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Abstract

In this Thesis we implement the recently introduced novel method of de-
termining the correlated electronic states. The method combines the exact
diagonalization of the Hamiltonian in the Fock space with the optimization
of the single particle basis in the Hilbert space. It is called EDABI ( Exact
Diagonalization - AB Initio approach ). In this method all the configura-
tions of N interacting electrons in the Fock space are accounted for rigorously
within an assumed subspace of Hilbert space of single-particle states for given
system. The single-particle orbitals forming the subspace (and defining the
field operators) are adjusted in the ground state of those correlated systems.
We exploit and discuss major features of the method and relate it to the
existing methods such as the multiconfigurational interaction (MCI-SCF)
method used in quantum chemistry. We apply first the EDABI method to
small systems such as the light atoms and ions, to test the subsequent start-
ing basis choice. Next, we implement the method for the description of sim-
ple molecules and molecular ions. The calculations are performed using the
hydrogenic-like wave-function basis and include virtually all non-relativistic
electron-electron interactions. The effect of crystalline field and of the spin-
orbit interaction are also introduced to the Hamiltonian of interacting 3d
electrons in small clusters. The values of the crystal-field splitting are calcu-
lated with the adjusted 3d wave functions.



Streszczenie

W niniejszej rozprawie doktorskiej ukazujemy niedawno wprowadzong metode
wyznaczania stanéw skorelowanych elektronéow. Metoda ta taczy Scista di-
agonalizacje Hamiltonianu w przestrzenii Focka z optymalizacja bazy jed-
noczastkowej w przestrzenii Hilberta. Proponujemy dla tej metody nazwe
EDABI ( Exact Diagonalization - AB Initio approach ). W metodzie tej
wszystkie konfiguracje N oddzialywujacych czastek sa uwzgledniane w sposéb
Scisty wewnatrz zatozonej podprzestrzenii przestrzenii Hilberta stanow jed-
noczastkowych dla danego uktadu. Orbitale jednoczastkowe wyznaczajace ta
podprzestrzen (i zarazem definiujace operatory pola) sa dostosowywane w
stanie podstawowym oddzialtywujacego uktadu. Ukazujemy i rozwazamy na-
jwazniejsze cechy tej metody i odnosimy ja do istniejacych metod takich, jak
metoda wielokonfiguracyjnego oddzialywania (MCI-SCF) wykorzystywana w
chemi kwantowej. Stosujemy metode EDABI do matych uktadow takich, jak
lekkie atomy i jony, w celu ukazania sposobu doboru bazy jednoczastkowe;j.
Nastepnie, uzywamy metode do opisu prostych molekut i jonéw moleku-
larnych. Obliczenia sg przeprowadzane z wykorzystaniem bazy wodoropodob-
nych funkcji falowych i zawieraja wszystkie nierelatywistyczne oddzialywa-
nia elektronowe. Wplyw pola krystalicznego i oddziatywania spin-orbita jest
wprowadzany do Hamiltonianu oddziatywujacych elektronéw 3d w malych
klastrach. Wartosci rozszczepienia spin-orbita sa wyliczane dla zoptymali-
zowanych funkji falowych 3d.
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Chapter 1

Introduction

One of the most important aims of quantum physics is to determine elec-
tronic states in different microscopic systems and devices. Those properties
are needed to describe the nature of the ground state and the excited states,
as well as the electronic transport properties. In the context of atomic physics,
the Hartree-Fock approximation is regarded as a starting point, as it provides
the standard hydrogenic-like hierarchy of the single-particle energy levels and
terms [1|. In the solid-state physics, on the other hand, the methods based
on the ideas of periodic potential and of the Bloch function form a basis,
into which the correlation and the exchange effective potentials are built into
to obtain a quantitative description of the band structure and other prop-
erties [2]. These two approaches are successful for many systems, some of
them even quantitatively [3|. It is absolutely astonishing, that an effectively
single-particle approach, which neglects the many-body corrections, can be
so effective for many molecular or solid-state systems. It works particularly
well for three dimensional systems far away from the Mott-Hubbard localiza-
tion, i.e. for systems of high density, where the local correlation effects are
screened out.

The situation changes when we try to describe low-dimensional and/or
strongly correlated systems. In those situations not only the local correlations
can play a dominant role, but also the nature of the resultant quantum liquid
may deviate from the Landau Fermi-liquid behavior. In such situation other
methods of approach should be applied, which allow explicitly for a mixing
of different (and renormalized) single-particle configurations. The EDABI!
method is one of them and as such should be tested on the simplest quan-
tum systems. The main purpose of the present Thesis is to provide such tests.

To state it briefly, the difference between the EDABI approach and the

'the acronym stands for Exact Diagonalization combined with an Ab Initio approach.
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8 CHAPTER 1. INTRODUCTION

currently used LDA+U [4] or LDA+DMFT [5] methods is associated with
the circumstance that the former method treats exactly the electronic corre-
lations, albeit so far in model situations. In effect, one can trace the evolution
of the system in a systematic manner as a function of the interatomic dis-
tances.

1.1 The EDABI method as applied to the nano-
scopic systems

The nanoscopic systems are the systems close to the atomic systems, but
with specific many-body properties. This nontrivial feature of those systems
has already been shown explicitly on the example of nanoscopic chains and
ladders [6]. Here our aim is different. Namely, we start from few-electron
atoms and build up more complicated structures of atomic (nanometer) size.
This provides us with a method of addressing in an exact manner the prop-
erties of those systems by enriching theoretical models with the number of
states defining the field operator and thus the second quantized Hamiltonian.
The EDABI approach helped us to realize that the theoretical models of cor-
related electrons are defined by selecting the subspace of relevant dynamic
processes. This is the only approximation made for the systems considered.
This feature of our approach calls for reexamination of some of the many-
body text-book examples of correlated systems. This is one of the principal
aims of this Thesis. In the separate work [7] we study extended clusters and
rings. The two works [7, 6] and the present one form a coherent picture of
the EDABI method at the model- and formalism- building stage. The future
research should concentrate on its application to concrete systems (cf. also
Chapter 6 of the present Thesis).

1.2 Aim and scope of the Thesis

As we already said above, the purpose of this Thesis is to discuss a formal
basis of the EDABI method, as well as to test it on the simplest atomic,
molecular, and nanocluster systems. The method used is a combination of a
direct exact diagonalization of a microscopic Hamiltonian in the Fock space
combined with a variational optimization of the orthogonalized single-particle
wave functions contained in the microscopic parameters of second quantized
models of these systems. We discuss, in particular the obvious circumstance
that all the parameterized many-body models of correlated electrons amount
to selecting a truncated Hilbert subspace of the states regarded a priori as
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the only relevant to the dynamics of the system at hand. Here we optimize
the error in selecting such a subspace by minimizing the ground state en-
ergy with respect to subspace basis of wave functions. The physical examples
considered in the Thesis allow starting from the hydrogenic-like atomic wave
functions of variable size, which in turn adjust themselves in the resultant
correlated state of the entire system. The self-adjusted (renormalized) wave
equation for those wave functions is proposed, but its solution presents to us
a formidable task to be solved directly. We also discuss the difference between
our method of approach and other methods: the Hartree-Fock (HF) and the
multiconfigurational-interaction method (MCI) used frequently in quantum
chemistry.

Turning to the main results of the Thesis, in Chapter 3 we consider sim-
ple atoms and ions (H~, He, He™, Li, Be™) composed of s and p starting
orbitals only. Were we show the convergence of the methods with enlarging
the single-particle basis in the Hilbert space. These calculations could be ex-
tended by incorporating the n = 3 staring atomic wave function. This has
not been done, as some excellent variational calculations of the ground-state
energy have been performed containing up to 2000 Gaussian functions with
as many variational parameters! Our method provides relatively fast conver-
gence of the results.

In Chapter 4 we consider the simplest many-site cases: Hy and H, sys-
tems. We introduce there the many-body covalency and the mobile orbitals,
i.e. the starting atomic orbitals centered at points shifted by a distance from
their parent nuclei positions. The most of the results in the Fock space are
analytic and therefore, the results there provide a lucid illustration of the
method. The calculations there can be extended in a straightforward manner
by enlarging the atomic basis set (though they may become quite cumber-
some).

In Chapter 5 we consider a practical example involving 3d wave functions
namely, evaluate the crystal-field levels for 3d' and 3d? systems in an octahe-
dral environment. We calculate the electronic states and observe a quantum
transformation of the ground state as a function of interionic distance.

Throughout the Thesis we demonstrate complementarity of the 2"¢ quan-
tization (particle) language with the 1°¢ quantization (wave mechanics of
single particle states, adjusted in the correlated many-particle state). The
proposed self-adjusted wave equation for such a state has a fundamental char-
acter.

The Appendices A-I provide mathematical details needed when solving
problems with the help of EDABI method.
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Chapter 2

The EDABI method

In this chapter we present the formal features of the method we employ in
the following chapters. First, we discuss the principal properties of second-
quantization representation of many-particle states.

2.1 The formalism in the second-quantization
form and the self-adjusted wave equation

In the general case, a non-relativistic system of N interacting particles can
be described by the following Hamiltonian

H:ZHl(ri)+%ZH2(ri,rj). (2.1)

It contains single-particle terms such as the kinetic and potential energies,
as well as the two body interparticle interactions. The latter are considered
to be symmetric, so the fraction one half in front of the second term cancels
out the double counting of pairs (i,j) in the sum. In the simplest version
one neglects the relativistic corrections such as the spin-orbit interaction.
The interactions involving more than two particles are not included in it. Eq.
(2.1) provides the standard expression for the Hamiltonian in the Schrédinger
(position) representation. The summations over the indices i, j cover a range
equinumerous to the number N of electrons in the system. As a stationary
solution of the above Hamiltonian we obtain the N-particle wave function
\I/(I'l, R ,I'N).

The EDABI method we apply is based on the second-quantization for-
malism [8, 9]. We will discuss here indistinguishable fermions, which obey
then the Pauli exclusion principle. Thus, their wave function has to be anti-

11



12 CHAPTER 2. THE EDABI METHOD

symmetric with respect to the particle-coordinate transpositions !. In effect,
it can be decomposed in a basis of Slater determinants

\If(rl,...,rN): Z Akl,‘..,kN(I)kl,...,kN(rla--‘arN)- (2-2)

ki,...kn

The determinants ®y,  x, (r1,...,ry) will consist of products of the single-
particle wave functions {wy,(r)};,—1._n. Each of the indices k; describes a
complete set of quantum numbers. This expansion is generally exact, since
any function ¥(ry,...,ry) € L? i.e. square integrable, can be expanded
in an N-dimensional Fourier series, with a basis in the form of a product
of single variable functions. The decomposition (2.2) is the basic assump-
tion valid for any N-particle wave function, together with its normalizability.
It is required that the basis functions we expand the wave function into,
fulfil several conditions. First, they have to form a complete basis set in a
quantum-mechanical sense. It is also convenient to have them orthogonalized
and normalized. The selection of the basis functions is going to be discussed
in detail later on in Section 3.1. The Slater determinants merely keep track
of the antisymmetry. On the other hand, the vectors r; may be, and in fact
usually are multidimensional. In most cases, they parameterize a point in a
3-dimensional space.

Now, we substitute the description of the system by the set of numbers
{n;} of particles in a given state k; instead of the set of quantum numbers
{k;} = {i}. The number of possible states k; does not have to be finite. Natu-
rally, the number of particles is fixed, i.e. ), n; = N. The new representation,
characterized by the set {n;}, is called the occupation number representation.
It has the advantage of being a countable set. This is true for a countable set
{k;} and, as long the quantum numbers k; are quantized, it is fulfilled. One
has to introduce some operators enabling operations on the vectors in the
new representation. They are the creation a} and the annihilation a; oper-
ators, which respectively add or remove a particle in the i-th single-particle
state described by the corresponding wave function wy, (r). Usually, we de-
scribe electrons in this manner, so in what follows, the name electron and
particle will be used interchangeably. The creation and annihilation opera-
tors do not necessary create real particles. An electron creation or destruction
at the real-space point r is described by the respective two-component field

I The spin variables can be treated as either coordinates or quantum numbers. Actually,
the meaning of a coordinate and a quantum number is here the same and the main purpose
is to fix the focus on certain aspects of the system described.
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operators

ey = Y uite () = > witel

i a;)
U(r) = Z w;(r) (ZD = Z w;(r)a;. (2.3)

One may ask how does the Hamiltonian (2.1) look like in the new represen-
tation? Using the operators (2.3) it is of the form |8, 9

H= / Prit(r)Hy(r)¥(r)+

% / Prd®r Ut ()T () Hy (e, ') U (r) B (). (2.4)

This form is equivalent to the form (2.1) if the number of particles is con-
served. This representation has the advantage over (2.1) in the sense that
it contains only either one or two spatial coordinates, r and r’. If the two
body interactions are independent of the two particles absolute positions sep-
arately, we can write that Ha(r,r’) = Ha(|r — 1r/|). It is usually the case, as
it can be seen on the example of the Coulomb interaction. One can clearly
identify the direct correspondence of one- and two- electron operators in
Hamiltonians (2.1) and (2.4). A one-electron operator for the whole system
has in the first-quantization (position representation) the form

O1=> oi(ry), (2.5)

i

where o0;(r;) is its correspondant for a single particle. The corresponding
two-electron operator characterizing the whole system is defined as

02 = Z OQ(I‘Z‘, I'j). (26)

ij

The changeover to the second-quantization representation of these operators
can be written in the form of the following transformation

O; — Oy = / PrUt(r)o, (r)¥(r) (2.7)
and, respectively, for the two-particle operators

0y — 0y = / / Prd®r' U ()T () oy (r, ') T (') U(r). (2.8)
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The above prescriptions hold not only for the Hamiltonian terms, in our case
o1 = Hy and 0s = Hy, but for any operators satisfying the definitions (2.5)
and (2.6). Actually, one can extend it for an any-particle-number operator.
As the actual calculations are carried out using a well-defined wave-function
basis and the corresponding to it set of creation and annihilation operators,
it is handy to reevaluate the above expressions in these categories, i.e. rewrite
(2.5) in the form

O = Z/wk r)o (r)wy, (r )d?’raL a;, (2.9)

<z|01|]>

and, respectively, for the two-particle operators the Eq. (2.6) in the form

igkl K _
<ij\02\kl>

(2.10)
One should note an essential fact. Namely, the operators o; and 0, act on
a single or two electrons located at points r and r’. The second quantized
operators O; and O, do act on every single electron or pair of electrons in the
system. In other words, the operators in the first-quantization representation
act locally, whereas their second-quantized counterparts act globally. It is
caused by the summation in the definitions (2.5) and (2.6) and this is the
way one should understand single- or two- particle operators acting on N
particle system. In the present situation, the set of quantum numbers k
consists barely of the wave function index, defining the shape of the wave
function, and the spin quantum number which may take the values T or |.
Applying the formulas (2.9) and (2.10)) to the Hamiltonian (2.1) we obtain

H= Z t”awaﬂ, —|— - Z V;jklamajmalgzakgl, (2.11)

ijo zyklalag

with the microscopic parameters defined by
ti; =< w;|Hi|lw; >= /d?’rwf(r)Hl(r)wj(r), (2.12)
and

Vijri =< wjw;| Halwpw, >= /dgrd3r'wf(r)w;(r’)H2(|r —1r')wi(r)w(x').
(2.13)
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The parameters relate the Hamiltonian to the properties of the real-world
system. We assume the spin invariance of the Hamiltonian, i.e. assume for
both Hy and H, that [H, 5;] = [H, S?] = 0, where S? and S. are the total-
spin S characteristics. It is true for the Coulomb interaction. But in the
general case, e.g. if we start to consider relativistic effects like the spin-orbit
coupling, this is not obeyed. Anyhow, the spin conservation does not matter
for the method implementation, but merely simplifies the argument, as it
reduces the number of spin variable summations. We may keep the whole set
of quantum numbers {k;} without separating it into the spin and the orbital
parts. The distinction will be made later, namely in Section 5.2.

We have thus related the Hamiltonian in the multiparticle Hilbert space to
that in the Fock space. By solving it, one obtains the states in the occupation-
number representation of the Fock space. To complete the solution it is nec-
essary to trace back the Fock state to the original Schréodinger (position) rep-
resentation. This problem also relates the many-body problem to the single-
particle wave-function determination. In the wave mechanics of interacting
particles, only the N-particle wave function holds the information about the
state of the system. In the Fock space we determine the state by evaluating
the microconfigurations consisting of occupations of each of the single particle
states, which are characterized by the single particle wave functions, which
in turn appear explicitly in the expressions for the microscopic parameters.
The N-particle state |®y > in the Fock space can be defined by combining
the expansion (2.2) and definition (2.3) in the following manner [10, 11]

1 , . .
|(I)0> = ﬁ /d ri... I'N\I/[)(I'l, e ,I‘N)\IIT(rl) c. \IJT(I'N)|0>, (214)

where |0) is the vacuum state in the Fock space. The index "0" means the
ground state, but the expression is true for any state U(r;...ry) and |® >.
One can see that the value of many-particle wave function Wo(r;...ry) de-
termines the weight for N electrons created at point {ry...ry}. On the other
hand, we obtain these weights expressed via Wo(r; ... ry) by determining the
expectation value between the vacuum and the |®, > states after annihilat-
ing the electrons at those locations. Explicitly, we have the inverse relation
[12]

) =
TN JN

The last two formulas determine once more the formal equivalence of the
states in the Fock and the Hilbert spaces.

With the help of the second-quantization representation we have sepa-
rated above the single- and many- particle aspects of the N-body problem.

