displayed in Fig. 4.5 contain also one additional feature exhibited in the
inset. Namely, the inset shows that if no pairing were present then the mean-field para-
ferro-magnetic transition would be discontinuous (for the assumed constant density of
states) and directly to the saturated state. The pairing smears out this discontinuity and

therefore, we have an extended critical regime for J/W — 0.125. Additionally, because
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of the absence of the critical point for S#(J) dependence it is difficult to say where the
ferromagnetism will disappear as a function of e.g. pressure in actual systems. This is
exactly what is actually observed for the newly discovered superconducting ferromagnets
[26, 27].

The fact that the spin-triplet pairing can induce a weak ferromagnetic ordering must
mean that the coherence length & of the paired states is larger than the classical distance
(V/N.)'/3 between the electrons in this system of volume V' containing N, electrons. The
overlap between the Cooper pairs effectively induces a spin-spin interaction, which can
be understood in the following manner. The superconducting gap creates the effective
magnetic field Hj, = X;ilAmi, which, in turn, induces magnetic moment M; ~ x;iAni
(xji is the superconducting susceptibility) and in turn, a negative contribution to mag-
netic energy ~ (S%)2.

The analytic estimates on the other side of the Stoner point, i.e. in the weakly
ferromagnetic state, have been carried out elsewhere [21, 22] and will not be repeated

here.
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Chapter 5
A brief summary and conclusions

In this Thesis we have studied model aspects of the spin-triplet superconductivity,
as well as its coexistence with a weak itinerant ferromagnetism, both induced by the
Hund’s rule coupling. We have concentrated on the weak coupling (the Hartree-Fock-
BCS) limit to supplement the standard discussion of itinerant ferromagnetism with the

detailed discussion of a local, interorbital spin-triplet pairing.

We have calculated the stability of various phases (labelled by B, A, and Al), as
well as their basic thermodynamic properties, both expressed in terms of Bogolyubov
quasiparticles, generalized to the present situation. For this purpose, a four-dimensional

formalism has been used throughout the Thesis.

The most important physical result is the discovery of a hidden character of the
Stoner quantum critical point, caused by a non-vanishing spin polarization of the Cooper
pairs (i.e. by the appearance of the off-diagonal long-range ordering). Also, in the
Supplement we show that even without the spin-triplet pairing, the Landau orbits of a
Cooper pair with the parallel spins are possible and stable in the diluted limit, if the

repulsive Coulomb interaction is taken into account.

The spin-triplet local pairing requires a simultaneous existence of occupied band
lk 11> and | — k 2 1> states. This means that in realistic cases only relatively small
portions of the available phase space near or on the Fermi surface is available for the
pairing. Therefore, before implementing the present pairing mechanism to concrete sys-
tems (UGes, URhGe), we have to know the band structure of those systems in the
ferromagnetic state. This is the reason why our considerations are to be considered as
a theoretical modelling at best. The application to real materials would also require

the inclusion of hybridization of the single-particle states, which will complicate essen-
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tially the situation, resulting in the k-dependent gaps, as well as in appearance of the
intraorbital gaps. Nevertheless, the simplicity of our present analysis, albeit in a model
situation, indicates clearly that the spin-triplet real-space pairing mechanism is feasible
and it would be valuable to implement it in a realistic situation.

A separate class of problems concerns the analysis of this mechanism in the strong-
correlation-limit. In that limit, among other problems, a competition between the spin-
singlet and the spin-triplet pairing channels appears. Such a competition allows for a
generalization of the so-called ¢t — J model to the multi-orbital situation. These consid-
erations will be detailed elsewhere [A. Klejnberg, Ph. D. Thesis in preparation].

On the basis of the present formalism one can determine a phase diagram on the
plane: temperature - band filling, incorporating spin-triplet superconductivity, ferro-
magnetism and antiferromagnetism (or spin-density wave state, in general). This task
requires a separate project, as it involves a substantial computing time and effort.

One should mention once more again that only the spatially homogeneous state has
been considered, even in the presence of the applied magnetic field. This means that,
strictly speaking, our results are valid only in the Meissner state. The most impor-
tant question here, to be considered first is, whether the vortez-lattice formation takes
place before the totally polarized state (A1) becomes stable. This question is particu-
larly relevant in the paramagnetic phase close to the Stoner point. A derivation of the
Ginzburg-Landau-type effective functional for the multiple-component order parameter
would be a starting point for such a discussion. We should see progress along this line
soon.

In the following Supplement, representing also an integral part of the Thesis, we
provide a somewhat specialized discussion of a single Cooper pair, which can be in the

spin-triplet state, induced by the repulsive Coulomb repulsion.
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Supplement: A single Cooper pair

in an applied magnetic field

In this Supplement we enclose the text of the paper submitted recently for publication
[P. Wrébel and J. Spatek, submitted to Phys. Rev. B].

Two-electron bound states attracted a renewed attention recently. This interest is
stimulated mainly by research in quantum dots [28, 29] and on electron states in doped
two-dimensional systems [30], as well as in the high-temperature superconductors. [31]
In the quantum dot systems we have reached a threshold for studying the electron states
in artificial atoms and other d-dimensional quantum wells of finite size. These states
are often studied in detail in the presence of an applied magnetic field, since then we
can study systematically the magnetooptics, i.e. the optical or tunnel transitions as a
function of well controlled external parameter. Also, the two-electron states play an
important role in the scaling theory of localization as they can propagate coherently
even when the single electrons cannot [32].

In this Supplement we consider pair-electron states [33] in a planar system, bound
by a spin-independent pairing potential of the size 2a. We additionally put the whole
system in an applied magnetic field and determine the nature of the ground state. It
turns out that the spin-triplet configuration with the center-of-mass angular momentum
L =1 is the stable configuration in most cases. In other words, the proper state in a
magnetic field is that of the orbiting bound pair on the cyclotron orbit with L = 1. The
effect of Coulomb repulsion is also taken explicitly into account in the second part of
the paper. The long-range Coulomb repulsion enforces the L =1 — [ = 1 transition in
an appilied field.

The energy of first few excited states are also estimated. Finally, we also point out
why the original Cooper approach [15] cannot be generalized in a strightforward manner

to the nonzero-field situation.
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S.1 Formulation of the problem in an applied mag-
netic field

The binding energy of the Cooper pair [15] is given by expression

_

o lF) -1

where p = p(ep) is density of states at the Fermi energy ep, which for two-dimensional

Ay = hwp (S.1)

system of surface S, and with a parabolic dispersion relation, is equal to mS,y/mh? (we
have assumed periodic boundary conditions), wp is the cut-off (Debye) frequency and
(—V) is the coupling constant introduced originally by Cooper as a representative value
of matrix element < £'|V (r)|k > (V (r) - the pairing potential energy, r - relative distance
between the two electrons, |k > - Bloch state of free electron with momentum k). In
the limit of vanishing Fermi surface (p(er) — 0) this bound state disappears. This is
not the case [31] for the pairing in real space particularly in the presence of an applied
magnetic field, as we discuss in this paper. Namely, we assume the following form of

pairing energy in real space:

-V forr<a

V(r)= { (S.2)

0 forr>a

where 2q is the range of the attractive potential energy, which is substantially smaller
than the system (or a quantum dot) size. Such a well may simulate a pair binding within
a quantum dot. One can also say that we consider a single bipolaron state formed by an
attractive (non-self-consistent) potential field in an external magnetic field. For the time
being, we neglect the repulsive Coulomb interaction among the particles. The single-
particle part is taken into account in the effective-mass approximation for the sake of
simplicity (it is realistic if the bound-state size is substantially larger than the lattice
parameter).

Hamiltonian of a two dimensional system of two electrons placed in a uniform mag-

netic field and interacting via the pairing potential (S.2) has the form

1 : : Lo
H= 2m [(—th1 —eA1)’ + (—ihVy — €A2)2] — (A1 +f2) B+ V(ri,r2) . (S.3)

Indices 1,2 correspond to the coordinates of the electrons, respectively. The quantity
ii = 2upgs is the electron spin moment, where s - the spin operator and g - the Bohr

magneton (note, that we take the Zeeman energy term with minus sign). Eigenvalues
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of the total spin of the system S = sy + s are S = 0,1. Also, S* = sf + s§ = 0, £1.
The quantity m is the electron effective mass.

For a magnetic field oriented perpendicularly to the system plane, (z-axis), the rota-
tional symmetry of the problem allows for the choice of the symmetric gauge of vector
potential A = (—y,x,0)B/2, which is also a convienient choice for the shape of the
proposed pairing potential. Introducing the center of the mass and relative coordinates,

defined as follows:

I

{R:% :>{r1:R+§

r=r; —r, ro=R -7

we separate Hamiltonian (S.3) into two parts, which describe respectively the motion of
the pair center of the mass and their relative motion with the reduced mass p. This is
possible because the pairing potential depends only on the relative distance r of the two
interacting particles. Next, the transformation to polar coordinates can be performed

resulting in the following expression for the Hamiltonian:

Muw? 1hw,

R 1 1, 2
H = - [RaR(RaR)+ﬁa¢] + IR g, (S.4)
R? 71 1., pw? 5 ihw, A
-5 [;a,(rar)Jrr—Qa(b] + Byt = 0, — 2upBS. + V(1)

Coordinates R, ® and r, ¢ correspond respectively to the center-of-mass (with the mass
M = 2m) and the relative coordinates (with the mass 4 = m/2). The cyclotron
frequency w, is defined as |e|B/m (in SI units). Thus, we have a system of two indepen-
dent harmonic oscillators: one describing the Lorentz orbit of the pair (center of mass)

and the other accounting for the relative motion of the particles.

A. Noninteracting pair: a brief summary

In the absence of the pairing potential energy eigenvalues and eigenfunctions of the

system of two noninteracting electrons are given by the respective formulae [34]:

(Eo) 3 =hwe(N+L+n+1-S,+1), (S.5)
\Ij}g\;gﬁzl(C’ q)a§= ¢) = % eiL(I) eil¢ UNL(Q) unl(g) X(Sa Sz)’ (86)
1 ¢ L
U = (2 Lk ,
~nz(¢) R/ NI(N + L)! e 2¢2Ly(C)
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and
1 €1
2

un(§) = —F——= € 2¢?

rgy/nl(n+1)!

where N, L and n, [ are characterizing the orbital (IV, n) and angular-momentum quan-
tum number (L, [) for the center-of-mass and the reduced-mass parts, respectively. The
term x (S, S,) represents the spin part of the wave function and for given values of (S, S,),
it is described by following expressions: x(0,0) = 1/v/2(| 11> —| 11>), x(1,1) = | 11>,
x(1,0) = 1/v2(] 11> +| 11>), x(1,-1) = | J4>. Only positive values of L and [ are
allowed, ® and ¢ are the corresponding azimuthal angles. Dimensionless coordinates ¢

and £ are given by the expressions:

2 2

R h r
- . h 2 - - . h 2 — )
¢ R with R Mo’ and & o7 with rg o,

(S.7)

Parameters Ry and ry represent the magnetic lengths for the corresponding wave-
function parts. They represent the classical cyclotron radii of the whole pair (that
encircles their center of mass) and the radius of orbiting one electron relative to the
other.

The parity of the wave function (S.6) is provided by the factor (—1)*(—1)5*1. Due
to Pauli’s principle the total wave function must have an odd parity. Hence, even values
of L +1 yield S = 0 (spin singlet state) and odd L + [ values require S = 1 (spin triplet
state). However, for a non-interacting system the energy levels (S.5) are degenerate
with respect to the possible location of the cyclotron orbit center. Hence, the states
with S = 1, S, = 1 are energetically distinguishable as states with the lowest energy
for all allowed sets of quantum numbers N, n, L, | corresponding to the two-electron
Landau levels, with their spin moments oriented parallel to the applied magnetic field

B. The energy of non-interacting two-electron system is thus equal to

ESpp = hwe(N+n+L+1). (S.8)

B. Real-space bound pair in magnetic field

In a direct analogy to the Cooper-pair problem [15], we can build the ground-state
wave function as a linear superposition of the functions obtained for the non-iteracting

system, namely
(I)}qv’% R @ r, d) Zan qjii:zl ),@,5(7‘),¢) . (Sg)
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Note that only the sumation over n is performed, since operators of angular momentum
L,, l,, operator S, and part of the Hamiltonian dependend on coordinates of centre
of the mass does commute with the full Hamiltonian (S.4). Hence, only the quantum
number n is not conserved in the presence of interaction. Thus, the parity of the ground-
state wave function is defined in the same way as before, i.e. the spin singlet pairing is
performed only for even values of L + [ and the spin triplet - for the odd L + [ values.