\I/()(I'l, C <O|¢/<I'1) C @(I‘N)|q)0> (215)
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The first-quantization aspects are confined (hidden) in the expressions for the
microscopic parameters ¢;; and Vjj; of the Hamiltonian (2.11). The second-
quantization aspect is accounted for by the diagonalization procedure of the
Hamiltonian in the occupation-number representation. This diagonalization
of (2.11) in the Fock space amounts to determining Eq =< Wo|H| ¥, > as a
function of the set of microscopic parameters ¢;; and Vj;,;, which are depen-
dent on the basis single particle wave functions, in a functional manner. That
is why we may treat Fg = Eg{w;(r)} still as a functional of {w;(r)}. The
ground state of a system corresponds to the lowest energy so we may reach
it by finding the minimum of Es by optimizing it with respect to the ba-
sis {w;(r)}. In effect, we can propose the renormalized (self-adjusted) wave
equation, which takes the form of Euler equation for Eg{w;(r)} with the
condition N=const and < w;|w; >= d;; [13] 2. Namely,

e 0E¢q

.« o ws (e A >— .
Swurr) Y 5(Vw (1) > iy — pwy(r) < alyaz, >=0  (2.16)

jzio

where )\;; and the chemical potential 1 play the role of the Lagrange multi-
pliers imposing the orthogonality constraint and that preserving the number
of particles in the system respectively. As said in the footnote, if the orbitals
are orthogonal from the beginning then \;; = 0. If, additionally, we work
with the formalism with the fixed particle number, then also one puts p = 0,
and Eq. (2.16) reduces to the system of the Euler equations for the func-
tions {w;(r)}. This wave equation is extremely difficult to solve directly, so
we will resort here to choosing the starting basis, which will be optimized
subsequently, as discussed next. In the simplest case, e.g. in the Hartree-Fock
approximation, this equation reduces to the well-known Hartree-Fock wave
equation.

2.2 The method

The procedure described in the previous Subsection does not introduce any
approximation as long as the basis {w;(r)} is complete in the quantum-
mechanical sense. For practical reasons, it is impossible to work with an
infinite basis set, which is introduced by demanding its completeness. That
is why we have to introduce approximation. Namely, we restrict the basis

2The first condition is important when we work in a concrete problem with grand canon-
ical ensemble formulation in the occupation-number representation. The second condition
reflects the nonorthonormal basis taken to define the field operators (2.3). In the lat-
ter case the (anti)commutation relations for the creation and annihilation operators are
nonstandard [26]; see also Section 3.1
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Single—particl
ingle-particle ‘ S, Hijw;(r) = ciwi(r) ‘
Schradinger eq.
1
Single—particle {w;(r)}
(or trial) basis I
Field operators B(r), ¥ (r) bi;:‘sgl)ep—tllo::“z;'li N )]
1 !
Diagonalization — ry—
in the Fockspace ’H: |\IIO> EG <\IIO| +... ‘ ’lIl (I‘),(\I/ ) (I‘) ‘
! !
Ground-state energy ‘EG = (Vo| H |¥o) ‘ ‘ e (r1, ..., IN) ‘

Renormalized N-particle
wave function

Figure 2.1. The schematic flowchart of the EDABI method.

size to a finite number of functions This is the only essential approximation
we make. Such procedure allows for a reduction of the number of parameters
{t;;} and {Vj;;} making the problem tractable. Also, it makes a matrix diago-
nalization executable as the dimension matrix representation of the Hamilto-
nian (2.11) increases exponentially with the number of functions in the basis.
There are some cases, where we do not need the matrix representation [16]
but in general, this step is unavoidable. The reduction limits the accuracy of
the system description in the sense that some, possibly highly excited virtual
excitations, are not taken into account. Also, the selection of the states to
be discarded, must be carried out carefully. To reduce the inaccuracy of this
selection, one might choose to adjust the remaining basis functions. Instead
of a set of fixed single particle wave functions {w;(r)} being the solution of
a concrete single-particle problem, we take a set of wave functions belonging
to the same class {w;(r;a;)}, characterized by an adjustable parameter «;.
The «; choice depends on the specific physics of the problem at hand, as it is
discussed in Section 3.1. The first step in the EDABI method is the selection
of the reduced basis set classes as shown in Fig. 2.1. Now we can construct
the field operators W(r) as defined in (2.3), except that the summation runs
now over the restricted basis set. The field operators selected in this manner
can also be used for determination of the model Hamiltonian (2.11) in the
occupation-number representation. The parameters {¢;;} and {Vj;y;} are de-
termined likewise, by the selected wave functions.

The choice of the restricted basis represents an essential step. Namely,
we can talk about the model solution, not about a complete solution. The
neglected states (and the corresponding dynamical processes) may be irrel-
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evant to the physics of the problem, but must be mentioned at the start. A
minor subsequent approximation made at this point may sometimes influence
the accuracy of the results. Namely, having obtained the parameters(at last
their starting values) we carry out the diagonalization of the Hamiltonian.
The diagonalization method is not set by the specifications of the EDABI
method. Obviously, the solution of the problem in the second-quantization
representation means solving the Heisenberg equation for the field operator

h— = [0, H]. (2.17)

This is not feasible in any physically relevant situation.

There are many other ways to proceed with the diagonalization and most
of them, but not all, have the matrix representation of the Hamiltonian in
common. Usually one obtains some or all of the eigenenergies. The eigenval-
ues depend, in fact, on the parameters {«;}. As a final step, we minimize
the ground state energy Fg with respect to {«;} and determine the phys-
ical ground state. In some cases, the eigenenergies are obtained as explicit
expressions of parameters «;. In such situations, we can directly minimize
the lowest of them and obtain the ground state energy, as well as the renor-
malized values o; = o', Nevertheless, if it is not possible to obtain explicit
expressions, but only their numerical values for the starting set of values
{a;}, we can reduce the ground state energy iteratively getting the optimal
values at the procedure end. The resultant renormalized parameters «;” " al-
low for the selection of renormalized basis set {w?"(r)} from the initial class
of wave functions {w;(r)}. One has to underline, we substitute the optimal
values of o; = afpt obtained for the ground state to characterize all the cal-
culated states. This, in turn, makes the construction of the renormalized field
operators U(r) and Wi(r) possible. According to Eq. (2.15), we can obtain
the interacting many particle wave function from them. This completes the
solution within the method of examining a system of correlated electrons.

Summarizing, the EDABI method consists of the basis reduction, impact
of which is then easied out by allowing the retained basis set functions to be
self-adjusted to the many-particle (correlated) ground state. The flowchart
of the EDABI procedure is schematically summarized in Fig. 2.1.

To make the approach explicit we can write down the scheme described
above in form of equations. Namely, the field operator \if(r) defined by Eq.
(2.3) in terms of the sum over a complete basis {w;(r)} contains an infinite
number of single-particle states. We represent the field operator by a finite
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number M of wave functions {w;(r)}. Explicitly,

U(r) = Zwi(r)ai ~ Zwi(r)ai, (2.18)

with i representing a complete set of quantum numbers and M being a finite
fixed number. We can then express the approximate N-particle wave function
in the following manner

M
1
\Ifa(rl,...rn)zﬁ > (Olasy - aq | ®n)wi (r1) . wiy (rn). (2.19)
T il,enin=1

There is a constraint imposed on the basis reduction, namely we have the
condition N < M. Otherwise, due to the Pauli principle, it would not be
possible to accommodate all the N electrons in the system. Actually, the
functions {w;(r)} may include not only spatial degrees of freedom but also, for
example, the spin degrees. Recognizing, that within the occupation-number
space spanned on the states {|ix) }x=1..n, we have the N-particle state in the
Fock space of the form

1
|PN) = ——= Z le,,,jNCL}l .. .CL;N‘()), (2.20)

Jiyenin=1

where Cj, ;. represents the expansion coefficients, which are determined
from a diagonalization procedure. Substituting the Eq. (2.20) to (2.19) we
obtain

U,(ry,...,rn) =

M M
1
m Z Z <O|CLZ‘1 ...CLiN(I;(l ...(I;(N|0>Cj1_“ijil(I'1) ...U)Z‘N(I'N).

11,0t N =1 J1,...,jn=1

(2.21)

The expression provides N! nonzero terms, each with the factor (—1), where
P represents the sign of the permutation of quantum numbers (j; ... jy) with
respect to (i1 ...7x). In other words, we can write that

\I/a(rl,...,rN):% S G (A S)wa () i (i) (222)

i1,ein=1

We have the same expansion coefficients for both |®y) and ¥, (rq,...,rN)!
Therefore, the above expression represents the multiconfigurational inter-
acting wave function of N particles distributed among M states, with the
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corresponding weights Cj, ;. for each configuration, and (A,S) represent
respectively the antisymmetrization (Slater determinant) or the symmetriza-
tion (simple product wj, (r1)...w;,(rn)) expressions for the fermions and
bosons, respectively.

2.3 Relation to other methods

An important aspect of the discussion of our novel method is the compari-
son with those existing already. As the framework of the EDABI method is
quite general, there are some limiting situations, in which it coincides with
the existing approaches. One of them is the multiconfigurational-interaction
(MCI-SCF)? method.

2.3.1 Difference with multiconfigurational-interaction ap-
proach

By looking at Eq. (2.22), one might get the impression that the EDABI and
the MCI methods are identical. Both of them minimize the ground state en-
ergy by finding some optimal multiparticle wave function for a finite basis
set {w;} selected from the start. Whereas the MCI method used in quantum
chemistry [14, 15|, bases on the variational optimization of both the coeffi-
cients C;, ;, and the basis {w;(r)}, here the coefficients C' are determined
from an exact diagonalization in the Fock space, spanned on M states in the
Hilbert space. Also, the functions {w;(r)} obey a self-consistent wave equa-
tion (SWE). The derivation of SWE supplements thus the MCI approach.

The differences between the EDABI and the MCI methods, both of which
belong to the class of multi-determinant expansion of N-particle wave func-
tion, can be summarized under the following headings:

i) Historical. MCI evolved from variational methods of quantum physics
and chemistry to include the electronic correlations and hence, to ob-
tain a better value of Eg, by starting from many-particle Schrédinger
equation. EDABI represents a procedure of calculating single-particle
wave function starting from parameterized models of strongly corre-
lated electrons. So the starting points of the methods are rather com-
plementary than identical.

3"SCF" is the shortcut for self-consistent field.
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i)

iii)

Technical. In MCI, we optimize simultaneously the coefficient express-
ing the weights of different determinants (representing different micro-
configurations), as well as the parameters of the trial single-particle ba-
sis. In EDABI, we diagonalize the Hamiltonian expressed in the Fock
space (with the help of either analytic or numerical methods), combined
with a simultaneous optimization of the orbital size in the resultant
ground state. As a result, we obtain not only the ground state, but also
excited states, which may be used to determine dynamical properties
of the system and thus exemplifies an essential extension of MCI [18].
The diagonalization procedure is not set. We may use some numerical
diagonalization procedures such as the Lanczos method|20]. So, we may
use some subsequent approximations at this point to tackle larger prob-
lems. In the flow of calculation the Hamiltonian is expressed in a second
quantized form. The role of different terms can be then seen in the for-
malism. So, we may successively refine our model by exposing only the
major physical processes, but still keeping the connection with real sys-
tems, i.e. not restricting ourselves to a parameterized model situation.
For example, the density matrix renormalization group or quantum
Monte-Carlo methods may be used as well (such work is planned for
the future).

Essential. In the case of analytically solvable models, EDABI leads
formally to the explicit form of the renormalized wave equation, which
represents a nonlinear Schrodinger equation of nonlocal type. This cir-
cumstance opens up a new direction of studies in mathematical quan-
tum physics. Additionally, it allows for a direct determination of dynam-
ical correlation functions, transport properties, etc. in the convenient,
second-quantization, language. In this case we may be able to solve
some infinite systems, e.g. one dimensional Hubbard model [12]|. As a
byproduct, we obtain the values of the microscopic parameters.

2.3.2 Hartree-Fock approximation: He atom example

The Hartree-Fock approximation fits also into the scheme of the EDABI
method. In this approximation, we find the best single Slater determinant,
which minimizes the ground state energy. It is equivalent to solving the prob-
lem of an electron moving in the averaged field of all other electrons. As the
matter of fact, all electronic correlations are disregarded in this mean field
approach, since it can be equivalently expressed by starting from the fol-
lowing approximation of a product of a pair of operators A and B in the
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Hamiltonian, namely

(A— < A>)(B-<B>)~0 (2.23)
0
AB=A<B>+B<A>—-<A><B>. (2.24)

Exactly the same result can be obtained in the EDABI method by taking
just the lowest possible number of basis functions, namely as many as there
are electrons in the system. In this case we can skip the diagonalization
process as we have only one many-electron state. So, we just minimize its
energy. The results obtained in this framework are the same as those provided
by the Hartree-Fock approximation.

We illustrate the Hartree-Fock approach on the example of the He atom.
To do this, we start by selecting as {w;(r)} just two 1s-like states for the He
atom U, (r) = (o®/7)2 exp(—ar)y,, where « is the effective inverse radius
of the states. In other words, the simplest trial field operator is of the form

U(r) = Ui(r)a; + ¥, (r)a,, (2.25)

where a, is the annihilation operator of particle in the state W,(r). The
Hamiltonian in the second quantization for this two-element basis has then
the form

H= ea(nT + nl) +Uniny, (2.26)

where n; = a]}aT, whereas
€ = (Vo |H1|V,), (2.27)
and
U= (Y, V5 V|V, V7)), (2.28)

are the matrix elements of the single-particle part defined as

h? h? 2¢*  2¢* au 4 4
AT vi BN v SO v U v N 1)

Hy = 1 2
2m 2m KoT1  KoTa re T

V= = , (2.30)

with the corresponding definitions in atomic units (a.u.) after the second
equality sign. The only eigenvalue of (2.26) is obtained for the state aJ{aUO >
and is I/ = 2¢, + U. This total energy is then minimized with respect to «
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to obtain the well-known variational estimate [27] of both @ and the ground
state energy Fg. However, we may look at the problem differently. As the field
operator can be defined for an arbitrary basis, we may regard the eigenvalue £
as a functional of W, (r), since the functions are under the integral expressions.
Therefore, the true wave function is obtained from the Euler equation for the
functional under the proviso that the wave function is normalized. This means
that we minimize the functional

E{V,(r)} = Z/d%xp VH (v Z/d3rd3 |0, (r)|Via(r—1)) | Us ()2

(2.31)
In effect, the Euler Eq. (2.16) take the form of the unrestricted Hartree-Fock
equations for W, (r), namely

) 2¢° 0, €
<V H0T> U, (r) + \I/U(r)/d p—— |U(r)> = A\, (r), (2.32)
where A reflects the imposed normalization function in the same manner, as in
original Schrodinger formulation of the wave equation [28]. If we would have
taken two spin-orbitals instead of two orbitals we would obtain the restricted
Hartree-Fock equation. Thus we can see that taking in the simplest case just
two spin orbitals we obtain either well-known variational estimate [27] for «
and Eg for He atom: a = 27/(16a0) and Eg = —5.695Ry, where ag ~ 0.53A
is the 1s Bohr orbit radius. The energies present in this case are shown in
Fig. 2.2.
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Figure 2.2. The interplay between the atomic energy ¢, (dotted line) and
interaction energy U (dashed line) resulting in the ground state energy Eg
(solid line) as a function of the inverse orbital size a.



Chapter 3

Light atoms and ions: a test of
EDABI method

3.1 Selection of the single-particle basis

The EDABI method described in Chapter 2 leaves several important deci-
sions to be made when implementing it in concrete cases. One of the most
important is the choice of the starting single-particle basis.

If the basis chosen were complete, then we would not have any approxi-
mation. The transition to the second-quantization formalism would be exact
and the problem solved rigorously for an arbitrary complete basis {w;(r)}
provided we would be able to calculate in that basis the microscopic parame-
ters explicitly. The choice is arbitrary in this case, but usually we are not able
to perform any calculations due to complexity problems as stated before. So
we have to leave only some orbitals. It is to be decided which single-particle
orbitals are to be left, and which should be ignored. As it is an approxima-
tion, the result of the calculations may and does depend on the choice we do.
As said earlier, this approximation represents one of the most fundamental
features when constructing the models. Our method allows for construction
of theoretical models without parameters, but requires a degree of ingenuity
when selecting the basis.

The neglected states usually represent highly excited (and thus negligi-
ble) states in the system. They are supposed to be almost unoccupied and so
their contribution negligible. Obviously, due to the interactions the identity
of the single particles may become blurred if the interaction is stronger than
the difference in energy for such single-particle states.