Taking the expectation value < ®%7;|H|®%7; > and making use of the orthonor-
mality relations we obtain the self-consistent equation for the coefficients a,

2on O Vorn

Qpr — — , S.10
(Eu) ¥ — 5 .

where Vi = J&dr 1 up (E(r)) V(1) un(E(r)), and E7% is the energy of the system,
which depends on the quantum numbers S, S,, L, l. Substituting into the above equation
V(r) of the form (S.2) and changing the integration variable from r to & = r?/2r%, we

can rewrite the matrix element V,,,; in the form

Vo
\/n!(n + D)In'l(n’ +1)! /0

Vit = — "Hdge €8 ILE LNE) . (S11)

Thus, the pairing potential is renormalized by extension of the pair wave function. We
are interested only in the states with the lowest energy, so we can put main quantum
number of the centre of the mass N as equal to zero (it represents the case with the
vanishing center-of-mass kinetic energy). In result, we arrive at the Fredholm-type
integral equation:

>n Ot Varnl

Qprp = — 5.5 5.5
Wz Dz
(Eo)n’Ll - ELl

: (S.12)

where (Eg)557 = hwe (n+ 14 L — S, +1). The essential difficulty in solving this equa-
tion is rooted in the calculation of matrix element V,.,;. It cannot be carried out
analytically for all values of magnetic field. Nevertheless, the analysis of the limits of
weak (rg >> a) and strong magnetic fields (rg << a) can be easily performed, as we

show next.

C. Weak magnetic field: a < rgy

The limit of weak magnetic field is obtained in the case, when the range a of the pairing
potential well is small compared to the magnetic length rg. In that limit the relative

motion is only weakly perturbed by the magnetic field. Then upper limit of an integral
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in (S.11) &, = a?/2r% becomes very small (for B — 0 magnetic length rg — o). In this
case integration goes over values of &, which are very close to zero, allows us to expand
the integrand function in the power series of £, as well as and limit our considerations
to the lowest nontrivial order. Such analysis yields the following form of the pairing

amplitude in the presence of an applied field:

L /_H dg €Y (1 + o(€)) . (S.13)

Varn 1)=-
e <) ol + (1) (e + 1)1 o

Integrating out this expression, we obtain the following formula for matrix element

% a2 I+1
Vn’nl = - ( D) ) . (814)
(L4 1)y/nl(n + D/t (n! + 1) \27ir

Substituting this result into (S.12) and performing few elementary steps (following the
original derivation of Cooper), we finally obtain the equation for the energy eigenvalues

in the form

Vo a2 \'t! 1 1
=—— | — : S.15
l+1 <2r§1) ; (' + 1) (B33 — B (58.15)

n! Ll

This expression can be rewritten in the following dimensionless form:

1
) B! +14+L—S,+1)— E>

1= l+1 +1 816

l—|— 1 X P Z n'l(n’ +l ’ (5.16)
where x = Vyma?/2h” characterizes the relative depth of the potential well; 3 = B/B,
is dimensionless magnetic field expressed in units By = mV,/he and EE;S * = E*E;SZ Vo
is self-energy of the system relative to the pairing energy depth V4. Binding energy

AT = A5 /V of the pair of electrons is defined as follows
AL =B — (B » (S.17)

where (E,)r; = hwe(L 4+1)/Vy = B(L +1) (cf. eq. (S.8) ) corresponds to the lowest
energy level occupied by the electrons with angular momenta L, [ in the absence of the
pairing iteraction.

Numerical solution of (S.16) is shown in Fig S.1 for y = 10. For given y = 1 and
the range of the potential, a = 100 A, we obtain for m = mg the potential depth equal
to Vo = 1,5 meV and By ~ 13 T. The following three initial states were considered:

1) L=0,1=0,S5=0, S, =0 - spin- and orbital-singlet state
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2) L=1,1=0,5=1, S, =1 - spin-triplet state with non-zero center-of-mass angular

momentum,;
3) L=0,1=1,5=1,8, =1 - spin-triplet, p orbital state of the pair.

One should note that the state L = 1 and [ = 0 is the Landau state for the pair, whereas
the | =1, L = 0 state represents orbitally antisymmetric (p) state of the pair.
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Figure S.1: Binding energy of two electron system in a weak magnetic fields. The inset

specifies exemplary set of the model parameters for y = 10.

The binding energy increases with the increasing magnetic field. This A increase
is connected with the circumstance that the electron wave function shrinks with the
increasing B. However, the growth rate strongly depends on the value of the relative
angular momentum [. This result is also in good correspondence with the physical
intuition, since the pair with non-zero relative angular momentum can resist more effi-

ciently the compressing action of the applied magnetic field. In the other words, it is
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much harder to squeeze the wave function of a rotating system. The difference between
the solutions for L = 0 and L = 1 is caused by an additional negative contribution
arising from the advantageous spin orientation appearing in the latter case.
Surprisingly, the binding energy of the pair vanishes while approaching the limit of
zero magnetic field. This is the result of an improper choice of the set of basis functions
used to construct the ground-state wave function. In other-words, for B — 0 the size of
the wave function is rather provided by the Cooper-pair coherence length rather then
by magnetic length. These functions and the corresponding energy eigenvalues were
calculated in the case of vanishing wave function in infinity. In effect the wave function
magnitude vanishes identically in the B — 0 limit. This is not correct, since we expect
a bound pair state at B = (. This nonanalyticity will be corrected in Next section,
when we proposed a wave function diffrent from (S.9), which will provide a correct

Cooper-pair binding in the limit B = 0.

D. Strong magnetic field: ry < a

The decomposition (S.9) of the wave function should describe properly the physics in the
limit of strong magnetic fields i.e. when 7y < a. In this case the upper limit £, = a?/2r%
of the integral in (S.11) becomes very large and therefore, can be approximated by
infinity. In effect, the matrix elements take now the form

-
== WWH);MH [Tt oo, G

Va

Using the orthonormality of the Laguerre polynomials
[ dg e Ly (©) (€)= ni(n + 1) b
we obtain the following expression for matrix elements
Virnt = =Vo O (5.19)

Substituting this result into (S.12) yields the following equation for the energy eigenval-
ues of the pair
B = (Bt — Vo (S.20)

Hence, the binding energy is
AL = ER = (B = (B)7i = Vo — (Eg)ui -
For the three particular cases considered above, it provides the following limiting value
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o for L=0,1=0,5=0,5=0: Aj=07°" = hw. — Vg
efor L=1,1=0,5=15,=1: Ai7i" =)
o for L=0,1=1,5=1,85=1A757" = -V}

In the case S =1, S, = 1 (spin triplet, parallel spin orientation) the binding energy
reaches its maximal value V4. This result can be easily explained. For strong magnetic
fields whole ground state wave function of the pair is confined within the range of the
potential well. Hence, a further increase of the field B does not change anything, since
the expectation value of the pairing part will remain the same.

The situation is quite different in the case of the spin singlet (S = 0). Here, the
bound state is destroyed as it is the state of higher energy than the state of the two

non-interacting electrons with parallel spin orientation.

S.2 Variational approach for an arbitrary applied

field

In this Section we apply a variational method to the Cooper problem for B # 0. This
is because the limit of weak magnetic field the Cooper-like approach does not yield a
non-zero pair binding energy for B = 0. Analysing Eq.(S.14) we notice that the matrix
element V., vanishes in that limit, and hence the equation (S.15) for eigenvalues may
have solution only in the case when the eigenvalues of energy are equal to the energies
of non-interacting pair of electrons, i.e. A = 0. Vanishing of these matrix elements
is caused by the improper choice of a set of basis functions used. These functions are
simply spread over the whole space. Hence, it is necessary to introduce a factor, which
will keep them localised, if a bound state exists. Obviously, such an approach must also
reproduce correctly the B — oo limit.

The ground state energy of the pair can be estimated by the well-known variational
formula

< U HT >
Eq<F=—-m—
¢ = <YW >

where |¥ > is a trial function. We discuss again the three situations discussed in the

(S.21)

previous section.
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Case A: L=0,1=0,5=0,5,=0 - spin singlet state, s orbital state

We can choose the wave function (S.6) with N = n = 0 (ground state) as the trial

function ,
11 - 1 1 -£
_ H — H 822
Vorry ¢ Vor Ry ¢ ( )

However, due to the discussion at the beginning of this paragraph, we must introduce

Y(r,R) =

variational parameters into it, which are responsible for localization of the wave function.

It can be realized by defining the function

1 r2 1 _R%
U(r,R) = € 1a? e S.23
(r, R) 2T V21 ( )

where « is the parameter in the relative part of wave function and 7 is inserted into

the center-of-mass part. Both parameters characterize the size of respective parts of the

total wave function. The trial function is normalized (we have assumed here that the

correlation length of the wave function is negligibly small in comparison with the crystal

size in order to perform integration over r and R over the interval (0, 00)).
Substituting the function (S.23) into Eq.(S.21) and taking Hamiltonian in the form

(S.4), we obtain after the integration over R, r, ® and ¢

Mw?n? B wia® B

+ + s — hwS. =V (1 — e/%%) | (3.24)

EGSE(aan): 4 4M7’2 4 4/,&0[2

Minimizing this expression with respect to o and 7, we obtain the upper estimate for
the ground state energy. Condition 0F(«,n)/0n = 0 yields 1y, = Ry. Hence, we can

rewrite the dimensionless version of (S.24) for S, = 0 as follows

Ea, min:R (1/2 1 _ a2 2
( n H):é+_X52+4a2Xa2_(1_ea/Za)

7 5t 1 , (S.25)

where f = B/By and x were defined previously. It is convienient to define a new

dimensionless, variational parameter A = «/a. In effect, we can write

1

EOR) _ 5 X o 1
B 4\2x

- 55 —(1—e M2y, (S.26)
0

x B2+

Minimizing this equation with respect to A for different values of 3, we can determine the
influence of the applied field on the binding energy Afigf;; 0 — Emm()\, n)— (Eg) L=0,1=0-
The related numerical results are shown in Fig. S.2 for x = 10 (for a = 100 A, we obtain
Vo = 15 meV, and By = 130 T). The binding energy of the singlet pair decreases with

the increasing magnetic field. The bound state is destroyed at the critical value B, ~ By.
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Figure S.2: Binding energy vs. magnetic field - variational solution for three different

quantum states.

The pair binding energy depends strongly on the value of parameter x describing
potential well. In the absence of magnetic field (8 = 0), minimum of energy is reached
for \2

min

= 1/2In(2x), where x > 1/2. Below this value there is no solution (bound

state). Hence, the expression for the energy is
Emin(8 = 0) = —5——

This dependence of energy on parameter x in zero field is displayed in Fig. S.3.

To conclude, the binding energy depends on two parameters: x = Vyma?/2h* and
By = Vy/2up. The first of them is nonzero even in the limit a — 0 and Vj — oo, with
Voa? finite, i.e. for a contact attraction —Vpa?d(r). The second expresses rather large
applied-field value, for which the Zeeman energy is equal to the electrostatic binding
potential. The additional parameter is the self-consistently adjusted pair orbit size
A= a/a.
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Case B: L=1,1=0,5=1, 5, =1 - spin-triplet state

In this case the wave function for non-interacting system with quantum numbers
N =n=10=0and L =1 can be chosen as the trial function. Variational parameters

« and 7 are introduced as follows:
1 r? R R?

V(r,R,®) = € 1a? e®e ? | S.27
( )= T N (5.27)
After some algebra we obtain the following expressionfor the trial energy
Mw?n? h? hwe pwia? R 2 92
E = ¢ = : — hweS, — Vo (1 —e @/27) . (3.28
(v, ) T e il o (1—e ) - (5.28)

Condition 0E(a,n)/0n = 0 yields n = Ry. The dimensionless form (for S, = 1) of the

energy is

EQn=Ru) B N L (1) (5.29)

T R R Ay vl
The binding energy Aijféoz = Erin(a,n) — (Eg)r=1,=0 vs field § investigated from
above expression is shown also in Fig.S.2. The binding energy increases in this case up
to maximal value 1, in good correspondence with the result obtained with the Cooper
approach for the case of strong field. The bound state is preserved thanks to the parallel
spin orientation. The state represents the ground state of the pair in L = 1 state.

This solution in the field absence (8 = 0) is the same as that in case A with the

same restriction x > 1/2.

Case C:L=0,1l=1,5=1, S, =1 - spin triplet-state, p-orbital state

The trial function selection is based on the wave function (S.6) written for quantum
numbers N =n = L = 0 and [ = 1 with variational parameters o and 7, i.e. has the

form ,
. 72
. Pt “Pe" 1 (5.30)

Vb R) = o T e

The trial energy has then the form

Mw?n? R? pw?o? h? hw,
£ £ — hwS, S.31
4 * AMn? * 2 + 2ua? + 2 “ (5-31)

Vo |1 — e (14 2]
202

Substituting n = Ry (obtained from the condition 0E(a, n)/dn = 0), and taking S, = 1,

E(a,n) =

we can write the dimensionless version of E(«,n) as

E(A\,n= Ry) 1 —1/2)2 ( 1 )]
90
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The binding energy Aizéféfl = Enin(o,n) — (Ey)L=0,=1 Vs field § is shown in Fig.
S.2. Similarly as in the case B binding energy grows up to maximal value 1. However, the
growth is slower and all the time binding energy in the case of non-zero relative angular
momentum is smaller than in the case of non-zero center-of-mass angular momentum.
This can be explained as follows: the center-of-mass rotation does not affect pairing
process, while the relative part does.

Solution for the energy in the field absence vs parameter x is presented in Fig. S.3.