What other mathematical properties should the reduced basis set expose?
It is very convenient to perform all the calculations using an orthonormalized

25
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basis set. What happens if it is not the case[26]|? The occupation number of
a given single particle state ¢ is governed by the creation and annihilation
operators a; and az, whereas the existence of an electron in at real space
coordinate r is altered by the field operators W(r) and Wi(r). Due to Pauli
principle the fermionic wave function has to be antisymmetric. Hence the
field operators should have the following anticommutation relations

{@T(r), \if(r')} = §(r—1), (3.1)

where {A, B} = AB + BA. In addition to that, if both operators are conju-
gated or not, then they anticommute. One could expect the creation and the
annihilation operators to behave in a similar manner. Such commutation rela-
tions let the particles in single particle states behave like real fermions. Also,
simple commutation rules imply a smaller number of terms in the actual
calculations involving them. A pair of creation and annihilation operators
acting on an N-particle state gives

aja;f]wl LW >= ajlw,wy . wy >=
N
< wjlw; > |wy ... wy > —i—Z(—l)k < wjlwg > |wi,wy ... Ay wy >,
k=1
(3.2)

where /v, shows that the particle described by wj, is not longer present in
the many-particle state. In the inverted order, we have

T _
alajlwy ... wy >=

N
Z(—l)k < wjlwy, > allwy ... foy. .. wy >=

N
k=

o
—_

Z(—l)k < wjlwg > Jwi, wy ... A . owy > (3.3)

—_

The sum of above Egs. (3.2) and (3.3) gives us the wanted commutator

{aj,aj} =< w;|w; >= /d?’rwi(r)*wj(r) = Sij. (3.4)

The integral is the overlap integral between the orbitals w; and w;. In the
same manner, we can obtain the results for two creation or two annihilation
operators namely {a;,a;} = {al, a}} = 0. So, the fermionic anticommutation
rules are preserved only for orthonormal basis sets, where S;; = d;;.
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If the single particle basis is not normalized then the particles count
cannot be determined using the usual number of particles operator afa. If
{(I;-r, Cli} =< ’IUZ|?UZ >= Su then

< wz|aja,|wz >=< wz|Sm — aiaﬂwi >= Su < U)Z|7MUZ >= SZ

what is equal to one only if S;; = 1. Note that the value of S;i is nonnegative,
because the overlap integral involves only one orbital, hence S;; cannot be
equal to —1.

Another problem do discuss is the connection between the completeness
of the single particle basis and the anticommutation relations for the field
operators. Expanding the anticommutator according to definition (2.3), we
obtain

{010,000 | = 3w @) {al ;| = 3wt @ui’)Sy = 3 wieywi(r').

(3.5)
where the third equality implies an orthonormal basis set. The resultant
expression can be identified as equivalent to the definition of the completeness
of a set {w;(r)}

Z wr(r)w;(r') = §(r — '), (3.6)

(2

So if the basis is not complete, we do not have the correct commutation
rules for the field operators defined by Eq. (3.5) (the same is true for an
infinite but nonorthogonal basis). Because we work with a finite basis, we
may approximate these rules only in a limited region of space. That is why
it is important to choose the basis functions to cover well the area, where we
expect an ample abundance of electrons.

For the light atoms and ions discussed in this Section it is the vicinity
of the nuclei, where we expect the electrons prevail, at least as long as we
are interested in their bound states. If the selected starting wave functions
coincide with the states of the interacting system, then the approximation
works very well. The first choice to determine the class of basis function is to
start with a solvable subset of the system. In the case of atoms and ions, we
might drop first the interaction between electrons. This is only the starting
moment of selecting the initial class of wave functions. We thus obtain a
single particle Schrodinger equation describing an electron in the Coulomb
field of the nucleus. As the solution we obtain the well known hydrogenic-like
wave functions.

As mentioned before, we would like to optimize them later to account
better the interactions. So, we have to decide in which way to vary them.
One might expect that due to the repulsive Coulomb interactions, the orbitals
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can be either expanded on, to allow the electrons to be further away from
each other, or to the contrary, to be squeezed in, to take the advantage of
the nucleus attraction. In the simplest and physically appealing approach,
the radial size of the orbitals may be varied. On the other hand, the total
angular momentum of the electrons in the atom should be invariant under the
electron-electron interactions, so we may try to retain the angular dependence
in its original form, as it does not change drastically under the interaction
(the spin-orbit interaction is regarded as small on this energy scale). The
size change of different orbitals does not necessary have to be related to each
other. Every single orbital can have a free parameter instead of its Bohr
radius nag. The class of hydrogenic-like wave functions is thus defined by the
radial parts of the form

Ris(r;a) = 2032 exp(—ar),
Ros(r;a) = 20°/2(1 — ar) exp(—ar),
Ryy(r; ) = %OP/QT exp(—ar). (3.7)

The complete wave functions are obtained by multiplying the radial parts
by the standard spherical dependence represented by spherical harmonics
Yim,ie.!

<Z51s(7”,97<25; 061) = Rls(r;&l)yoo(@a@,
Bas(7, 0, @5 00) = Ros(r; a2) Yoo (0, ¢),
¢2p0¢1(7“; 0, ¢; 043,4,5) = R2p(7“; 043,4,5)3/10,11(9, ¢)- (3'8)

The above functions form a group of wave functions dependent on the
parameters «;, which has the dimension of inverse length. For the hydrogen
atom, this parameter has a fixed value 1 for 1s state (atomic units) and 1/2
for the remaining hydrogenic-like states (2s and 2p 0,41)?. This parameter
corresponds to the size of the orbital. Their inverse is the Bohr-radius for
each orbital. One can calculate the expectation value of the distance of the
electron from the nuclei, which is

32 for 1s states
< Gilrlgs >= /d3r|¢i(r; oz)|2r B { 3@4 for 2p 0,41 states. (3.9)

We shall see that the optimized Bohr-radii are not exactly equal to those
values.

IFor the definitions and conventions, see Appendix A.
2The Table 3.1 shows the results obtained in Section 3.4 in terms of the Bohr-radii,
which are the inverse of «; parameters.
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Figure 3.1. Overlap integral between normalized 1s and 2s hydrogenic-like
wave functions. The size parameter for the 2s state is kept fixed at the value
Qg = 1.

The selected functions are normalized, but they are not orthogonal for
an arbitrary value of the parameters a. They are the solutions of the Hamil-
tonian of an electron in the Coulomb potential of the nucleus. And thus if
they have different energies, they are orthogonal only for a single value of the
parameter. We do not change the angular dependence of the wave functions,
but only the radial part. So only the functions corresponding to the same
spherical harmonics may be nonorthogonal. In our case, with the starting
basis (3.8), these are only the 1s and the 2s states. One can calculate the
overlap integral for these states and obtain that

8vad (o — 2« as
§ =< bulon, >= [ Pro (i) (rias) = T2 VA
(a1 + ay)
(3.10)
Only for the values of oy and a4 satistying the equality a; = 2a5 the above
overlap integral is equal to zero. This line in the (a;,as) plane corresponds to
a different strength of the Coulomb attraction of the nucleus. Fig. 3.1 shows
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this dependence vs. a; for a fixed value of oy = 1. When the size of 1s orbital
is smaller ( «; > 2 ), then the sign of the overlap is positive. It is negative in
the opposite case. The limit &y — 0 means an infinite orbital size and can be
regarded as the free-electron limit for the given state. Because we optimize
the parameters and require that the basis wave functions are orthogonal for
any set of values of the parameters a; we have to introduce a procedure, that
guarantees this. The orthonormal set of basis wave functions can be called
the set of Wannier functions w;. The straightforward way to achieve it is by
mixing these two nonorthogonal orbitals. The orthogonality relation to all
other basis functions is preserved by the nontrivial angular dependence of
the corresponding wave functions.
We have two functions ¢; and ¢, satisfying relations

< ¢13’¢13 >=< ¢25|¢25 >= 17 < ¢1s’¢23 >= Sa (311)

and we would like to obtain the orthogonalized functions w; and ws, which
satisfy
< w1|w1 >=< ZU2|U)2 >=1; < w1|w2 >= 0. (312)

Such a transformation is not unique. Namely, we may choose the following
form

{ w1 (Ta 9) ¢7 aq, a?) = ﬂ@sls(r? 9, ¢, al) + PYQSQS(T’ 9) ¢7 a?)? (3 13)
U)Q(?", 97 ¢7 anq, a2) = 7¢1S(T7 67 ¢a @1) + ﬁ¢23<7’, 67 ¢7 042)- ’

It is an ansatz and a special case of a general method, the Lowdin method,
described in Appendix B. As the solution of (3.11) and (3.12) we obtain in
this case

2y1-57 7 (3.14)

_ V1-S—+1¥S
V= 24/1-52

The mixing coefficients § and ~ are displayed in Fig. 3.2 as a function of
a;. The choice of the mixing in form (3.13) has the advantage of preserving
the major aspects of the shape of the wave functions, such as the number
of nodes, as is shown in Fig. 3.3. This is useful because we may still iden-
tify the properties of the Wannier functions as similar to the original atomic
functions. Most importantly, the orthogonalized functions w; and ws reduce
to the atomic orbitals ¢; and ¢y in the atomic limit as = 2a;.

As mentioned before, the finite basis choice makes its completeness con-
dition basis break down. The severity of this breakdown can be accounted for
in terms of its definition ), w(r)w;(r') = §(r—r’). We can calculate the sum
on the left to see, to what extent it does approximate the three-dimensional
Dirac delta function é(r — r’). To visualize this approach, it is advisable to

{ 8= VI-S+V1+S
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Figure 3.2. Mixing coefficients 3 and 7 as a function of the inverse 1s-orbital
size a;. The inverse 2s-orbital size is fixed at ap = 1. The area where the
orthogonalization procedure is necessary, can be seen. Both limits a; — 0
and a; — oo, do not require it.

reduce the number of components to be able to display the value on a plot.
We define the function

/ ]' " o * /
Clr ') = 4 /0 /0 d(bd(‘);wi(r,é,(b)wi(r,ﬁ,(ﬁ), (3.15)

in which we are averaging of the completeness condition over the angles 6
and ¢. It is plotted in Fig. 3.4 for the atomic basis selected. For a complete
basis we should obtain a d-like peak along the line » = »/. The height of
the peak measures the representation of a given region by the basis. For the
ideal case the height is obviously infinite and equal along the whole line. The
relative width of the peak shows the spatial resolution of the selected basis
in the radial direction. It can be seen that the area close to nucleus is best
represented in the basis. These functions decay exponentially in the large r
limit.

The choice of the hydrogenic-like wave functions has also some disadvan-
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Figure 3.3. The atomic 1s and 2s orbitals (dashed lines) vs. the corresponding
orthogonalized (Wannier) orbitals (solid lines). The size of both atomic and
Wannier orbitals is adjusted on example of the He atom, by carrying out the
complete EDABI procedure. A larger localization of the Wannier orbitals
around the nucleus is seen.

tages. They are somewhat difficult to handle in actual calculations, because
the integrals involving them are difficult or even, in many cases, impossible
to be calculated analytically. Such integrals appear in the microscopic pa-
rameters ¢;; and V; as expressed by Egs. (2.12) and (2.13).

Another possibility is to use the Gaussian type orbitals [21, 22, 23, 24] of

the form 31
212
—) 67F2r2 :
T

ot = (

for the starting basis set. It was done in [6]. From the point of view of the
calculations themselves it is much easier to proceed. They have much nicer
integral properties and the process of determining the microscopic parame-
ters does not present a principal difficulty [25]. This allows for an automatical
extension of the calculations to larger systems. However, the Gaussian func-
tions are the solution of the harmonic-oscillator problem. Matching them, by
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Figure 3.4. The function C(r,7’") of Eq. (3.15) characterizing the completeness
condition (3.6), averaged over the angles 6 and ¢ of the wave functions for
1s, 2s, and 2p 0,41 orbitals. The plateau seen around the origin is caused by
an artificial cutoff to accommodate spike nature of the dependence. All the
functions used in calculation have the same value a;_5 = 1. The change of
this parameter scales the plot, without changing its shape.

minimizing the single electron energy of a linear combination of Gaussian
functions, for electron moving in the Coulomb potential, can be regarded as
a mathematical, rather than physical, approximation. Because the harmonic
oscillator potential is unbounded with the increasing distance, these wave
functions are damped exponentially with r squared, so we may also miss
long-range correlations. The Slater orbitals are a better approximation of the
single particle functions in atomic systems than the Gaussian functions. Be-
cause of this we have selected the Slater orbitals in the remaining part of this
Thesis.
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3.2 Calculation of the microscopic parameters

The choice of the class of the basis functions is the first step. Next we have
to express explicitly the Hamiltonian (2.11) in order to diagonalize it. So we
need to tackle the problem of calculating the one-electron (2.12) and two-
electron parameters(2.13). The calculations can be performed in the atomic
basis. Because we want to work with orthonormal Wannier functions, we have
to transform the parameters from atomic to the Wannier representation.

3.2.1 One-electron parameters

Our model describes electrons of charge —e moving in the field originating
from the nucleus with charge Ze. The charge of the nucleus does not have to
be set in advance as we want to calculate several different atoms and ions.
The single particle part of the Hamiltonian (2.1) consists of the kinetic term
and the nuclear Coulomb term, which reads in atomic units

Hy(r) = —V2 — % (3.16)

The Hamiltonian is expressed in atomic units, i.e. the distance is measured in
the units of Bohr radius ag, the charge in units of electronic charge e and the
energy in Rydberg Ry. We want to determine the expression for the hopping
integral in the atomic (=primed) representation

ty= [ e e ), (3.17)

According to origin of our basis the atomic functions {¢;}selected are the
solutions to this Hamiltonian. As stated before only the ¢ = ¢ and ¢y =
¢os are not orthogonal. Because of this fact all off-diagonal terms in the
atomic (primed) representation of ¢}, except of t/,, are zero. So we have only
6 nonequivalent nonzero terms left out from the total of 15. We may also
note that the states ¢p and @345 = ¢p, ,, _, correspond to the same energy
eigenvalue of the Hamiltonian. So, the form of ¢, ...t} is identical. We only
have to insert different parameters s . .. as. This observation reduces further
the number of different integrals to calculate to 3. All orbitals are centered
around the same origin. The evaluation of these integrals is straightforward

in the spherical coordinates. The nonzero elements of t;; are

ei=ty = (a1 —22)y

/ ) o
€3345 = lo2334455 = (2345 — Z)aazas
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3
8 (g an)? (120 — ) + Z(ai — aF))

(Oél -+ 062)4

/!
t12 -

(3.18)

Having obtained the result in the atomic basis, we have to transform it
to the orthogonalized basis according to Eqgs. (3.13) and (3.14). Because
tij =< w;|Hy|w; > and the decomposition (3.13), the corresponding expres-
sions transformed to the atomic basis have the following form

e1 = B%) +7%eh + 2671,
g2 = 7%e] + B7eh + 267t
tiz = (8" +97°) tiy + 57 (€] +€3) (3.19)

Such a change of basis introduces thus a substantial change in the values
of these parameters as is shown in Fig. 3.5 for the nucleus charge Z = 2,
where the dashed line represents the results in the atomic basis and the
solid line is for the orthogonalized basis. In this plot only the value of a;
corresponding to the 1s orbital is changing while asag = 1 for the 2s orbital
which corresponds to the case of nuclear charge 2. For the hydrogenic-like
limit a9 = 2, asag = 1 the orthogonalized functions become identical to
the atomic functions. Then, the atomic and Wannier parameters are equal
in this limit. Due to the angular dependence of the 2p 0 states, they do not
mix with each other and with s states. Their atomic energy is equal to the
atomic energy for the 2s state at the same value of parameter o. Note that
the sign of the hopping parameter ¢, does not necessary have to be the same
as that of #{2. On the other hand, the sign of this parameter does not really
matter for a two level system since the eigenvalues of its Hamiltonian

g & t12
t12 &2
£1+¢ € € 2
1+ &2 1— €2

which is obviously independent from the sign of ¢.

have the form

3.2.2 Two-electron parameters

The two-particle parameters are defined by Eq. (2.13). The Hamiltonian op-
erator has the form of the Coulomb repulsive interaction

2
v —r'|

Hy(r,r') = Hy(|r — 1'|) = (3.20)
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atomic basis

single particle parameters
N

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0
parameter of 1s state, aa,

Figure 3.5. The single particle parameters of the 1s and 2s orbitals. The
charge of the nucleus is Z = 2. Dashed line represents the results in the
atomic basis. Solid line is for the Wannier basis. All parameters except of the
1s « are fixed at the value 1. £, - red line, €1 - blue line, g5 - green line.

We want to determine first the values of parameters in the atomic (primed)
representation

2

v

ik = / d’rd’r' ¢} (r) 9} (x') Or(r)n(r'), (3.21)
where the atomic functions ¢;(r) are of the form (3.8). All these functions
are centered around a common origin (nucleus position for the atoms). The
common origin allows for an analytic evaluation of all integrals (3.21). The
difficult part is the expression for the inverse relative distance of electrons

I 1
e = 2

This expression in not likely integrable in Cartesian coordinates. So we
have to use spherical polar coordinates and the multipole expansion (C.3)of
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1/|r — 1’| appropriate to those coordinates, which is more closely described
in Appendix C,

Z Z (s = Im])? Pl™l(cos 0) Pl (cos 0)e™@=#)  (3.22)

|r—r’| (s 4 |m|)! rstt

s=0 m=—s
Here the corresponding coordinates of the points r and r’ are (r,0,$) and
(r',0',¢') respectively, where r and r’ are the distances from the origin, 6 is
the polar angle from the z-axis with 0 < 8 < 7 and ¢ is the azimuthal angle
in the xy-plane from the x-axis with 0 < ¢ < 27 3. r_ and r- are respectively
the minimum and the maximum of the two distances r and r’. The functions
Pl*(cosf) are the associated Legendre functions. Inserting Eqgs. (3.8) and
(3.22) into (3.21) we obtain

i = / o wonlr) [ 'R R
<2 3 (o

s=0 m=—s

X / e’ Sngfpslml (cos@)e™ YO, ¢)Yi(0, o). (3.23)

)

The spherical harmonics behave like Y (0, @)y, ~ €™?. Hence the integration
over ¢’ of the part (x) in Eq. (3.23) leads to a substantial reduction of the
sum over m, since f027r exp(tm¢@’)d¢’ = 2md,,0. Namely, (%) is nonzero only
for m = m; — my. On the other hand, the integration over the azimuthal
angle ¢ of the first electron leads to a further constraint on Eq. (3.23) for
the value m = my — m;. If we combine this we obtain the following relation
m; +m; = my + my, which means that the total z-component of angular
momentum of electrons created in states ¢ and j has to be equal to that of
electrons annihilated in states k£ and [, so this component is conserved by
the electron-electron interaction. Expressing spherical harmonics in terms of
associated Legendre functions (A.5) we may rewrite Eq. (3.23) as

Z-’jkl = Cmytm mp+m /drdr'rQT'QRi(T)Rk(r)Rj(r')Rl(r') X

(s —|m|)! 7 / -
P
X S;;ﬂ (5 [m|)i o df sin 0P (cos 0) P (cos ) P, (cos §) x

3Unfortunately, the convention in which the symbols 6 and ¢ are reversed is frequently
used, especially in mathematics, leading to unnecessary confusion.
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X / d6' sin @' PI™(cos 0') P (cos0') P (cos '),
(3.24)

where the preceding normalization factor C' = 4723;,,. Bim,; Bremy, Bimy and By,
are defined by (A.6). The integrations over the polar angles 6 and ¢ of both
electrons result in the total angular momentum conservation rules as the
integrals of type

L= [ deP (@) @) P (2)

are nonzero only if two of the parameters can be added in a vector-like manner
to construct the third one. After carrying out the angular integration, we can
expand the radial part of the integration according to

/OOO dr /Ooo dr'f(re,rs) = /Ooo dr </07“ dr' f(r',r) + /roo dr'r(r, r’)> )

(3.25)
As the final result we obtain that V;;, = fou, aj, ag, o), where f is a rational
function of its parameters.