In this case the bound state appears for x greater than 3.35 (see the inset).

O T T T T
o
! \
‘. | \\ .\‘ 17
! \ \
‘ \ \. —
_012 B ‘ _012_ \\ \‘ |
o \ \ N
> A \ N
~~ . L \ \_.
< ) \
> 0,41 \ =
! \ - 1 | L
%:D \ O’40 3 6
L | \ i
5 \
\ =
(2,) 06kL \ VO 15 meV 1
) \-\‘ a=100 A
Z :
[at]

- 1 I 1 I 1 I 1
5 20 20 60 80
POTENTIAL STRENGHT, x = a’V,m/2h’

Figure S.3: Binding energy vs. potential well parameter x = mVya?/2h* for B = 0. The
inset shows the detailed behaviour in the x — 0 limit.

It is interesting to see how the variational parameter A behaves with increasing field.

This dependence is shown in Fig.S.4 for three considered sets of quantum numbers and

91



for x = 10. Parameter A can be considered as a dimensionless correlation length of the
relative part of the wave function. In the case of fixed A = rg/a, and for 8 — 0 (dotted
line) the correlation length diverges, what corresponds to the fact that wave function
is not localized. This is not the case, when A is obtained from the minimization of the
system energy. The correlation length is finite in zero field and approches asymptotically
the value rgy with increasing B. The relative wave function is always localized inside

the potential well range, since A < 1 for all values of magnetic field B/B,.

l_. I T ' T
0,6F : -
: V,=15meV
I a=100A |
' B,=130T
. 7
015_ \ n
< -
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] A Lo i
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)] Ly y
S 04F~~~ 17, .
< .l e .
d i T~ \\\ ]
(\\ TS o N
0: 7 /\\ ~ \:\\
1y TSN
0,3_ ! L\\ \:\\ -
q /\\0"0’;\\
] ff tx,\g’*"
0’ 1 l 1 l 1
2O 0,5 1 15

MAGNETIC FIELD, B/B,

Figure S.4: Variational parameter A = «/a (considered as size of relative wave function)

vs magnetic field. Dotted line represents fixed variational parameter at the value A =

ri/a.

Summarizing this Section, the states: spin-singlet with L = [ = 0 and the spin-triplet
with L =1 and [ = 0, are degenerate in the field absence, but the spin-triplet state with

L =1 is favored for B > 0. In other words, a stable pair state in the absence of the
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Coulomb interaction is a pair rotating together (I = 0) on a Landau orbit with L = 1.
The binding into a pair takes place only above the critical value of x. The parameter
ratio x = Vp/ ﬁ has a simple interpretation. Namely, the momentum uncertainty in
a box of the radius 2a is of the order Ap ~ fi/a. Therefore, the kinetic energy uncertainty
for the pair in its relative motion is of the order (Ap)?/(m/2) ~ h?/[(m/2)a?]. Thus, the
parameter x expresses the ratio of pair binding potential to the kinetic energy increase

due to the formation of the bound state inside the potential well.

S.3 Effect of the Coulomb repulsion

As we have seen above, the applied field favors the rotating spin-triplet state with the
canter-of-mass angular momentum L = 1 and the relative angular momentum [ =
0. There is no critical magnetic field for a singlet-triplet transition if the repulsive
interaction is absent. This critical field absence is caused by the circumstance that for a
single pair there is no wave-function rigidity [35] induced by the interaction with other
pairs. Also, the repulsive Coulomb interaction will favor an antisymmetric space part of
the of the wave function, i.e. the spin-singlet configuration. In this Section we analyse
the effect of the repulsive interactions among the partners. We model this interaction

with the help of the two forms of the potential energy V,.,(r), namely

1) V(r)=U ¢, and

2) V(r) = Ua?6P(r).

The first case with U = Z—Z , where k is the static dielectric constant of the environment,

describes the long-range nature of the potential in this planar system. The second case

describes the well screened potential center placed in the center of the attractive well.
To calculate the system energy in the present situation we take again the total wave

function in the form (S.23) with = Ry. The trial energy in the case 1) for L = 1,

[ = 0 state has the form

E(/\ RH) ﬁ /\2 9 1 —1/2)2 T 1
o) _E L2 — (1= /22 \/j - )
Vi 2+4x5 +4)\2X (1—e )+ QU)\ (S.33)

The binding energy in this case is

AL _ Bminlsm) _ g (S.34)
Vo Vo | |
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The expression for the energy of other states can be obtained in a strightforward manner
and will not be reproduced explicitly here.

In case 2) we represent the ¢ function in the polar coordinates in the form §®(r) =
15(r)6(¢). Within this representation (and leaving aside the problem of indeterminacy
of the angle ¢ for r = 0) we obtain the trial pair energy for the L = 1, [ = 0 state in

form

E\R A2 1
M:é_{__x/@a_'_

o0 11
- > ryvvie (1—e V) 4+ —U— . (S.35)
0

2 N2

The binding energy is described in the same way as before (S.34). Note that in the state
with L =0, [ = 1 the d-potential does not influence the pairing, since its wave function

vanishes in the potential well center.
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Figure S.5: The pair binding energy as a function of relative interaction magnitude U/V;
and for the field B = 0. A comparison is made between the long- and the short-range

interactions.
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In Fig. S.5 we plot the binding energy of the pair as a function of relative interaction
magnitude U/V; for the field B = 0. As expected, the repulsive contribution reduces
the binding energy of the L = 1, [ = 0 state, if the interaction is of long-range nature.
However, for U/Vy > 0.4 (cf. Fig. S.6) in the case of the short-range interaction, the
L =0, [ =1 state with parallel spins becomes stable. The relative stability of the [ =1,
S, = 1 state in the presence of the repulsive (d-like) interaction is reminiscent of the
instability with a large [ invoked long time ago [36] and induced by a purely repulsive

interaction when the higher-order effects (and screening) are both important.
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Figure S.6: The binding energy of the pair in the states indicated as a function of relative
interaction magnitude U/V; and for the field B = 0 in the case of the J-type repulsive

potential.

The combined effect of the repulsive interaction and the magnetic field is illustrated

in Figs. S.7 a-b. In extremely high field the pair states become unstable for the long-
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range repulsive potential. Obviously all the Figures were plotted for a rather weak
repulsive interactions. This means that in order to observe those states x = Vyma?/2h?
must be rather large and U/V} rather small, i.e. the artificial atom must be rather large

and placed in a highly polarizable medium.
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" 04 o8 12

MAGNETIC FIELD, B/B
Figure S.7: Combined effect of the repulsive interaction and the magnetic field on the
binding energy: a) for the d-type of repulsive potential, and b) for the screened Coulomb
potential. Note the singlet-triplet transition in the case b) for U/Vj, > 0.