The selected by us earlier minimal atomic basis consists of five orbitals. So,
the number permutations of four indices in parameters defined by Eq. (3.21)
is 5% = 625. The number of relevant integrals is not as large. Most of them
vanish because of the total angular momentum and the z-component of the
angular momentum conservation rules discussed in the previous paragraph,
which reduces the number of nonzero and independent values. The number of
independent values of the two-particle interaction parameters is also reduced
because of the symmetries exhibited by Eq. (3.21). Firstly, the particles are
indistinguishable. Hence, the integration variables r and r’ can be swapped
without changing the value calculated: {7, k} < {7,1}. The next fact is caused
by the z-component of the angular momentum constraint. Note that the
operator (3.20) takes real values only. The only complex terms in (3.21)
are then exp(vm¢) functions of the azimuthal dependence of the spherical
harmonics. But, the integration cancels out all the contributions, in which
the total ¢ dependence is different from the ¢’ dependence. In this case, the
integral has to be real. So, we may conjugate it and obtain the same real
value whereas the indices change by definition

Lﬂﬁbk(r)ﬁbz(r/))* =

v —

(V)" = ([ areror o)

_ / Prdr 6u()9; () —— S (X) = Vi

v —r'|
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like {7, 7} < {k,l}. Combining the above two permutations we may construct
all the nonequivalent sequences of indices in the following way. First, we
construct all possible pairs of two indices corresponding to the same particle
such that the first index is not greater then the second, which is possible
because of the second property. The number of such pairs is equal to the sum

n

S Y 1=Yn-i)= w (3.26)

i >0

where n is the number of different elements put in ordered pairs. In due
course of this calculation we obtain 15 different pairs from initial 5 orbitals,
which in turn are paired again to build ordered pairs of pairs. This reduces
the initial number of integrals 625 to the value 120 calculated from (3.26).
After performing the actual calculation there are only 24 nonzero values left.
They are listed in Appendix D.

The next step is the transformation from the basis of atomic wave functions
to the Wannier basis. Just like for the single particle states the transformation
is defined by the Eqgs. (3.13) and (3.14). They transform as

‘/ijkl = Z V;ij/k/l/ H (522’ + ﬂ(ézldz’l + 5z25z’2) + 7(6215%2 + 5z262’1)) .
ikl 2={i,5,k,1}
(3.27)
Their explicit expressions will not be listed here.

3.3 Construction of Hamiltonian matrix and
role of symmetries

Having all the parameters required to express fully the second-quantized
Hamiltonian (2.11), we may try to diagonalize it. Unfortunately, there is no
analytic solution in the general case. We do not impose any further con-
straints on the one- and the two- electron parameters calculated in Section
3.2. To be able to diagonalize it we have to use a "brute force" method.
Namely we select a fixed number of electrons. We do know the number of
electrons for each atom and ion. They are 2 electrons for He, and H~ and 3
for Li, Bet, and He™ respectively. Then we construct all the possible config-
urations of electrons distributed among the five Wannier states used in the
calculations. Each Wannier function introduces two spin states. The number
of configurations can be calculated as

oM (2M)!
2= (N) ~ NI(N —2M)V (3.28)
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where M is the number of Wannier states and N is the number of electrons.
The number of multiparticle states is in our case 45 for 2 electrons and 120
for 3 electrons. Note that the number of multiparticle states has its minimum
for an empty or completely filled system and reaches the maximum value for
the half-filled case, i.e. for N = M. For the case of more than half-filled
system, the number of multiparticle states for a given number of holes N},
in the filled state is equal to the number of states for N = N, electrons for
N < M.

Each two- or three- particle state can be expressed by the creation oper-
ators

I >= |ij >= aga;r-|0 > or | >= |ijk >= aza}aﬂ() > . (3.29)

The multiparticle states are numbered from one to Q (which is either 45 or
120 for N = 2 and 3,respectively). The simplest way to generate consecutive
states is to iterate over the indices i, 7 and if applicable k, restricting the
variation range of them to

i=1..2M j=i+1..2M k=j-+1...2M (3.30)

to avoid the generation of states differing only by a phase. The Hamiltonian
(2.11) links every pair consisting of a multiparticle state |I > and a conju-
gated multiparticle state < J|, to build the matrix element of the Hamiltonian
matrix

Hpy =< J|H|I >= f(a,...,q5).

Such a matrix consists of analytic functions of parameters «; ...as. These
functions are expressed merely through sums, differences, multiplications, di-
visions, and square roots, but may be quite lengthy. After constructing the
Hamiltonian matrix we simultaneously have to diagonalize it and minimize
the obtained lowest eigenvalue with respect to the o ... as parameters. The
complexity of the matrix plays crucial role in simplifying this process. For the
states generated as combinations of operators for 2 electrons, the elements
which may be nonzero for some values of parameters are shown in Fig. 3.6.
One may see that the matrix is not very complicated but it turns out that
it may be further simplified by regarding the symmetries of the system. This
feature will be even more important for larger systems.

How may we classify the states to obtain a simplified Hamiltonian ma-
trix? The Hamiltonian (2.11) commutes both with the z-component and
squared spin operator, i.e.

[H,S.]=[H,S* =0.
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4o_=.

30+

20+

10+

0 10 20 30 40

Figure 3.6. General structure of nonzero elements of the Hamiltonian matrix
for the 2-electron situation with the multiparticle states generated as ordered
combinations of the 10 operators casted on numbers, e.g. aLT — 1 aLl —

2 ... a;pfll — 10. The larger size boxes correspond to 2 x 2 blocks and the
smaller are individual elements. There are also four 2 x 3 boxes and one 3 x 3

box. Note that the largest block effectively has the size 7 x 7.

So any selected values of these operators stay invariant under the action of
the Hamiltonian, i.e. the diagonalization does not mix states with different
values of these observables. In the graphical representation of the matrix,
the Hamiltonian matrix constructed on such states is block diagonal. Hence,
it is easier to diagonalize. Firstly one notices that two electrons may be
located either on the same orbital or on two different orbitals. In the first
case, due to the Pauli principle the electrons have to have opposite spins.
In this case, we know that their total spin is equal to zero. There are five
such states, one for each basis orbital. In the case of two electrons located
on different orbitals each of them may have an arbitrary value of spin z
component. Two electrons can build together a state with total spin either
S =0 or S = 1. In the latter case, the z-component takes values —1,0 and
1. The class diagram of the ordered multiparticle states is displayed in Fig.
3.7. There is another question as to how to find the states, which fit in this
scheme, automatically. The mono-orbital states can be simply labelled, but
the bi-orbital states have to determined. The connections between the two
orbital states are shown in Fig. 3.8. Each pair of orbitals has such structure.
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2 particle states
{# =145}
[ |
biorbital states monoorbital states
{#=40} {#=5}
[ |
S=1 states S=0 states
{#=30} {#=10}
[ [ |
S,=1 states S,=0 states S,=-1 states
{#=10} {#=10} {#=10}

Figure 3.7. Classes of the ordered multiparticle states. The number of states
composing each class is displayed.

t 1 configuration - S’ S=15,=0 <S" | 11 configuration
S,=1 S, configuration | S, S,=-1
Q
=
o
«Q
o
=
51
$=0S,=0

configuration

Figure 3.8. Connections between different multiparticle states with two dif-
ferent orbitals. Each orbital pair has a similar structure.
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There are 10 nonequivalent pairs for 5 orbitals, since all other pairs differ only
by a phase. So we see, that there are 10 possible states in each class, giving the
total of 40 bi-orbital states. Which, after the addition of mono-orbital states,
reproduce the total number of 45 multiparticle configurations, calculated in
(3.28). The procedure of navigating along the possible connections in Graph
3.8 is equivalent to finding the Clebsh-Gordan coefficients [1, 29] when adding
two angular momenta. The ST operators are of the form

M
St = Z a,}ail
=1

M
ST = ala;. (3.31)
=1

The initial state can be chosen as a state with either two spins up or two
spins down. The second and third state is obtained from it by applying the
S* operators. The fourth state, completing the subspace, is obtained using
the orthogonality condition. In our case, it merely corresponds to change of
sign between two terms building the S = 1, S, = 0 state, providing thus
S =0, S, = 0 state. The change to the states found in this way simplifies
the Hamiltonian matrix in a substantial manner, as shown in Fig. 3.9. The
size of the largest block is 5 x 5. It is spanned on the states

|A >= (alTagl + agTaLHO >

S-Sl

|C >= a}aMO >
|D >=al,al |0 >
|E >=aj,a} |0 > . (3.32)

The states of the set {|A >,|B >,|C >,|D >,|E >} involve in its construc-
tion all five orbitals. As turns out in the following calculations it cannot be
reduced further based solely on the symmetry considerations. The size of the
largest block allows for an analytic solution for the eigenenergies, as there
exist analytic formulas for the roots of polynomials up to the fifth order.
The basis in the Fock space for a two-electron system can be used as a
starting point for simplifying the Hamiltonian matrix for the three electron
system, size of which is 120 x 120. If we generate the basis in the Fock space
iterating the states (3.29) in the range (3.30) we obtain very simple states
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40+
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Figure 3.9. The nonzero elements of the Hamiltonian matrix for the 2 elec-
trons case with states generated in a way explained in the main text, which
simplifies the Hamiltonian matrix to the block irreducible form. The largest
block is 5 x 5, the remaining are 2 x 2 and 1 x 1.

but the Hamiltonian matrix will not be very diagonal. The nonzero elements
of the Hamiltonian matrix for three electrons are exhibited in Fig. 3.10. To
obtain the basis of multiparticle states in the Fock space, we expand the
existing basis for two electrons by adding the third. There are three major
situations:

i) We start with the five mono-orbital states. We add to them a third
electron. Due to the Pauli principle, it cannot be located on the same
orbital as the initial two. So there are four orbitals left to place the
new electron, which spin can have any value. So, we get 4 x 2 = 8
new three particle states from a single one mono-orbital two-particle
state. These procedure is done with all orbitals in this class so that we
finally obtain 5 *x 4 x 2 = 40 states. An important fact to note is that
we have already got all states with two electrons on the same orbital.
Adding a second electron on some orbital in a bi-orbital state can only
lead to one of the states obtained from a mono-orbital state. So, all
multiparticle states discussed subsequently have to consist of electrons
on three different orbitals. Since the mono-orbital states always have
S = S5, = 0, the resultant 3 particle state belongs to the subspace
S=1/2and S, = £1/2;
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Figure 3.10. The nonzero elements of the Hamiltonian matrix for 3-electrons
situation, with states generated as ordered combinations of the 10 operators

T

casted on numbers, e.g. a;,; — 1 aLl —2 ... a;p_ll — 10

i)

iii)

We add an electron to the existing S = 1 state. It has to be located on
a third orbital, because states constructed out of two kinds of orbitals
have already been depleted in the previous case. According to Fig. 3.8
there are three classes of states with S = 1 for two electrons. The new
electron can be in two states, i.e. it can either have spin up or spin down.
One has also to note that there are (g) = 10 nonequivalent choices of
three orbitals out of five. So, in this way, we get 3%2x10 = 60 states. We
get the total spin either S = 3/2 or S = 1/2. In the former case we have
a quartet with possible projections on z-axis: —3/2,—1/2,1/2,3/2. In
the latter case, we have only the two middle values. In each of these
three particle subclasses there are 10 multiparticle states;

Finally, we can add third electron to the S = 0 two electron state.
We can count the states analogously, as above. We have only one class
of bi-orbital two-particle states with S = 0. So, because of the two
possible states of electron we get 1 x 2 * 10 = 20 three-particle states.

We can sum up the state count obtained in the three situations and obtain
the total number of 120 multiparticle states, which agrees with the num-
ber obtained from iteration (3.30). The nonzero elements of the Hamiltonian
matrix, calculated from the states generated in the above described way, are
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Figure 3.11. Nonzero elements of the Hamiltonian matrix for the 3 electrons
in the block representation, with the multiparticle states generated in the way
originating from the 2-particle-basis generated earlier. The largest effective
block is 8 x 8.

depicted in Fig. 3.11. Blocks corresponding to different values of S and S,
can be seen. The states are not sorted but even inside the blocks they are
decoupled into subblocks. The largest block of mutually dependent states has
the size 8 x 8. Hence the eigenvalues can be looked up independently in differ-
ent blocks. It does not allow for an analytic solution, but the matrix of such
size can be easily and very rapidly diagonalized numerically, without resort-
ing to any of the advanced methods. This is essential, as the optimization
of a function depending on many parameters aq,..., a5 requires repeated
calculation of the function’s values, each involving full diagonalization. The
further decoupling of subblocks within the block with given values of spin is a
manifestation of orthogonality of different orbitals. It was not assumed in ad-
vance, but the procedure of ordering the multiparticle states also separates,
to some extent, the spaces with given values of the total angular momentum.
An alternative and fully formal method of generating the multiparticle basis
would consist of simultaneous generating a series of states with fixed values
of S, S., L, L., using the ladder operators S* and L*. But it turns to be
not necessary, as the simpler method introduced by us here provides also
satisfying results.
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Table 3.1. Optimized Bohr-orbit radii a; = a; ' of 1s, 2s, and 2p orbits (in
units of ag), the overlap S between renormalized 1s and 2s states, and the
ground state energy for the lightest atoms and ions (with five Slater orbitals
taken into account). For comparison, the experimental values of energy taken
from [30], are displayed. The reference energy for H~ ion is taken from [34, 36]

a1s A2s a2p S EG (Ry) Eg$p (Ry)
H 1 2 2 0 -1 -0.999466555
H= 0.9696 1.6485 1.017 -0.1 -1.0487 -1.0556

He 0.4274 0.5731 0.4068 -0.272 -5.79404  -5.804791
He= 1.831 1.1416 0.4354 -0.781 -5.10058

Ly 03725 1.066 0.2521 0.15 -14.8334  -14.95803
Be™ 0.2708 0.683 0.1829 0.109 -28.5286 -28.65154651

3.4 Results for He, H~, Li, Be™, and He™

By diagonalizing the corresponding Hamiltonian matrices and subsequently,
minimizing the lowest eigenvalue with respect to the parameters «; - the
radial extension of wave functions, we obtain the results presented in Table
3.1. There is only one parameter value ay, for all 2p states as the values agp,n,
are all equal within the numerical accuracy ~ 107%. This fact reflects the
spherical symmetry of our potential. For example, the ground state energy
of He is Eg = —5.794 Ry, which is close to the accepted experimental value
[30] —5.8074, given the simplicity of our approach. Further improvement is
feasible by either enriching the basis by including the n = 3 states or by
resorting to a large Gaussian basis, with many parameters, which allows for
very accurate variational estimates|31, 32, 33].

For the H~ ion we also obtain correct results. They agree with other
calculations of the ground-state energy [34, 35, 36]. We get correctly the
single bound state 37| for this system.

We can represent the ground state multi-particle wave function in the
Fock space in the form (2.20) as follows: for He atom

|wie >= (=0.799211a, ai; 4 0.411751af, a5, — 0.411751ay a7,
—0.135451af, a,, +0.0357708as, at o, + 0.0357641a , af,
~0.0357641a0, a3 )]0 >,

(3.33)
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and the one of the two spin S = % degenerate Li ground states, e.g. with
S*=+41/2

Wit >= (0. 997490L15la15Ta25T 0. 057024amazslagsT + 0. 003959@18Ta2p0la2pm

—i—O.0()3959alsTanll%p_lT — 0.003959@18T(IQPITCLQP_1l — 0'023783‘125Ta2p01a2pm

—0.023781&;Ta;p1la;p7n + 0.023781a;ﬂa;pna;p71l)|0 > .