Finally, in Fig. S.8 we display a typical dependence of the pair size as a function
of the applied field for the cases specified (the L = [ = 0 singlet and L = 1,1 = 0

triplet states have the same size). The pair size « is always substantially smaller than
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the pairing potential range 2a, i.e. A = a/a ~ % Thus, the orbiting pair in the applied
field can be easily accomodated within the potential well boundaries at relatively low
fields.
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Figure S.8: Typical bound-pair size vs. applied magnetic field.

S.4 Conclusions

We have considered two-electron states induced by a pairing potential in real space in
an external, uniform magnetic field. Due to the difficulties with the direct calculation

of matrix element V,,,;, our studies were limited first to the cases of weak and strong
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applied field. As in the standard Cooper-pair case, we compose the pair wave function
from those of noninteracting particles taken here in a nonzero magnetic field. In both
cases the presence of the field increases the binding energy of the pair, approaching with
B — o0 to its maximal value provided by the depth Vj of the potential well. Within such
a direct approach, the limit of zero magnetic field is not properly restored, since binding
energy of the pair decreases to zero. This result is inconsistent with the calculations
performed in the field absence. This inconsistency has its source in the improper choice
of the basis of noninteracting functions to describe the ground state.

This problem is fixed within a variational approach. The trial function is constructed
with a variational parameter, which is responsible for the localization of the pair wave
function in the system. This approach leads to a non-zero binding energy in the field
absence, and properly restores the solution for very strong magnetic fields in both cases
of the spin singlet and the spin triplet paired states. The repulsive interaction has
a strong influence on the magnitude of the binding, but still favors the spin-triplet
configuration. We point out that this triplet ground-state configuration can be observed
when a planar quantum dot is deposited on a substrate of highly polarized medium.
The most interesting result is that for B # 0 the triplet state with the center-of-mass
angular momentum L = 1 is stable, not the usual spin-triplet state with the relative

angular momentum [ = 1.
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B. Two-band model: general solution (Ay # A_; #
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D. Final form of self-consistent equations for A, i, S*
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Appendix A

Expression of Hund’s rule term by

the pairing operators A;,, and A;-Lm

The Hund’s rule coupling term can be expressed either by the spin operators éil
expressed via fermionic operators or by the local spin-triplet pair operators A, Af. Here,
we show in a straightforward manner the equivalence of both representations.

We start from the full Hund’s rule term written with help of the spin operators Sj,
S
2 (Sil -Sar + 2 nilnw) . (A.1)
il (1A

In the spin space, operator S; has the Cartesian components (S%, S,

S%), where each of
them is responsible for the projection of a spin of a single particle on the selected axis.
As usually, one expresses the S? and S}, components in terms of the spin creation and
annihilation operators S;f and S;; defined as a;r”a,-l 1, and ale L @it, repectively, where the
first of them changes the spin orientation of a particle from down to up, and the second
- vice versa. For this purpose, we use the following relation
z _ 1 g+ -
{ jy = i((inL t i—)) (A-2)

2
Simultaneously, the component S} expressed in the language of second quantization
yields

1

Si = 5 (nay —nay) (A.3)

where n; is the operator of number of particles with spin up, whereas n;; counts

particles with spin down. As a result, the spin operator S;; can be rewritten to the form

1 _ 1 _
Sil = 5 (S; + Sil’ ;(SZ—; - Sil)’ nm — nili) . (A4)
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Now, we can decompose the first term from (A.1) as follows

1 1 _
Si- S = 7 (52; + S, ;(SZ}L - Si)s My — ”z‘l¢> X
1 _
;(sz—' - Sil’)v N4y — nz'u)

_ i(s;JrSu) (i +Su) - % (Si = Sa) (it = 5a)
)

1 -
X 5 (SZ_;—/ + Sz'l’i

1
+ 1 (i — nary) (Rapy — N

Since the terms S;; S;, and S; S;; vanish in the expression above, it reduces to
1 fror ameny 1
Sz’l . Sz’l’ = 5 (Szl Sz'l’ + Sz'l Sil’) + Z (nmnm + niunim - nmniu — nmnm) . (A5)

In the case of the second term from (A.1), we make use of the definition of the
operator m;, namely ng = n;4 + nyy, as it represents the total number of particles on
site 7 and orbital /, and thus should consider both spin orientations. Therefore, we

obtain
NNy = NypMpa + Mg Mg |+ Ny M), + Mg Mgy (A.6)
Substituting (A.5) and (A.6) into (A.1), we can rewrite it to the form

3 1 _ _
z (Szl . Sil’ + Z nilnil/) = Z (5 (S:{Sd, + Sil Sz+l’ + nilTnil,¢ =+ niunil,T)
U (1A£1) s (1A£1)

+nilTn,-l/T + niunHIQ (A?)

It is straightforward to show, that n;;ni4+ and ngy n | can be directly expressed by the

operators A and A' (see Eq. (2.4) for the definition of operators). Explicitly,
naynay = alpaalpain = alyalaiaa = Ay i Aivgn=r (A.8)

where we have used the anticommutation relations fulfilled by the operators a and af

(note that [ # {'). Similarly, we can show that
niuni” = A}ll’,m:_1Ail’l,m:fl . (Ag)

In the last step, we take into account the remaining terms in (A.7). Expressing the

operators St and S~ in terms of the operators a, a', we obtain

: (S;lL Sy + S S + narnayy + nz‘l,Lnil’T) =

1
= = (ajnama!l,iam + aguama}”aim + a}lTa’ilTaIl’Lail'l + a}uama;-'l,Tail,T)

[\
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(a}”a;-‘uailfTam + abyalpaiyaur + alyaly aiyair + a;'rlia;'rl’Tail'TailJf)

lalhal, (arany + aiyai) + alyaly (aiyais + aira,))

N =D =
—

1
- (aIlTaIz/¢ + a;'rl,Lal‘Ll’T) X 7 (awyaas + auraqy) = Aly g Awim=o (A.10)
Combining the results from (A.8)-(A.10), we can recast (A.1) in the form
3 i
> (Sil S + 1 nil"il’) = > Al Aivim - (A.11)
il (1) il (11 ym
1

One can easily show, that A;-'”,,mAil,l,m = Ajnm A m = A}LmAim. In the case of a two-
band system, this gives additional factor 2 on the right side of (A.11), when executing
summation over [ and I’. Namely,

3 T
Z Sil . Sz’l’ + Z niln“:) =2 ZAill’,mAil’l,m . (A.12)
Al (1A im

This provides us with the identity (2.5).
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Appendix B

Two-band model: general solution

(Ao # A1 # Ay # Ay, By # Eyo)

In Section 3.1 we have discussed the solutions of the Hamiltonian (2.29) for the
three principal phases of the system in the absence of magnetic field and ferromagnetic
ordering (5% = 0). Here we present the most general case, i.e. for arbitrary band energies
Eyxi # Fyxo and for arbitrary values of the gap parameters, which all are nonzero and
differ from each other, namely Ay # Ay # A_; # Aq (cf. also [16]).

The Hamiltonian has the 424 matrix form

[AL]? 4 [A_ ]2 + 2|A[?
2J ’

Hur = HHf +2Y B+ N (B.1)
k k

where

Ekla Oa Ala A0
0 FE A A_

Hk — ; k1, 05 1 : (BQ)
Ay, Ao, —Ek, 0

AO; A—la Oa _Ek2

with Ey1 = Ex1 — p and Eyxs = Eyxs — p, for simplicity. As previously, we assume that
all the gap parameters are real.

In the case of arbitrary band energies, it is not possible to write down the set of
equations based on Bogolyubow-de Gennes wave equation (2.38) in the same manner
as before (cf. Egs. (3.2)-(3.3), (3.25)-(3.26), (3.41)-(3.42)). Thus, in order to find

the eigenvalues of the Hamiltonian (B.1), we have to diagonalize the matrix Hy. The
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problem relies on solving the following equation

Ekl - /\a Oa AI: A0
0, Eua-X\ A, A
det “1 ° Yol =o0 (B.3)
Al: AOv _Ek2 - /\, 0
AO: A—la O: _EkZ—)\

The obtained eigenvalues are described by the expression

1 1 . ~ = /2
Nat..a = 5 (Bia = Fie) £ 5 {(Ekl + Eo)® 4 2A% £ 24/ A% — 45+ } : (B.4)
where the total gap A is characterized by the relation
A 2 2 2\ 1/2
A= (AT+A% +273) ", (B.5)

and the gap asymmetry parameter § is expressed as follows

RV NN (B.6)

Note, that for the gap anisotropy parameter equal to zero (5 = 0) gapless modes appear
in the system, explicitly Ax; = Fi1 and Ao = — Fyo.

One can easily check, that after substituting the conditions defining the phases A, Al,
and B, respectively, into the general solution (B.4), it reduces nicely to the eigenvalues
for the corresponding phases.

The eigenstates for the general case Ay # A_; # Ay # Ag and Fy; # Eys can be

found with help of standard algebraic methods, and therefore will not be presented here.
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Appendix C

Magnetic moment of purely
ferromagnetic state: T=0, p=1/W

case

The dimensionless equations for the magnetic moment and the chemical potential
of the ferromagnetic state, written for the case of 7= 0 and the flat density of states
p=1/W, read

_ 1 /2 _ -
Sjerro =3 |1, de {0 =+ 15" +8)~0(i—c IS = p)} . (C1)
n=2/_11//22d6 {0([L—6+I~,S_'z+/5)-I-H(ﬁ—e—fgz—ﬁ)} , (C.2)

where 6 is the Heaviside step function and f is defined as up B/W. The first integrands
in the expressions above represent the occupation for the spin “up”, and the second -
spin “down” states.

For the two-band system the maximum number of particles per site is n = 4. We
consider the case with 0 < n < 2 here, which is equivalent to the situation with 2 < n < 4
(the result of particle-antiparticle symmetry). For n = 2 the Slater antiferromagnetism
arises, and for n = 4 we have the state, when all the states are occupied and where no
magnetic state is possible.

The saturated ferromagnetic state for n < 2 occurs when all particles have the
same spin orientation and no further change of magnetic moment is possible. Then, all
particles occupy the bands with the spin orientation preferred by the system, whereas

the bands with the opposite spin orientation are empty. Hence, the magnetic moment

107



(per site per orbital) for the saturated state simply yields

S

sat — 4 (CB)

Below the saturation point both types of bands are filled with the particles and
therefore, both integrands in Egs. (C.1) and (C.2) are non-zero. Hence, we can rewrite

the equation for the chemical potential in the form

A+I5*+p8 j—I5%—
n=2 / de +/ (C.4)
—-1/2 1/2

what results in the following expression for [

n—2
4

= (C.5)

As we can see, it depends neither on the magnetic field nor on the magnetic moment
value.

Similarly, we evaluate the expression for the magnetic moment, for which the integral

g 1 A+I15% 4+ A—I15%— c6
T2 /_1/2 6_/1/2 ] (C-6)

1
5= ~,3=>1r_1 (C.7)

equation yieds

and hence, we obtain

We recovered the Stoner criterion here. Normally, for ] < 1 the magnetic moment
depends linearly from the applied magnetic field and is equal to zero in its absence. The
situation changes dramatically at the value of I equal to 1. Then the magnetic moment
diverges, what results in the possibility of existence of non-zero magnetic moment for
B — 0, i.e. spontaneous magnetization appears in the system. Therefore, the Stoner
criterion defines the value of I = 1, at which the system undergoes the continouus phase
transition from paramagnetic to ferromagnetic state.

Finally, we determine the critical value of I, for which the saturation occurs in
the absence of magnetic field. For the saturated state the second integral in (C.6)
should vanish, as it represents the average number of particles with the opposite spin
orientation. This condition is fulfilled, when all the particles are transferred from the

spin-down subband to the spin-up subband, i.e. when

_ 157, <—1/2. (C.8)
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Substituting (C.5) and (C.3) into the expression above, we obtain
I>1. (C.9)

This means, that at the Stoner critical point the magnetic moment acquires the value
characteristic for the saturated state, i.e. the transition is discontinuous.
Taking into account the results obtained for the magnetic moment below and above

the Stoner threshold, we can describe its dependence on the Stoner parameter I in the

§e =
55 =
where we can observe the jump in the magnetic moment value at the Stoner critical

point (cf. Fig. 4.3).

The results obtained in this Appendix are widely used in Section 4.3 as a reference

case of 8 = 0. Namely,

~p M~
(AVARRVAN

f 1
o o (C.10)

s O

for

solution for the superconducting state.
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Appendix D

Final form of the self-consistent

equations for A, u, S* and Eg

In this Appendix, we present the final form of the equations derived in Section 4.2,
where they have been reduced to the integral form written for the case of T'= (0. Here,
we show the explicit analytical solutions for the integrals, thus presenting the exact

expressions used in the numerical calculations.

Self-consistent equations for A, y and S?

The sets of self-consistent equations have been collected in Eqs. (4.54) - (4.56).
Solutions for the normal state case have been already presented and discussed in the
previous appendix (cf. (C.5) and (C.7) ). Thus, we focus on integrals written for the
phases A and Al only.