(3.34)

The above expressions use the orthogonalized basis for the creation operators,

which provides us standard anticommutation relations for a and af operators

Note that we have a substantial admixture of the excited-singlet state (1s12s|

and 1s]2s7) to the simple hydrogenic-like configuration of He (1s]1s7). One

could also transform these two expressions to the representation with the
electron creation operators @' in initial atomic states,i.e.

|whe >— (—0.82274&13 (b +0. 309636&{8 \aby — 0. 404512(115Ta2s .
—0.021729a, @}, + 0.0357708a5 o db o: + 0.0357641ah , ab,

—0.0357641aj ,,ab, ;)]0 >,
(3.35)

and for the Li atom

W' >= (1. 01321a1 la’lsTG’QsT + 0.018639dIsTa251625T + 0‘005804d18Td£p0l&;P0T

+0.005804a]ab ; @b, — 0.0058034al ;@b i al ;| — 0.024289ah ,al o @l o
—0.024286a},, by @b, 1, + 0.024286ah,,a,,ab, 1[0 > .

(3.36)

The complete set of energies and multiparticle states for the He atom is dis-
played in Appendix E. One may notice that the coefficients in front of the a
operators do not even square sum to the proper probability normalization,
which should be 1. This is not a mistake and is caused by the nonorthog-
onality of the basis discussed in Section 3.1. We see that the probability
of encountering the configuration 1s* in He is less than 2/3, whereas the
corresponding configuration 1s22s for Li almost coincides with that for the
hydrogenic-like picture. The reason for the difference is due to the circum-
stance that the overlap integral S =< 1s|2s > between ls and 2s states in
the former case is large and the virtual transitions 1s = 2s do not involve a
substantial change in the Coulomb energy. Those wave functions can be used
to evaluate any ground-state characteristic by calculating < W¢|O|Wq > for
O represented in the 2nd quantized form. For example, the dipole moment
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operator is d = e [ d®r¥i(r)x¥(r), etc. In this manner, a nonrelativistic
quantum field theory of atomic states can be formulated

Another feature of our approach is connected with the determination of
the microscopic parameters Vj;,; in our Hamiltonian, since their knowledge
is crucial for the atomic-cluster calculations, as well as for the determination
of physical properties of extended systems as a function of the lattice param-
eter. Namely, we can rewrite Hamiltonian (2.11) for the case of single atom
in a longer form, but with parameters, that is easier to interpret and that
appears often in various models, namely

5
H= Z €EMNig + 1 Z (aggalg + a{aa20> + Z Umning + % Z Kijn;n;
[ea o i=1 i#£]

_% > i (Si -Sj - %W%> + ) Jyahalazag + ) Vignigal,az.. (3.37)
i) i#] i#jo

t is the hopping integral between 1s and 2s states, U; are the intraorbital
Coulomb interactions, K;; are their interorbital correspondants, V;; is the
so-called correlated-hopping integral, and J;; is the direct exchange integral,
for states i and j = 1,...,5. The principal parameters defined above for the
atoms and selected ions are provided in Table 3.2. From this formulation,
the following interpretation can be drawn. The calculated energy difference
AFE for He between the ground state singlet and the first excited triplet is
—2.3707 — (—5.794) ~ 3.423Ry ( the singlet 1s T 2s | is still 1 Ry higher).
The corresponding energy of the repulsive Coulomb interaction for electrons
in the 1s? configuration is U; = 3.278, the value comparable to AE. Addi-
tionally, the repulsive interorbital Coulomb interaction in 1s T 2s | state is
Ki5 = 1.5Ry, a substantially lower value. The relative energetics tells us why
we have a substantial admixture of the excited 1s T 2s | state to the singlet
1s%. In other words, a substantial Coulomb interaction ruins hydrogenic-like
scheme, although the actual values could be still more realistic by enriching
further the trial basis with n = 3 states.

If we compare the energies of the excited states obtained in this calcula-
tion with the experimental results [30] one can cleanly see vast discrepancies.
The observed excited-energy levels are not very well reproduced. Merely their
qualitative properties are similar. The reason for such a behavior is the op-
timization of the basis with respect to the ground state energy only. The
orbitals take a shape most convenient with respect to this quantity. So, for
the excited multiparticle states the decomposition into single-electron or-
bitals may be not correct any longer. The experimental spectra, on which
the level determination is based, are obtained by the absorbtion or the emis-
sion of photons. The state of electron when this process is taking place, is
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Table 3.2. Microscopic parameters (in Ry) of the selected atoms and ions.
All quantities are calculated for the orthogonalized atomic states. t is the 1s-
2s hopping magnitude, U; is the intraorbital Coulomb interaction (i=1s(1),
2s(2), 2p m=0(3), and 2p m==1(p)), whereas K;; and J;; are the interorbital
Coulomb and exchange interaction parameters, respectively.

t Ul U2 U3 Up K12 K13 K23 J12 J13

H= 0.057 1.333 0.369 0.77 0.728 0.519 0.878 0.457 0.061 0.138
He 1.186 3.278 1.086 1.924 1.821 1.527 2.192 1.289 0.212 0.348
He™ -1.1414 1.232 0.764 1.798 1.701 0.929 1.421 1.041 0.269 0.28
Ly -0.654 3.267 0.533 3.105 2938 0.749 3.021 0.743 0.06 0.606
Bet  -0.929 4.509 0.869 4.279 4.049 1.191 4.168 1.175 0.105 0.837

definitely not stationary, so the information about the ground state wave
function, such like the optimal parameters «;, may get lost in this process.
The only assumption we can make about the excited multiparticle states
is their orthogonality to the ground state. The orthogonality in the Fock
space is of course assured by the process of diagonalization. But, in general
case, the single particle orbitals do not have to be of the same shape for
the excited states. We keep their shape and this is an additional assumption
about these states. To improve the accuracy, one would have to perform an
additional optimization of the energy in the subspaces with all states, with
lower energy than the state actually determined, excluded. The orthogonality
condition would lead to a number of subsequent constraints on the a opti-
mization parameters, making thus in most cases, the procedure unavailable
from the practical point of view. Sometimes this is nonetheless possible, as
will be shown in Section 5.1, but it is not the case for the model and the
basis selected here.

How does the size of the single particle basis affect the results? For the
sake of comparison, the same calculations were also performed using a sim-
pler basis. The case of the simplest possible basis consisting only of 1s states
is already contained in Section 2.3.2 giving for He atom: a = 27/(16a,) and
FEq = —5.695Ry, where ag ~ 0.53A. The next richer basis consists of the
1s and 2s states. It allows for an estimation of the influence of the size of
the single particle basis on the accuracy of the calculations. This reduced
basis calculations make also a visualization of the ground state energy as
a function of the optimization parameters a; possible, as we only have two
such parameters. The ground state energy in this case is shown in Fig. 3.12
for the He atom and in Fig. 3.13 for the H~ ion. One can see from these
pictures, that the ground state energy depends strongly on the optimization
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Figure 3.12. The ground state energy of the He atom as a function of inverse
atomic orbital size ay for 1s and ay for 2s, respectively. One can clearly see
that the optimization of this parameters does matter for the energy.

parameters. We have global minima in both situations. Another thing to note
is the similarity of the two plots. If one takes into account the rescaling of the
axes, caused by the change of the nuclear charge by the factor of two between
hydrogen ion and the helium atom, one can observe that the general shape
of valleys in both plots is similar. This expresses the affinity of the systems.

The number of multiparticle states for two orbitals is (;1) = 6, which split
up into three spin- singlets and one triplet. The maximal number of elec-
trons, which can be accommodated by this smaller basis is 4. But the case
with more than half filling can be mapped onto the case with less than half
filled system, so the calculations are shown only for up to 2 electrons, i.e.
the H, He atoms and the H~ ion. The results of this calculations are shown
in Table 3.3. We see the obvious fact that the basis enlargement improves
the accuracy. For He atom the relative error to the "exact" value is 1.89%
for one orbital, .86% for two orbitals and .19% for five orbitals in the basis
set. We also know that for an infinite basis we would reach the exact value,
which differs from the experimental because we also made some approxima-
tions on the Hamiltonian, i.e. it is non relativistic. It is clearly seen for the
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Figure 3.13. Same as Fig. 3.12 for H™ ion.

case of hydrogen in Table 3.1 where the ground state energy is not exactly
equal to unity. For weaker bound systems like H~, the improvement due to
basis enrichment is relatively larger. Also, the size of the various basis or-
bitals change, but in this case it cannot be compared to the experiment. The
orbital size of the 2p states may be a little bit uncommon, but these states
contribute a relatively small amount to the ground state, so the probability
of encountering electrons, for the systems considered, on these orbitals, is
almost negligible.

One can also look at the role of optimization on the accuracy of the
approach. In Table 3.4 we compare the ground state energy and the micro-
scopic parameters for the He atom and H~ ion for the situation with and
without optimization of the parameters a;. Only 1s and 2s orbitals were
taken into account. On the example of helium can be seen that the ground
energy value for one optimized orbital basis set is lower than that for two not
optimized orbitals basis. The microscopic parameters are of the same order,
and the changes are more essential for two-particle interaction parameters.
It is because we have four wave functions in the corresponding integrals, so
the difference in a; parameters is counted twice. This Table shows the impor-
tance of the optimization procedure for establishing the electronic structure.
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Table 3.3. Optimized Bohr-orbit radii a; = ;' of 1s and 2s Slater orbitals,
in units of ag, the ground state energy for the lightest atoms and ions with
only two orbitals. The energy and the parameter difference when compared
with five-orbital situation (see Table 3.1) is also shown.

as ass  Eo (Ry) Aa[1073] Aax[1073] AEg(Ry)

H 1 2 -1 0 0 0
H~ 09805 1.7699 -1.0245 10.79 121.42 0.02424
He 0.4287 0.5788 -5.7549 1.3184 5.62 0.03911

Table 3.4. Microscopic parameters (in Ry) of the selected atoms and ions.
All quantities are calculated for the orthogonalized atomic states. The basis
consists of 1s and 2s states only. ¢ is the 1s-2s hopping magnitude, ¢; is the
atomic energy, U; is the intraorbital Coulomb interaction, whereas K and J
are the interorbital Coulomb and exchange interaction parameters. The lower
part of the Table shows the values displayed above and calculated without
the optimization of parameters «;. The hydrogenic-like values oy = 2 and
as = 1 were taken then. The last column shows the ground state energies.

t €1 €9 U1 U2 K J EG

H~ 0.0336 -0.9983 -0.243 1.3 03422 0.48 0.0539 -1.02446
He 1.149 -3.6466 -0.0987 3.2589 1.0744 1.5109 0.209 -5.75493

H,, 0 -1 -0.25 1.25 0.3 0.4198 0.0439 -1.02174

noopt

Hepoopt 0 -4 -1 25 0.6016 0.8396 0.0878  -5.662
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Chapter 4

Simple molecules and molecular
1ons

The next, more complicated, system is a biatomic molecule or a molecular
ion [41]. The simplest in this category are the hydrogen molecule Hy and ion
H; | where respectively two or three electrons are shared by two nuclei. Such
system introduces an additional external parameter, the distance between
the nuclei. In addition to the ground state energy, also this parameter can be
compared with experiment. It exposes the major advantage of the EDABI
method namely, the introduction of real world parameters into the model
calculations.

As in the case of atoms, we have to choose again the initial class of wave
functions to define our Fock space. Following an argument similar to the
atomic case in Section 3.1 we choose the orthogonalized atomic functions *
centered on two sites.

The model of the Hy and H, molecules system is depicted schematically
in Fig. 4.1. The real space parameters: the bond length R and the atomic
orbital size 1/« are shown. In the center of each of the atoms, there is a
nucleus with charge Z = 1. Because we have two centers, we may locate
the atomic orbitals on both of them. In the simplest case we may restrict
ourselves to the 1s orbitals only. In this way we get space for up to four
electrons. The location of more then a single 1s orbital on each nucleus is
possible, but it increases essentially analytical difficulties in the microscopic-
parameter calculations. The parameter o controlling the size of the orbitals
has been set equal on both of them.

The 1s atomic orbitals located on each of the two centers of distance R
apart are not orthogonal. Let us set the origin of the coordinate system on

!They are identical to the functions used in Chapter 3 defined by Eq. (3.8)

95
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A
v

Figure 4.1. Model of the Hy and H, molecules with real space parameters:
the bond length R and the orbital size 1/a. The orbital size is just guide for
the eye, as the atomic function does not really have a sharp border.

the line connecting both nuclei, half way between them. The atomic wave
functions are of the following form

Pr(r; ) = \/gexp(—a!r—f{/ﬂ) Ga(r; o) = @GXP(—QIT+R/2|)> (4.1)

where R is a vector of length R along the axis of the molecule. They have
to be orthogonalized by mixing the wave functions located according to the
procedure already described in Section 3.1. We will calculate the microscopic
parameters in atomic functions and then transform them to the orthogo-
nalized Wannier basis. The mixing coefficients expressed in Egs. (3.13) and
(3.14) depend on the overlap integral S. The shape of atomic and Wannier
functions is shown in Fig. 4.2. One can notice that the orthogonalized Wan-
nier functions have a node, hence they cannot be the ground state functions
for the single atom case. This is because the overlap is removed by changing
the sign of one function in the area, where the second is located.

4.1 Parameters

The parameters needed to formulate the Hamiltonian in this case have to be
calculated [42|. They can be divided in two classes: the one- and the two-
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Wave Function

position r/a,

Figure 4.2. The wave function along the molecule axis. The orthogonal-
ized Wannier functions(solid line) and the original atomic 1s wave functions
(dashed line) are shown for comparison.

electron microscopic parameters. Unlike it was in the case of atoms, the re-
sultant expressions for parameters depend not only on « but also on the
interatomic distance R.

The single electron parameters have to represent the introduction of two
atomic sites into our model. The form of the single-electron part of Hamil-
tonian in the Schrédinger representation has to be extended. Namely, we
have to add to the Eq. (3.16) a term representing the influence of the second

nucleus
27 27

r— 1 - r— 1|’

Hi(r) = -V? -

(4.2)

where r; = R/2 and ry = —R/2 are the displacements of respectively the
first and the second nuclei from the origin. Because we have two orbitals,
there are two kinds of microscopic single particle parameters defined by Eq.
(2.12). The basis functions are centered on two different atoms. Both centers
are equivalent, hence there is only one «. That is why it is enough to calcu-
late two single electron parameters instead of four.

The atomic energy ¢ = t|; = t, represents the energy of an electron
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located on a center. It differs from that calculated for an atom by the con-
tribution of the second nucleus
—-27
e=(a—22)a+ /d3r¢1(r; a)*

r —R/2|

Vv
2nd nucleus contribution

o1(r; ). (4.3)

The calculation of this additional contribution has to be done in spheroidal
coordinates [43, 44]>. When expressed in these, coordinates it can be directly
evaluated and is of the form

—2Z/27Td¢/ d)\/ du— aR()\er,) 2 R_g()\ o 2)_

= Za (e—m (2 + %) — %) : (4.4)

providing also the complete expression for atomic energy in the molecular
system, which is

1 1
r_ 2 —2aR _
e=a"+2Za (e (1+—aﬁ) Nz +1> (4.5)

If the basis functions of the microscopic parameter being evaluated are
located on two different centers, the parameter is the so called "hopping",
t' = t], = t},. Its value represents the change in energy of an electron moving
between the nuclei, i.e. the kinetic energy of the electron. This case is com-
pletely different from that of the single atom, and we cannot reuse the former
expressions for the parameters here. The easiest way to calculate them is to
employ again the prolate spheroidal coordinates. The second and the third
term in Eq. (4.2), lead the terms of the form

/ Py (x: oz)*’r;if/m@(r; o), (4.6)

which are equivalent. They can be directly evaluated, since
2 R
27 | d d\ [ dp—e P ——— (N — 1i?) =
[T [T [ aneem 2B ey
= —2Zae (1 +aR). (4.7)

The first term in Eq. (4.2) requires the calculation of the expectation value
of the Laplacian and can also be directly evaluated, namely

/d?’rgzﬁl(r; ) (=V?)pa(r;a) = %aQe_O‘R (—a’R*+3aR+3) . (4.8)

2See Appendix F for details.
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The final expression for the hopping integral is
1
t = a2§e’°‘R (—a’R* +3aR +3) — 4Zae **" (1 4+ aR). (4.9)

The last parameter in the group of single electron integrals is the overlap
integral S required to obtain the orthogonalized Wannier functions, which is

S = /d3r¢1(r; Q) pa(r;a) = e F (1 +aR+ %a2R2> : (4.10)

It is important to examine the asymptotic behavior of the parameters for
small as well as for large values of R. For R = 0 our system turns into an
atom with nucleus charge 27. On the other hand for R — oo electrons are
located on well separated nodes. They interact much weaker and we expect
to recover the atomic limit. The hopping on an infinite distance should be
impossible, so we expect it to vanish then. Explicitly, the limits are

lim ¢ = o? — 4aZ = lim ¢

R—0 R—0

lim & = a? — 2aZ

R—o0

lim ¢ = 0. (4.11)
R—o00

They confirm the correctness of the basis-function choice. The R dependence
of the atomic microscopic parameters is shown in Fig. 4.3.

The second class of microscopic parameters are the two electron param-
eters. Because we have the symmetry of exchanging the integration variables
and the two sites are equivalent, there are only four two electron parameters.
A short classification of them is listed in Table 4.1. The usually largest of
the two electron interactions is the intraatomic Coulomb interaction U’. It is
the energy penalty for locating two electrons with opposite spin on the same
orbital. Of course, since on both centers there is the same 1s wave function, it
does not matter which functions, ¢, or ¢, we use in the calculation. Similarly
the interatomic Coulomb interaction K’ represents the interaction between
two electrons located on different centers. The last two parameters do not
represent a classical contribution. The third parameter V' is the so-called
correlated-hopping or hybrid integral. It can be interpreted as a hopping in
the presence of another electron. Here again, it does not matter from the
resultant expression whether ¢; appears thrice and ¢, once in the integral
or it is the opposite case. The last one is the direct exchange integral J'. It
differs from the intersite Coulomb interaction, since each integration variable
connects an orbital centered on one site with an orbital centered on neigh-
boring site.
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Figure 4.3. Single-electron microscopic parameters, calculated in the atomic
basis, as a function of interatomic distance R. The values are in Ry.