There are three types of integrals, we need to take into account. Explicitly,

) /1/2 d 1
a € = ’
12\ Jle— pF IS T B2+ A2,

b) /1/2 e-iFI5 T4
12 \Je— pF IS F B)2+ A2, ’

and
1/2 -
¢) / de 0(ji— e — 15% — B) .
~1/2
The last integral, for the system below the saturation and Stoner threshold, simply
yields

p—I5%-B

/I/Qdeﬁ(ﬂ—e—sz—ﬁ):/ de:ﬂ—sz—ﬁ—i-%. (D.1)

—1/2 —1/2
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In the case of integrals a) and b), we substitute ¢ — fi F IS8* F 8 = ¢, and then recast

them into the form

/1/2ﬁ¢f52¢ﬂ . 1
a o € —
—1/2—jFIS25p (€)? + A% m
and .
/1/2ﬁ¢15zw , ¢
N € —.
~1/2—-paFIS*Fp (€)?2 + A%/i

We notice, that a) is the integral of the very well known type [dz 1/v/x% 4 a2, which

has the following solution
/dac 1/Va2+ a2 =In|z+ Va2 +a?|+C,

whereas the integral b) is expanded as follows

/dmx/\/x2+a2 =Vz2+a2+C.
Hence, the expressions for integrals a) and b) yield

1/2—aFIS*FB+/(1/2 = iF1S* F B)2 + A?
2) = In / ,lf:F > F5 \/( / MiF ~_:Fﬁ) T (D.2)
~1/2 - pF 15 F p+/(-1/2— b F 15 F B)? + A},

and

b) = /()2 - A F IS B2+ A2, —\(-12 = AT IS5 B2+ A2, (D3)

Now, collecting the results (D.1) - (D.3), we write the final form of self-consistent

equations for phases A and Al.

e phase A
L7 1/2—fi—I8* = B+/(1/2— i — IS* — B)2 + A2
= n — —
~1/2— i — I8 = B+ \/(1/2+ i+ IS* + B)2 + A2
Lo 1/2 = i+ 15"+ B +/(1/2 = 5+ 15 + )2 + A}
= n

~1/2— i+ 15+ B+ /(1/2+ i — IS - B) + A}

n—2 = \J(1/2+ i+ 15+ )2+ A2 —\/(1/2 — i — 5% — B) + A2
+/(=1/2 = i+ 157+ B2 + A2 = \J(1/2 — i+ 157 + B)2 + A2

Si = 1/4J(1/2+ i+ 155+ )2+ A2 — 1/4/(1/2 — i — [5% — B)? + A2
+1/4\/(1/2 = i+ 152 + B2 + A2 = 1/4 \/(=1/2 — i+ 15 + )2 + A?
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e phase Al

e 1/2— i~ 18% = B+/(1/2 — i — IS* — B)? + A2
= n — —
~1/2 = i = 1§ = B+ J(1/2+ i+ IS% + B)2 + A2

n—2 = J(1/2+a+15 + B2+ A2 —\/(1/2 - 1 — [5* — §)2 + A2
+2 (- 15" - p)

S = 14 (/24 i+ 15+ )2+ A2 —1/4\/(1/2 — i— 157 — §)? + A2
—1/2 (3 15" - p)

The sets above were evaluated with the help of iterative method. The parameters

were determined with the numerical accuracy of the order ~ 10719,

Equations for ground state energy Eg

The expressions for the ground state energy are presented in Egs. (4.60) - (4.62).
As previously, all integrals encountered in these equations can be expanded analytically.

We will present here the solutions only for the two of them, namely

1/2 ~_
o [

and

/ - -
b) /1 22de (c—ATIS TR O(+ISF+B—0c).

The remaining integrals are of the type [dr x and [dx, and thus their solutions are

trivial.

The integral a), with the help of substitution introduced previously, can be simplified
to the more general form [ dxv/z? 4 a?, whose expansion reads

1 1
/d:v\/x2+a2=§x\/$2+a2+§aln|3:—|—\/:132+a2|+0.

Hence, the solution for a) is as follows

a) = 1/20/2-aF 155 8))(1/2- i[5 5 ) + A2,

— 12 (12— pF IS F ) (-1/2 - pF I8 F p)2 + A2, (D.4)
1/2-pFIS*F B+ /(1/2 - b T IS* T B)* + A2,
12— RF IS F A+ \(-1/2 - R FIS*F B2 + A3,

2
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In order to evaluate the integral b), we execute the Heaviside function (the same
assumptions are made as previously), what results in change of upper limit in the inte-

gration range, explicitly

1/2 L s LIS Lp -
/ de(e—,u:FISZ:F,B)H(Mj:ISZ:lzﬁ—e)=/ de (e — i F IS F8) .
—1/2 -1/2
Hence, we obtain
b) = —1/4— p+I5 £ B — (i 157 FB)?. (D.5)

With the help of the results (D.4) and (D.5), we can derive the final form of the

expressions for ground state energy for both phases (A and Al) and for the normal

state.
e phase A
—= = —-1/2(1/)2—a-1IS —ﬁ)\/(l/Q_u_[Sz_ﬂ)2+AT
— 1212+ 5+ 15+ 8\ (1/2+ B+ 15+ 6)2 + A2
1/2— =I5 — B+./(1/2 — i — 157 — B)2 + A2
— 1/2A2In [2=R= 15 =5 Va2 S - Br + 47
—1/2— = IS7 = B+ \/(1/2+ i+ IS + B)2 + A2
— 1212 B+ IS+ B (1/2— i+ 1S5+ B + A3
— 1/2(1/2+ i~ 15 - g\ (/2 + 1 — IS — B)2 + A?
12 A7) 1/2— i+ 18 + B +1/(1/2— i+ I5* + B> + A}
_ N 5 5
Y 12— a8+ B+ 2+ - 15— By + A
A4 A% -\ 2
- 2,U«+T+21<S)
e phase Al
EAl o _
o = —1/20/2- 157 - py(1/2 - - 157 - B + A3

— 12124 p+ 15+ B8\ (1/2+ 5+ 15+ B)2 + A2
1/2—fi—18% = B+/(1/2 — i — IS* — B)2 + A2

— 1/2 Ailn — —
~1/2— i~ I5% — B+/(1/2+ i+ I8 + B) + A?
- 2~—(~—I~Sz—ﬁ)2+A—%+21(SZ)2—1
g 27 4
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e normal state

Ef ~ ~2 7 Gz 2 5.\ 2
~ == 1/2= 20— 2 ~ 2(I5° + B) +21 (57)

This completes the formal expressions for the basic physical quantities.
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