Table 4.1. Classification of microscopic parameters for two centers with iden-
tical orbitals located on each. The definition of each parameter is done ac-
cording to Egs. (2.12) and (2.13). Only a single of the equivalent expressions
is listed.

name symbol definition
hopping ¢ < ¢1|Hi|p2 >
atomic energy o4 < ¢1|Hy|pg >
overlap S < ¢1|p1 >
intraatomic Coulomb U’ < Q101 |Ha| 11 >
interatomic exchange J’ < G101 |Ha|papy >
interatomic Coulomb K’ < G109 Ha|py g >
correlated hopping (hybrid) 1% < 11| Ha|p1 2 >
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The calculation of first three parameters U’, K’ and V' has in common
the integration over the first variable r. Let us define

2

v —r'|

I(r);a) = /d3r¢f(r; @) (4.12)

All three parameters can be expressed with help of I in the following way
U = /dgr’l(r'; )3 (r'; )
K' = / d*r'I(r'; a)p3(r'; a)
Vo= /d?’r’l(r/; )y (r'; a) o (r'; @) (4.13)

The calculation of I(r';a) is not very complicated. We may use the inverse
distance expansion in spherical coordinates (C.3). We attach the origin of
the usual spherical coordinate system (r,6,¢) to the first nuclei. The wave
functions defined by Eq. (4.1) have a very simple angular dependence. So,
the integration over the angles 6§ and ¢ provides zero for all terms in (C.3)
except one, namely, that with [ = 0 and m = 0. Then, in turn identity (3.25)
may be used to enable the integration over r to yield

(') = Tz (1-e 1 +ar)). (4.14)
In what follows we must remember, that since we have used the spherical
coordinates originating at the first nuclei, " denotes the distance of point r’
from this origin.

The intraorbital Coulomb parameter U’ is obtained simply by inserting
(4.1) and (4.14) into (4.13) and carrying on the integration using spherical
coordinates. The integrals over ¢/, 6’ yield immediately the factor of 4w. The
integration over 7’ is straightforward and as the final result we have

, o«
U = i (4.15)
It is equal to the atomic result exhibited in Appendix D, as this two-electron
integral includes wave functions located on only one nucleus.

In the cases of calculating K’ and V' we have to utilize spheroidal coor-
dinates, since at least one of the wave functions appearing in the formulas, is
located on center not at the origin of the spherical coordinate system used in
calculation of [ in Eq. (4.14). We insert the expression for I into the second

and third expressions in Eq. (4.13) and transform the obtained formulas into
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spheroidal coordinates. The integration over ¢’ is straightforward as it does
not appear in the integrand. The resultant integrals can be cast into product
of a functions of A and of i, and each of the resulting integrands is a poly-
nomial multiplied by an exponential of sum or difference of A\ and p. It can
be calculated by elementary methods, which yield

—2aR 2
K = £ 105 R® 4+ 1802R? + 33aR + 24) + =
2R ( o + « —+ o+ ) + Ra
1
Vo= 5 (e7*"(160’R* 4+ 2aR 4+ 5) — e **"(2aR +5)) . (4.16)

These expressions are different than their atomic correspondants, but we can
examine their asymptotics. The large and small R limits of K’ are respectively

) ;oL 2
pm K= R
5%
. / _
}%E})K = T (4.17)

where 1.t. is for leading term, as the proper value of the limit is zero. The
first line shows the correct classical expression for the long-range interaction,
where the electrons on orbitals can be treated as point charges. The second
line reproduces the result for U’, as R = 0 means the two electrons are
located on the same orbital. Analogously, the corresponding limits for the
hybrid integral are

lim V' % exp(—aR)

R—o00
5
lim V' = ZO‘. (4.18)

The first formula shows the exponential decay of the two-orbital overlap.
The second expression reproduces the intraatomic Coulomb interaction for
the same reason as for the parameter K.

The exchange integral J’ cannot be computed in the same manner. There
is no use in expression for I since both integration variables, r and r’, connect
wave functions centered on different atoms. We need instead an intermediate
expression
2

v —r'|

I'r';a) = /d3rgb1(r;a)¢2(r; @) , (4.19)

which contains two different orbital, hence it has to be calculated in spheroidal
coordinates. But in this case the expansion (3.22) cannot be used. Instead,
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we have to employ an analogous expansion in spheroidal coordinates, which
is also called the Neumann expansion,

(s — [m)!\?
- IPNC 25“)<<s+|m|>!)

s=0 m=—s

Pslml()\<)Q|sm|(>\>)Ps|m|(M)Ps‘m‘(ﬂl)elm(¢_¢,)> (4.20)

where A. and A. are respectively the lesser and greater of Aand N. P|m| are
the associated Legendre functions as in Eq. (3.22) and Qs are the associated
Legendre functions of the second kind. The Expansion (4.20) is more closely
described in Appendix C. Inserting this expansion into Eq. (4.19), together
with providing the wave functions ¢; and ¢, expressed in terms of A, u, and
¢, we see, that there is no ¢ dependence of the charge distribution. So, we
may compute this part of the integration, reducing one of the summation
indices. In effect we obtain that

I/—a3R2i2s+1/ d)\/ dpu(N\* — p?) exp(—aR))
s()‘<)Qs()‘>) s(:U’)Ps<:U’/)‘ (421)

The next step is to carry out the integration over p. This variable occurs in
the formula only twice. We may use either the orthogonality property of the
Legendre polynomials

/_ APy (1) Po (1) = S ——— (4.22)

1 25 +1

by expressing i = 1/3Py(u)+2/3P,(u), or simply switch over to the explicit
polynomial expansions. This next integration reduces further the summation
over s leaving only two terms: s = 0 and s = 2. The most problematic
is the integration over A. We use Eq. (3.25). Unfortunately, the Legendre
functions of the second kind Q4(A\) contain terms like %, ,which result
after integration, in nonelementary contributions. The calculation is quite
cumbersome. With help of the overlap integral and an auxiliary definition

S = e*®(1 — aR + 1/3a%R?) we have as the result

PO i) = 3 (1= O/ = 1302 - 1/3) (51 (157

—S'Ei(—aR(A+ 1)) + SEi(—aR(A — 1)) — aRexp(—aR\))

+%9u2 —1/3)(e7 A (=1/6aR — X\ — 1/2aRN?) + \S). (4.23)
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The special function appearing here is the exponential integral function

—t 00

FEi(z) = — / ert = YEuer + 102 + Z %, (4.24)

z n=1

where Ygyier =~ 0.5772 is the Euler’s constant. The primary use of the expres-
sion (4.23) is the calculation of J, but it can also be employed to an alternate
calculation of the correlated-hopping integral V' to check the consistency of
the calculations. Next we have to multiply I'(r’; ) by ¢1(r'; @)po(r'; a) and
integrate out the variables ¢', 1/ and \. After a somewhat lengthy calcula-
tion, we get the final expression for the exchange integral of 1s orbitals

12

,—_
J_5R(

S*Ypuier + S?In(aR) — 255’ Bi(—2aR) + S”Bi(—4aR))
+ae ?* (5/4 — 23/10aR — 6/5a°R* — 2/150*R?) . (4.25)

Examining the asymptotic properties of the expression one obtains exactly
the same behavior like for the correlated-hopping integral V’, namely

lim J exp(—aR)

R—o0
5
lim J' = IO‘ — U, (4.26)

for small R we get back the U’ value, and for large R an exponential decay,
which reflects the long range shape of the 1s wave functions. The R depen-
dence of the two electron microscopic parameters U’, K', V', J' is displayed
in Fig. 4.4. All these functions are real valued. It should be stressed that no
approximations were made in the calculation of all the atomic microscopic
parameters.

After calculating the microscopic parameters in the atomic basis, one
needs to transform them to the corresponding expressions in the orthogo-
nalized Wannier basis. The general shape of the transformation is identical
like for atoms in Eqs. (3.13), (3.14). The only difference is that the overlap
integral is expressed by another dependence in Eq. (4.10), which depends
on the interatomic distance R. The S dependence is shown in Fig. 4.5. The
transformation rules for one- and two- electron parameters are even simpler,
than respectively, (3.19) and (3.27). In the first case we have only one atomic
energy, hence there is also only one value for Wannier parameters. In the for-
mula for two-electron parameters the summation goes only over two orbitals
yielding four parameters in the Wannier basis. Unfortunately, for R — 0 the
value of the overlap approaches unity, what makes the mixing coefficients
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Figure 4.4. Two-electron atomic microscopic parameters as a function of in-
teratomic distance R. The values are in Ry.

diverge. To see the nature of this divergence more clearly it is convenient to
rewrite Eq. (3.13) in the following form

() =5 (610 = (=) ent)). (1.27)
The second Wannier function is obtained by exchanging the indices 1 < 2.
Now, 3 plays the role of the normalization constant, whereas the value 0f —%
tells us how deep the negative kink in w;(r) should be, at the position of the
second nucleus. From Fig. 4.5 we see that —% — 1, what means it should
be equal to the function peak itself. So the normalization  has to diverge
at the same level as mixing coefficient —% approaches unity. These divergen-
cies can make some of the microscopic parameters infinite. Fortunately, as
shown in Fig. 4.6 for single electron integrals and in Fig. 4.7 for two electron
parameters, it is not true. As long as all atomic parameters in a given class
are calculated exactly, the divergences cancel out. But, if we approximate the
atomic parameters, or put them equal zero, the Wannier parameters may
diverge. It is not a local effect very near to R = 0. In Fig. 4.5 we see that
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overlap, mixing coefficients

distance, R/a0

Figure 4.5. The overlap S and the mixing coefficients of atomic into Wannier
functions for a molecule consisting of two 1s orbitals. § can be interpreted
as the normalization constant, whereas —(/v is the amount of the second
wave function to be added to the first one to achieve the orthogonality. The
parameters diverge with decreasing distance R.

the values of 3 and ~ are starting to rise significantly for R ~ aq, which is
of the order of optimal bond length, obtained later on in the calculations.
This is the reason why any approximation at the level of atomic parameters
should be controlled. On the other hand, it is relatively safe to put some of
the parameters in the Wannier basis as approximately zero. The numerical
calculations illustrating this problems are done in Section 4.4 on example of
Liy molecule. Basing on this assumption one may estimate the atomic pa-
rameters of the simplified system [18]. All the Wannier parameters are real
valued, as before for the atomic states.
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Figure 4.6. Single-electron Wannier microscopic parameters as a function of
interatomic distance R. Compare with Fig. 4.3 to see the influence of the
orthogonalization.

4.2 Results for Hy, H,;

With all the microscopic parameters accounted for, we select now the Fock-
space states in a way, which makes the Hamiltonian matrix blockdiagonal.
Because we have only two orbitals, there are only (2;2) = 6 states for the Hy
molecule and (2;)2) = 4 states for the H, molecular ion. For the H,; molecule

we may divide all the states into three triplet states

11 >= aJ{Ta;HO >

1
‘3 >= ﬁ (CEJ{TCE;l + aJ{la;T) ’0 >, (428)

and three singlet states

_ Tt T
|4 >= ay1Qy; — alla2T) |0 >,

1
7l
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Figure 4.7. Two-electron Wannier microscopic parameters as a function of
interatomic distance R. Compare with Fig. 4.4 to see the influence of the or-
thogonalization. The left axis is for the intraatomic and interatomic Coulomb
interactions U and K. The right axis is for the correlated hopping and ex-
change interactions V' and J.

1
|5 >= 7 (aITaL + agTagl) 10>,
1

The Hamiltonian (3.37) can be in this case written as

2
H= E(an + ny + UZA + ngl) + tz <CLLT(L20 + CL;U(I10> + UZTLZ'TTL”

=1

1
—2JSl : SQ + (K + §J)(TL1T + nu)(ngT + ngi) +J (CZITGLCLQLGQT>

+V Z(nla + nay) <a13a25 + a53a13> (4.30)
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Taking the expectation value of this Hamiltonian we get for the triplet states
(4.28), the only nonzero values

<I|H|I >=2e+ K —J VIe{1,23} (4.31)

The singlet states (4.29) form a submatrix

26+ K+J 2t+2V 0
Hg=| 2042V 2e4U~+J 0 (4.32)
0 0 2 +U —J

The eigenvalues can be easily obtained analytically in the form [38]

ET = 2€+K—J
Egg = 264U —J

U+t K |
Fe — 2+ ; 4 5K = DR+ 160+ V)2
K 1
Fos = Bey — 25+U; +J = SR =0+ 16+ VP, (433)

where Erp is the threefold degenerate triplet state and Fg, are the singlet
states. Eg3 has always the lowest energy, thus it is the ground state Egg for
any interatomic distance R.

Looking at the absolute value one sees that all the parameters are re-
quired. But taking the relative values of the obtained energies, it turns out
that the atomic energy has the same contribution to all states 2¢ and can be
regarded as the reference energy. Similarly, only the difference between the
intraatomic and interatomic Coulomb interaction U — K is important, hence
the reference level can be set to include one of these values, i.e. the relative
energy difference between any two states is a function of U — K, not each of
them separately.

The corresponding singlet ground state in the Fock space has the form

1
X
V2D(D —U + K)
1

|GS >=

X {4(t +V)—=(al,ab, — a ab,) — (D — U+ K)—=(a,a}; + aLa;T)} 0 >,

1
V2 V2
(4.34)
where
1/2

D=[(U-K)?+16(t+V)?]

The lowest spin-singlet eigenstate has an admixture of the symmetric ionic

state %(ahagl +al la;). Therefore, to see the difference with either the
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Hartree-Fock or Heitler-London approach to Hs, we construct the two-particle
wave function for the ground state according to the prescription provided by
Eq. (2.15), which in this case takes the form

1 A A
(I)()(I'l,rg) = —2 < O|\Il(r1)\11(r2)|G > . (435)
Taking ¥(r) = Zi:T w1 (1) xo(r)al + wy(r)xo(r)al,, we obtain that
2(t+V) 1 [ D-U+K
@ = ®C 3 - = (bl ) )
o(r1,12) /2D(D U { K) (r1,rs) 5 5D (ry,r3)
(4.36)

where the multiparticle wave function has been separated into two parts of
different nature. The covalent part is

®.(r1, 1) = [wi(r1)wa(re) + wi(ra)wa(ry)] [x1(re)x (r2) — Xy (r)x1(r2)]
(4.37)

whereas the ionic part takes the form

D;(r1,1r2) = [wi(r1)wi(r2) + walry)wa(r2)] [xq(r)x; (r2) — X (r1)x (r2)] -
(4.38)
The ratio of the coefficients before ®;(ry,ry) and ®.(ry,ry) can be defined
as the many-body covalency ~,,. This value should be distinguished from
the single-particle covalency —% appearing in the definition (4.27) of the
orthogonalized atomic orbital w;(r). The two quantities are drawn in Fig.
4.8. The many-body covalency ,,, represents a true degree of multiparticle
configurational mixing.
For the H, molecular ion we have only 4 multiparticle states in the
Fock space

|1 >= a}aLaLHO >,

|2 >= a%ahaglm >,

13 >= aJ{TagTa;l\O >,
|4 >= aLa;Ta;lm > . (4.39)

All these states can be transformed into each other by the symmetries of ex-
changing the orbitals 1 <= 2 or the spins T«»]. The Hamiltonian formulation
is identical like for the Hy molecule (4.30). The Hamiltonian matrix consists
of two identical blocks connecting the states |1 > with |3 >, and |2 > with
14 > i.e.

(4.40)

g (3t U+2E+J t—2V
Hy ™ t—2V e4+U+2K+J )



Table 4.2. Ground-state energy and microscopic parameters (in Ry) for H, molecule. The last column represents the
kinetic exchange integral characterizing intersite antiferromagnetic exchange

[

Rja  Eg/N o t U K V|mRy] J[mRy] YV [mRy]|
1.0 -1.0937 -1.6555 -1.1719 1.8582 1.1334 -13.5502 26.2545  7755.52
1.5 -1.1472 -1.7528 -0.6784 1.6265 0.9331 -11.6875 21.2529  2747.41
2.0 -1.1177 -1.722 -0.4274 14747 0.7925 -11.5774 16.9218  1130.19
25 -1.0787 -1.6598 -0.2833 1.3769 0.6887 -12.0544 13.1498  507.209
3.0 -1.0460 -1.5947 -0.1932 1.3171 0.6077 -12.594  9.8153 238.939
3.5 -1.0254 -1.5347 -0.1333  1.2835 0.5414 -12.8122  6.9224 115.143
40 -1.0127 -1.4816 -0.0919 1.2663 0.4854 -12.441  4.5736 55.8193
45 -1.006 -1.4355 -0.0629 1.2579 04377 -11.4414 2.8367  26.9722
50 -1.0028 -1.3957 -0.0426 1.2539 0.3970 -9.9894  1.6652 12.9352
55 -1.0012 -1.3616 -0.0286 1.2519 0.3623 -8.3378  0.9334 6.1455
6.0 -1.0005 -1.3324 -0.01905 1.251 0.3327 -6.7029  0.5033 2.8902
6.5 -1.00024 -1.3073 -0.0126 1.2505 0.3075 -5.2242  0.2626 1.3452
7.0 -1.0001 -1.2855 -0.0083 1.2503 0.2856 -3.9685  0.1333 0.6197
7.5 -1.00004 -1.2666 -0.0054 1.2501 0.2666 -2.9509  0.066 0.2826
8.0 -1.00002 -1.25  -0.0035 1.25006 0.25  -2.1551  0.032 0.1277
8.5 -1.00001 -1.2353 -0.0023 1.25003 0.2353 -1.5501  0.01523 0.0572
0.0 -1 -1.2222 -0.0015 1.25001 0.2222 -1.1005  0.0071 0.0254
95  -1.  -1.2105 -0.0009 1.25001 0.2105 -0.7725  0.0033 0.0112
100 -1 12 -0.0006 1.25 0.2  -0.5371  0.0015 0.0049

H °H YOA SLTNSTY

4

1L
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Table 4.3. Same as in Table 4.2 for H, ion. Note That the values for the microscopic parameters V', J, and 4%%‘[/()2

are in Ry here.

Rla Eg/N e ' U K V[Ry] JRy] Y[Ry
1.0 -0.4591 -1.6607 -0.5869 1.1414 0.7360 -0.0105 0.0163 3.5220
1.5 -0.7659 -1.6647 -0.4285 1.1279 0.6983 -0.0085 0.0161 1.7782
2.0 -0.8813 -1.6259 -0.3083 1.0979 0.6474 -0.0078 0.0150 0.8871
2.5 -0.9264 -1.5737 -0.2221 1.0692 0.5961 -0.0079 0.0133 0.4476
3.0 -0.9423 -1.5204 -0.1603 1.0466 0.5476 -0.0086 0.0113 0.2286
3.5 -0.9460 -1.4704 -0.1154 1.0305 0.5025 -0.0093 0.0091 0.1179
4.0 -0.9450 -1.4252 -0.0826 1.0196 0.4608 -0.0099 0.0071 0.0612
4.5 -0.9426 -1.3848 -0.0585 1.0126 0.4226 -0.0101 0.0052 0.0319
50 -0.9402 -1.3491 -0.0410 1.0080 0.3881 -0.0099 0.0037 0.0167
5.5 -0.9384 -1.3176 -0.0284 1.0051 0.3573 -0.0093 0.0025 0.0088
6.0 -0.9373 -1.2901 -0.0194 1.0032 0.3300 -0.0085 0.0017 0.0046
6.5 -0.9365 -1.2621 -0.0130 0.9905 0.3058 -0.0075 0.0011 0.0025
7.0 -0.9363 -1.2402 -0.0086 0.9876 0.2847 -0.0065 0.0007 0.0013
7.5 -0.9365 -1.2211 -0.0056 0.9856 0.2662 -0.0055 0.0004 0.0007
8.0 -0.9367 -1.2044 -0.0036 0.9844 0.2498 -0.0046 0.0003 0.0004
85 -0.9372 -1.1897 -0.0022 0.9839 0.2352 -0.0037 0.0002 0.0002
9.0 -0.9376 -1.1768 -0.0013 0.9839 0.2222 -0.0030 0.00009 0.00010
9.5 -0.9380 -1.1653 -0.0008 0.9842 0.2105 -0.0024 0.00005 0.00005

10.0 -0.9384 -1.1549 -0.0004 0.9848 0.2000 -0.0018 0.00003 0.00003
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Figure 4.8. The single-particle () and many-body (7,,5) covalency factors
for the H, wave functions. For details see main text.

The eigenvalues of this Hamiltonian are
ELi=3+U+2K+J£(t-2V) (4.41)

Each energy is twofold degenerate with respect to spin ¢ =T, |. Depending
on the sign of the value t — 2V, the ground state in the Fock space is either
a symmetric or an antisymmetric combination of the initial states |1 > and
|3 >3. As it turns out later during the optimization process, the symmetric
combination is energetically favorable for small R, whereas the antisymmetric
for larger R.

Because analytic formulas for the ground state energy are available in
both , Hy and H, cases, we can just minimize these values with respect
to a and R. The electronic Hamiltonian contains only electron-electron and
electron-nuclei interactions. Thus, the obtained ground state energy is the
electronic energy E¢ only. To complete the description one has to include an
additional contribution of the ion-ion interaction. We treat it classically, as

3Because of the degeneracy we may as well talk about |2 > and |4 >
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Figure 4.9. The level scheme of the H, ground state and the lowest H,
states as a function of the interatomic distance R. The hopping electron
illustrates the relevance of H, ionic configuration when measuring tunnelling
conductivity of Hy system.

the Coulomb interaction of two point charges lying at the bond distance R
from each other. Hence, the full ground-state energy is

ol 272
EG(R, O{) = EG (R, Oé) + ?7 (442)

where Z = 1 for hydrogen. The results are shown in Table 4.4. The "ref-
erence" values for energy are the best variational estimates [39]. Instead of
minimizing both R and « simultaneously we can compute the optimal « for
a given R. In this way we get the R dependence of the ground state energy
and the orbital size. These values are plotted in Figs. 4.9 and 4.10. There are
three curves on each plot vs. R, since there are two different ground states
for H, . For Hy the optimal o goes with R — oo to the atomic value for
H atom, because we have then two separated atoms. For H, we get in this
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Figure 4.10. Optimal value of the variational o parameter as a function of
distance R. For large R we see the atomic limit & = 1, which is the value for
a hydrogen atom.

limit an intermediate value between the H~ and H parameters®, as we have
then two electrons on one atom and a single on the second.

In Table 4.2 we list the energies and the values of the microscopic param-
eters for H, system with optimized orbitals, whereas in Table 4.3 the same
is provided for H, molecular ion. Parenthetically, one should note a drastic
difference for the so-called correlated hopping matrix element V in the two
situations. The same holds true for the direct exchange integral J (ferromag-
netic). This exchange integral is always decisively smaller than that for the
antiferromagnetic kinetic exchange, Jy., = 4(t +V)?/(U — K). The virtual
interatomic hopping processes leading to the strong kinetic exchange are the
source of the singlet nature of the H, ground state. The H, ground state
is unstable with respect to the dissociation into Hy and e, contrary to the
H~ case. However, the energetics of such state is important when calculating

4For H, one should calculate the optimal o with 1 orbital per atom like it was done
for He at the end of Subsection 2.3.2, that is equal to }—é, instead of taking the value from
Table 3.1, obtained for an enlarged basis.
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Table 4.4. The ground state energy Eg, bond length R and the inverse opti-
mal orbital size o for Hy and H, . The reference value of the energy is from
|39]. The experimental value of the bond length is from [40].
EgRyl]  Rlag]  aoao  EL’ [Ry] R“Plag]
Hy, -2.29587 1.43042 1.19379  -2.296 1.40963
H;, -1.89215 3.5651 0.78597 instable

e.g. the metallization of molecular hydrogen or determining the tunnelling
conductivity through Hs molecule, as shown schematically in Fig. 4.9. This
last Fig. illustrates the method of determining the energetics of excited states
of H, by measuring e.g. the tunnelling conductivity (i.e. via H, intermediate
state).

4.3 Mobile orbitals for H,

In all calculations so far, we have made an assumption that the wave function
is centered around the nuclei. For atoms it could be justified by the symmetry.
But for molecules, this may not be certain. We may allow for a displacement
d between the center of orbital and its parent nucleus. This approach is sim-
ilar to the approach utilizing sums of orbitals to express more complicated
wave functions in electronic calculations, e.g. to form two displaced s orbitals
to simulate a p orbital.

The new idea is illustrated in Fig. 4.11. The distance between the or-
bitals is reduced to R — 2d. The two-electron parameters do not depend on
the nucleus position. So, their values calculated already may be used again
with changed R. Similarly, the overlap integral does only depend on the in-
terorbital distance, so in effect we can make the list

U'-, ) U'(-, «)

K'(R, ) K'(R —2d,«)

V(R,a) p =< V(R—-2d,a) . (4.43)
J' (R, «) J' (R —2d,«)

S(R, ) S(R —2d,«)

For the intraatomic Coulomb interaction there is no R dependence.

The situation becomes more complicated for the single electron parame-
ters, as they include the interaction with the nuclei. The atomic energy may
be calculated according to Eq. (4.3), with the exception that we have twice
the expression for the 2"¢ nucleus contribution, calculated in Eq. (4.4), in-
stead of the interaction with the not displaced nucleus. The distances to put
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Figure 4.11. Model of a H, molecule with additional parameter d - the dis-
placement between the nuclei and the corresponding centers of the orbitals.

in this formula are respectively d and R — d. In effect we have

d_de4ad72aR_R
, 2 (64ad+62aR) 2 <—e2ad +R)
e=a o2 (d+R) T d(d—R)

(4.44)

The calculation of the hopping integral is more tricky here. The integral can
be divided into three parts: the kinetic energy, and the interactions with both
Coulomb wells. The kinetic energy was already calculated in Eq. 4.8, and we
only need to substitute R — R — 2d. The interaction with the Coulomb well
is in fact a three-center integral, because we have two orbitals and one well,
and in general none of them coincide. We need an integral of type

3 —a(ri+ry)
Tijk = %/d%eT, (445)

where r;, r; and r; are the distances from three different points. Luckily,
they are located on a straight line, so this calculation can be performed
analytically in Appendix G. We parameterize the geometry of the system
by a = R — 2d, the distance between origins of r; and r;, and by h = R/2,
the distance of the origin of r; from the middle point of the segment a. The
hopping integral in atomic representation is

2 ,—a(R—2d) R

ac (—a(R=2d)*+3a(R—2d)+3)+27iju(a, R—2d, ). (4.46)

t' =
3
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Figure 4.12. The results for the H, molecule with mobile orbitals. The optimal
inverse size of the orbital a,,: has not changed significantly compared to the
case with fixed orbital centers at the nuclei positions.

The subsequent calculations are identical as for the molecules with fixed
orbital centers d = 0. The only difference is the existence of the addi-
tional optimization parameter d. We obtain the following values for the Hy
molecule: ground state energy Eg = —2.3003Ry, the inverse orbital size
« = 1.19001a,*, the internuclear distance R = 1.4285a,. If we compare this
to the results with fixed orbitals in Table 4.4 we see a slight improvement in
the energy of the order of 0.2% of the initial value, which is reproduced for
d = 0. The orbitals are also a little bit larger, the bond is shorter and the
electrons moved to the middle of the molecule. The optimal inverse orbital
size oy and the displacement d are shown in Fig. 4.12. The displacement d
reaches its maximal value a the internuclear distance corresponding to the
lowest ground state energy.

Concluding this Chapter one may say that although it does not provide
essentially new values for Ez in Hs and H, cases, the method is very trans-
parent, allows for a definition of many-body covalency factors, as well for
an introduction of the so-called mobile orbitals. The amazing feature of the
results for those mobile orbitals is that the nuclei repel each other further
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apart, while the electrons come closer (d is positive). This feature shows the
truly quantum-mechanical nature of the covalent bond. Obviously, the zero
point motion of the nuclei has not been discussed here as our main purpose
was to test the EDABI method in the simplest two-site cases.

4.4 Li, molecule: role of 2s atomic-like state

The complexity of the calculation in the EDABI method rises quite rapidly
with increasing number of electrons. Also, the calculation of microscopic pa-
rameters, for wave functions more complicated than 1s functions, is not a
simple task. To illustrate the impact of these problems we have chosen a
more complicated system, namely the Li, molecule. Such molecule has six
electrons so we decided to introduce some simplifications.

The major new approximation is considering the two inner (1s?) electrons
of each Li atom as core electrons. They are located mostly on the 1s shell.
We have chosen to disregard their dynamics and to include them as renor-
malizing the nucleus charge only, i.e. in subsequent calculations we set the
effective charge of the nucleus to Z = 1. This corresponds to 1s orbitals, hav-
ing point size, which means that the inverse size parameter oy, = 00, located
at the nucleus. Inserting this value into the atomic energy ¢ Eq. (4.3) and
to the atomic Coulomb interaction U’ Eq. (4.15) we get infinite values. Of
course, this is a very crude approximation. One should rather use an effective
potential, and calculate the single particle parameters with it. But this topic
is out of the scope of this Thesis, and the approximation chosen enables us to
demonstrate the impact of more complicated wave functions on the results.

Summarizing, our model is identical to the H, molecule model, described
at the beginning of this Chapter, with the difference that we use 2s atomic-
like orbitals of the form

o1(r;a) = @(1 —alr — R/2|) exp(—alr — R/2|)
Go(r; ) = @(1 —alr + R/2|) exp(—alr + R/2|). (4.47)

The calculation of the parameters is basically the same as for 1s orbitals, but
much more complicated. Some intermediate results for the most complicated
exchange integral J' have the size of several pages in printing. The two-
electron microscopic parameters for 2s orbitals are shown in Fig. 4.13. Of
course in the case of 2s orbitals we also have to go over to Wannier basis.
The corresponding parameters in the Wannier basis are shown in Fig. 4.14.
Comparing with the 1s situation, displayed in Figs. 4.4 and 4.7, we see that
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Figure 4.13. Two electron atomic microscopic parameters as a function of
interatomic distance R for 2s atomic-like orbitals. The values are in Ry.

the values are lower, and the decay is much slower. This is caused by the
increased size of the 2s atomic-like orbital when compared with the 1s orbital.

The diagonalization process does not differ at all from the Hy case,
because the Li; model has the same formulation in the Fock space. Only the
parameter values differ. The results, consisting of the ground state energy
FE¢, the bond length R and the optimal value of the inverse size parameter
Quopt, are shown in the first row of Table 4.5.

Because of the problems appearing in the calculation of the parameters
in the atomic basis, one may try to simplify this task. The first possibility
is to ignore the integrals which are difficult to evaluate. In our case, we may
set the exchange integral J' = 0. This approximation turns out to be too
radical. After the transformation to the Wannier basis we obtain divergent
results. Namely, the ground state energy is divergent in the small R limit,
which makes an optimization of the parameter « impossible.

Another possibility is to take the value calculated for a simpler orbital.
We may reuse the values for 1s orbitals. They have the correct limits, hence
we can get a bound for the ground-state energy. Unfortunately, the nature
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Figure 4.14. Two-electron microscopic parameters for the orthogonalized 2s
Wannier basis as a function of the interatomic distance R. The values are
in Ry. Compare with Fig. 4.13 to see the influence of the orthogonalization.
The left axis is for the intraatomic and interatomic Coulomb interaction U
and K. The right axis is for the hybrid and exchange interaction V' and J.

Table 4.5. The results for Lis molecule with different approximation, regard-
ing the parameters, applied on top of the EDABI method.

approximation  Eg/N (Ry)  R(ao) Qopt o

exact -0.89875 4.4534  0.31755
J =0 divergent  divergent -

J' = 1s value -0.79627 3.88506  0.4114
J=0 -0.93613 4.30151  0.32152

no Wannier basis  -0.714045 5.2331 0.57511
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of the ground state is different, the state with the lowest energy is not the
same as for the complete calculation.

Still another possibility is to set the value J = 0 in the Wannier basis.
This is not really a simplification, as far as we still need the atomic value,
which is difficult to obtain, but it justifies an approach of obtaining the
atomic values from approximated values in the Wannier basis [18]. Within
this approach we get the correct ground state, but the calculated values of
the ground state energy Eg, the bond length R, and the optimal value of the
inverse size parameter oy, are not in a very good agreement with complete
results. Such method yields only qualitative results.

The last approximation,the lowest row in Table 4.5, examined here is of a
different nature. We disregard the need to work in an orthogonal basis. The
theoretical aspects of this were discussed in Section 3.1. The practical impact
is shown in this calculation. We simply assume that the overlap integral
S = 0. Thus all the parameters in the Wannier basis are identical to that in
the atomic basis. This impairs the quality of the results. The nature of the
ground state is correct, but the quantitative results are of comparable quality
to the approximation .J = 0, i.e. not very good. Note also that neglecting 15>
electrons the ground state energy is only a fraction of the total atomic energy
obtained in the preceding Chapter. The Lis example shows explicitly that the
extension of EDABI method to more involved molecular systems is associated
with additional complications, which should be dealt with separately.



Chapter 5

Crystal field levels from EDABI
method

In solid state physics one is usually concerned with systems with a large
number of atoms. In a crystal the local electronic properties are influenced
by all neighboring atoms. If we consider a single atom in a such structure,
we have to include in some way this interaction.

The simplest approximation consists of regarding the neighboring atoms,
or rather atomic ions, as simple charged points, without taking in account
their electronic structure. In this manner, we may extend the calculations
done for atoms in Chapter 3. Namely, in addition to the central nucleus we
add several point charges, placed according to the symmetry of the system
we want to describe. Obviously such calculation provides realistic results only
when the states are strictly localized, quasiatomic.

These additional charges change the total charge of the system. A crystal
can be imagined as being built of many such blocks. To make it neutral, the
total charge of a single block consisting of the central nucleus, its electrons
and the auxiliary charges, has to be equal to zero. As a rule, these neighboring
ions are shared by several cells. So, we have to use an effective charge Z¢*
for them as it is partially neutralized by electrons from other blocks. The
simplest choice is to take only %—th of the charge of an atomic ion if it is
shared across n cells. The equation for the charge balance can be written
down in form

Ze+Ne+ZZf“te:0, (5.1)
i=1

where Ze is the charge of the central nucleus, N is the number of electrons
taken into account in the calculation, e is the electron charge, and z is the
number of crystal field sources.

83



84 CHAPTER 5. CRYSTAL FIELD LEVELS FROM EDABI METHOD

Figure 5.1. The shape of complex (upper row m = 0, £1, +2 respectively) and
real (lower row) 3d wave functions. For the complex valued wave functions
we show the absolute value only, thus the shape of functions with opposite
signs of m is identical here. All real wave function, except the first one, can
be transformed into each other by a three dimensional rotation. This is the
reason why only 3 functions are displayed.

Because the central atom can have many electrons, what increases the
difficulty of the calculation, the inner ones may be regarded as composing
the atomic core. They just lower the charge of the central atom and do not
appear anywhere else in the calculation. An extension of this approach would
be the replacement of the Coulomb potential of the central nucleus by an ef-
fective potential do describe the contribution of the core electrons in a more
precise manner.

The starting point is the choice of the basis wave functions. The crystal
field effects are important, for example, in d-shell ions embedded in the cha-
leogenide matrix. So we can choose for our calculation the 3d wave functions
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of adjustable size. Their radial dependence is

Rsq(r;a) =4/ 4%047/27’2 exp(—ar). (5.2)

The complete wave functions are obtained by multiplying the radial parts by
the standard spherical dependence represented by spherical harmonics Y,
cal
ie.

¢3dm(ra 07 ¢a Oé) = R3d(r; Oé)}/ém(ea ¢) (53)
But it is not the only choice for the 3d functions. They often appear as real
functions. The real functions are defined as follows

Z P322—r2 (T3 ) = P3a0(T; ¥) (5.4)

0,:(1:0) = == (¢na () + dna-1 (r50) (5.5)
6 (1:0) = = (G (1100 = s (1500 (5.6)
0.-p(5:0) = = (dunri0) + dua-a(ri0) (5.7
Gy (:0) = ——= (Paaa(r; @) — Pas(r30)) (5.8)

V2

The indices of the real wave functions represent the shape of the function in
the Cartesian coordinate system. The shape of both kinds of 3d functions is
depicted schematically in Fig. 5.1. Both choices are equivalent, in the sense
that they can be transformed into each other by a unitary transformation, as
long as there is only one . In our calculations we allow each wave function
to have an independent inverse size parameter, so the results for both sets
may be different.

The five 3d functions, both real and complex, are orthogonal, their over-
lap integral is S = 0. This is because of the different angular dependence of
each of these functions. The variation of the inverse size parameter does not
break down this orthogonality. This presents itself an advantage because the
atomic functions are already the orthogonalized Wannier functions. So, we
do not need to transform the parameters calculated in the atomic basis. The
Eqgs.(3.13, 3.14) are not necessary in this case.

The introduction of the crystal field changes only the potential of the nu-
cleus. The electron-electron interaction Hy(r,r’) has still the form from Eq.
(3.20). So, if we want to perform the calculations for two or more electrons,
we can calculate the 2 particle microscopic parameters in advance, without

'For the definitions and conventions, see Appendix A.
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the knowledge about the symmetry of additional charges in our system. We
can use the same expressions for calculations for any crystal field arrange-
ment, also for simple atoms and molecular ions. So, if we would have used
also the 3d functions in our calculations in Chapter 3, we could reuse these
results here. The method of calculation of two-particle microscopic parame-
ters is described in Section 3.2.2. There are 120 nonequivalent integrals for
five 3d states. Only 16 of them are nonzero for complex-function basis. In
the progress of carrying out the calculations for this Thesis all two-particle
integrals involving 1s, 2s, 2p ,3s ,3p and 3d functions with a common origin
were calculated. For 14 wave functions we have 5565 nonequivalent integrals,
out of which 561 of them are nonzero.

We can transform the parameters from complex-function into real-function
single-particle basis using the transformation matrix

1 0 0 0 0
0 :/T% ’7;1 0 0
A=1 0 %5 5 0 0 , (5.9)
0 0 0 &T% ?
0 0 0 5 U
and the transformation rule is
5 Qi — QY
real __ AL, J A rcompl Qjr —
Vijkl© = , ';—1 Aiir Ajjr Aprr Aur Voo ay — oy (5.10)
T oy — o

where the bracket on the right represents the various substitutions of « pa-
rameters to be done in each component of the sum. In the real basis, there
are 34 nonzero integrals.

5.1 Octahedral surrounding

The model we choose for the examination of the electron states in the crystal
field is the octahedral surrounding model. It is shown in Fig. 5.2. On every
axis, x, y and z, there is located a charge Z°' in equal distance R from
the origin, which contains charge Z. The number of crystal-field charges is
thus z = 6. We are going to discuss two cases. First, one electron case,
N = 1. According to charge balance Eq. (5.1), we may choose Z = 4 and
Ze* = —1/2. Z°** may represent an oxygen ion 0% charge shared between
four neighboring cells. In the one electron case the two-particle integrals are
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A

Figure 5.2. Model of the system in octahedral crystal field. The additional
charges are located on x, y and z axes in the distance R from the center.
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Figure 5.3. Rotation of coordinate system to express the crystal field from
charges on = and y axes via the values for the charges located on z axis.
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not needed. But because of Z¢*'| the 3d wave functions are not the eigen-
functions of single-electron Hamiltonian. So in this case the size optimization
makes sense even for the single electron. Second case is that with two elec-
trons, N = 2. In this situation we need the two electron integrals and the
charges are respectively Z = 5 and Z¢** = —1/2.

In both cases we need to calculate the single-electron microscopic param-
eters according to prescription (2.12). The Hamiltonian changes with respect
to the atomic case in Eq. (3.16)

27 27t
Hir)=-V-Z - Y = (5.11)

n=4x,+y,tz |I' o I'n|

where r, is the position of the additional charge. The values of 7 represent
the axis and whether the charge is located on positive or negative part of
this axis. The first two terms yield the atomic values. For 3d wave functions
the parameters are equal to

27
t;j = Oéi(Oéi — ?) + Z 5tij7]7 (512)

n=xx,ty,+z

where 6t;;, is the crystal field correction from charge 7.

This correction can be easily calculated for n = z. The calculation is done
in spherical coordinates, using the inverse distance series expansion given by
Eq. (C.3) described in detail in Appendix C. Analyzing the properties of
the Legendre functions one sees that the infinite series has only few nonzero
terms. The results have the form of finite power functions of @ and R mul-
tiplied by exp(—2aR), are diagonal in wave function indices dt;;, ~ d;; and
are even with respect to the transformation n — —n.

The values for = +x, and 4y can be obtained by the rotation of ini-
tial wave functions. A rotation can be described by Euler angles a, § and
v, which correspond to rotation axes z, y and again z, every time with re-
spect to actual coordinate system. The values o = 0,8 = 7/2,7 = 0 and
a=0,0=mn/2,7=7/2 map the n = z case respectively on the n = x and
n = y cases. The radial part of the wave functions is invariant under the
rotations. The spherical harmonics transform in the following way

l
Yinl0,¢) = Y e dl (8)Yi,(6, ), (5.13)

p==l

where dlmu(ﬁ) are transformation coefficients, representing the y-axis rota-
tion, described in detail in Appendix H. Because dt;;, ~ J;;, we can compute
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5tijx and 5tijy as

5
Stijagy = »_ € " mOTmNOE} G2 02 6t (5.14)

=1

where m(i) is the z-axis component of angular momentum of i-th wave func-
tion2.

How does the Hamiltonian matrix look like? For one electron it is iden-
tical with the "hopping" matrix H,;; = t¢;;. Without the crystal field it is
diagonal because 3d atomic wave functions are eigenfunctions to the one
electron Hamiltonian. The introduction of the crystal field does not change
the picture. The real wave functions have a symmetry consistent with the
octahedral surrounding. Thus the Hamiltonian is still diagonal, and we do
not need any diagonalization procedure. The complex functions do not fully
agree with the octahedral symmetry, but there is only one off-diagonal ele-
ment: the state with m = 2 is coupled with the state with m = —2. The
diagonalization yields the real functions ¢,2_,2 and ¢,,. For two electrons
we have a clear division of the Hamiltonian matrix into blocks corresponding
to the values of total spin, and z-component of the total spin. The situation
is similar to that for the case of the helium atom discussed in Section 3.3.
States belonging to these classes do not mix. Even inside the blocks not all
states are interconnected. This allows for an analytic expression of all energy
eigenvalues, what makes the optimization process easier.

The resultant ground state energy and the inverse size parameter a,,
corresponding to it is shown for one electron in Fig. 5.4 as a function of the
distance R. For small R, the ground state energy is slightly decreasing. In
the region 3ag < R < 4ay the optimal inverse size changes its value quite
rapidly. The step is continuous. We can state it because we know the analytic
expression for the ground state energy. In this region Fgg starts decreasing
more rapidly. The reason for this behavior is clearly seen when we look at
Fig. 5.5. In it, there is the complete one electron spectrum for optimized av
for each value of R, and for fixed values & = 1/3 and a = 4/3. These fixed
values correspond to an electron on 3d orbital without crystal field, when the
central charge is equal respectively to +1 and +4. In the limit of small R
the ionic charges combine with that of the nucleus and effectively compen-
sate its charge so the resultant charge is Z — 67" = +1. The orbitals are
larger, because « is smaller, and all the charges are inside the orbitals. On
the contrary, for large R the influence of additional charges is less important
and we have only the central charge Z = +4. We see that the change in a,

2For ¢; = ¢34m we have that m(i) = m.
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Table 5.1. The results for one electron(3d! configuration) in the crystal field of
octahedral symmetry. The optimized ground state energy Es and the inverse
size parameter a,,, is displayed. The real basis wave functions are used and
make the Hamiltonian matrix diagonal. The excited states can be optimized
independently providing its own inver size parameter a . The values AFEg
show the crystal field splitting with this independent optimization (own «
for excited states), and a single a,, (global a,, determined for E¢ only) for

all states.
R Eq(Ry) Qopt Qo arap  AFE (mRy) AE (mRy)
own « global «
1 -0.111226 0.332265 0.334177 0.2671 0.2708
2 -0.11282 0.323959 0.345815 3.2749 3.7916
3 -0.121248 0.311986 0.42216 14.5495 27.2750
4  -0.345316  1.33679  1.22587 111.0107 120.4242
5 -0.599606 1.35637  1.29966 46.2369 49.4961
6 -0.786454 1.34823  1.32008 20.4196 21.2435
7 -0.924621 1.34148  1.32729 9.7515 9.9586
8 -1.02981 1.33776  1.33026 5.0481 5.1052
9 -1.11224 1.33583 1.33163 2.8086 2.8264
10 -1.17844  1.33482  1.33233 1.6598 1.6660
11 -1.23274  1.33426  1.33271 1.0309 1.0333
12 -1.27804 1.33393  1.33293 0.6674 0.6684
13 -1.31642 1.33374  1.33306 0.4473 0.4478
14 -1.34933 1.33361  1.33315 0.3088 0.3090
15 -1.37787 1.33353  1.3332 0.2187 0.2188
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Figure 5.4. The optimized ground state energy F¢ and the optimal value of
the inverse size a,,; for one electron in the case of crystal field of octahedral
symmetry.

corresponds to the crossover between the two limiting cases. Because of the
increased effective charge, the orbitals are much more compact around the
nucleus.

There are only two states visible in the spectrum in Fig. 5.5. This is
because the spectrum is degenerate. The ground state is triple degenerate
whereas the excited one is double degenerate. Of course if we flip the spin of
the electron the picture does not change. So in this case we have to double
the multiplicity. This result corresponds to the usual division into ty, and e,
states [47].

Because for one-electron case the initial states are decoupled from the
beginning, we can optimize the size of orbital for each state independently.
The change of « for the excited state does not affect the ground state en-
ergy Eq. The optimal inverse size as a function of R for the excited state?
oy is compared with that for the ground state, in Fig. 5.6. The limits are
identical, i.e. 1/3 and 4/3. The behavior in the crossover regime is slightly

3The optimization of degenerate excited states yield the same value of o for all of
them.
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Figure 5.5. The energy spectrum with optimization, and with fixed a. The
values a = 1/3 and a = 4/3 represent the limits with nuclear charge Z = 1
and Z = 4 respectively. It correspond to the crystal field charges being either
included as an effective charge of nucleus or at infinite distance from it.
The ground state is three fold degenerate whereas the excited is two fold
degenerate. Including the two possible spin values the degeneracy doubles.

different, namely, we do not have a smooth dependence, but a discontinu-
ity at R ~ 3.65ap. We find thus the exact border between the two limiting
regimes. The numerical values of a,, and a; are listed in Table 5.1.

Another interesting point is the value of the crystal field splitting. It is
shown in Fig. 5.7, together with the values for fixed & = 1/3 or 4/3. One
sees that in general the values for the fixed a are valid in the correspond-
ing region. The maximal splitting is observed in the crossover between the
regimes. Just after the crossover we see that the splitting for optimal oy
value is slightly larger than that for o = 4/3. This is because the optimized
ground state energy is always lower than the ground state energy for fixed
a, and the crossover of the ground state energy is smoother than the corre-
sponding behavior for the excited state. Numerical values of the splitting are
listed explicitly in Table 5.1.
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Figure 5.6. The optimal values of the inverse size parameter « for the ground
and the excited states vs. interionic distance R. The excited state plot has a
discontinuity, whereas the ground state dependence is smooth.

The results for two electrons (3d* configuration) are shown in Fig. 5.8.
There are 45 states displayed as a function of the distance R. The general
shape of the ground state is similar to the one electron case. Because of the
electron-electron interaction, the orbitals are smaller. This is because the
electrons try to regain the energy by increasing the attraction to the nucleus.
This can be seen in numerical values presented in Table 5.2. Because of the
smaller size of the orbitals, the crossover takes also place for smaller R. The
new feature is presence of the kink for the excited states in the crossover re-
gion. Despite the increasing distance of the additional negative charges, the
energy also rises.

Two electron states can be classified in terms of the total spin and its
z-component. They are good quantum numbers for this system, if the spin-
orbit interaction is ignored, as it is the case so far. High spin states with
S =1 are lower. The ground state falls into this class. They have three pos-
sible values of S, = 0, £1. For each of them there are three degenerate lowest
states. The complete spectrum for each S, is identical. So the ground state
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Figure 5.7. The crystal field splitting for one electron in an octahedral crystal
field vs. distance R. This corresponds to the energy spectrum shown in Fig.
5.5. For the sake of completeness, we include the corresponding splittings for
the « values specified.

is ninefold degenerate.

Another value used to classification of the states is the angular momen-
tum. Unfortunately it is not a good quantum number for crystal field systems.
The states obtained in the above procedure are not eigenstates of L? oper-
ator. The only thing that can be done is the calculation of the expectation
values of the angular momentum operator. Depending on the ground state
selected, since they are ninefold degenerate, we get values in the in the in-
terval from 7 to 9, what corresponds to angular momentum between 2 and
3. The exact size of the interval depends on R.

5.2 Spin-orbit interaction

So far our calculation included all non-relativistic interactions in the Fock
space spanned by the class of 3d wave functions. An extension of this model is
the inclusion of some relativistic effects. The contribution we want to include
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Figure 5.8. Energy spectrum for two electrons in the octahedral crystal field
with optimized inverse size parameter «. The results are identical whether
we use real or complex 3d states. All electron-electron interactions and the
spin-orbit interaction were included (see the discussion of the last interaction
below). The spin-orbit correction shown in Fig. 5.10 does not qualitatively
change this picture, because of its magnitude.

is the spin-orbit coupling. All the calculations up to this point started with
the Schrédinger equation. Because there is no many-particle Dirac equation,
we have to continue the way already chosen. The spin-orbit interaction is
to be included as a correction to Hamiltonian (2.1). This correction involves
only the single electron term, because it originates from a single-particle
formalism. It is calculated in Appendix I. It is of the form

H/(I‘) — a218vsphL .S+ a2/d3r/2p(r/)s ) ((I‘ B rl) X p)
r or |r—r’|3

. (5.15)

where o = % o~ % is the fine structure constant?. V**" is the spherically

symmetric part of the electrostatic potential, S is the spin operator, L is

4In atomic units the inverse of the fine structure constant is the speed of light c.
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the angular momentum operator and p is the momentum operator. p(r’) is
residual charge distribution of the part not included in the potential V/*P*,
As can be seen from Eq. (5.15), the spin-orbit interaction term separates into
two parts: the spherical part which gives the name to the interaction, and
a non-spherical contribution, which may be of comparable magnitude to the
first term, and thus cannot be ignored.

The one-electron microscopic parameters t¢;;, defined by Eq. (2.12), cal-
culated in Section 5.1, can be used also here. We have to add to each of them
the corresponding corrections defined by

Hj =<ilH"|j > Hj® =<i|H™|j >, (5.16)

where the superscripts s and ns, denote respectively the spherical and the
non-spherical parts. Because of their different nature, they have to be calcu-
lated separately.

Another important point to note is that the corrections do not conserve
the spin. Hence the Hamiltonian is not spin-rotation invariant any more.
From this point we use the spin-orbitals instead of the orbitals. This in-
creases the variation range of indices ¢ and j, as from now on they include
also spin |i >= |ic >. The simplifying assumption from Section 2.1 is not
longer in use.

The spherically symmetric part is relatively easy to calculate. We may
write the initial integral (5.16) as

Hiyw = [ #1086 H (06, (5.17)

where the spin functions are

&z{EQ:UZT (5.18)

1) co=|
Let us define the radial part of the parameters as
1oV sph
2
=a‘- ) 5.19
() = o> (519
The components of the spin operator are expressed by the Pauli matrices
S" = 711/2. The components of the angular momentum operator can be
expressed in a simple form in spherical coordinates
0 coso 0
L, = in¢p— — 5.20
' (Slwae * tan68¢> (5:20)
0 sing 0
L,=1— — — 5.21
v 2( COS¢8«9+tan68¢> (5:21)
0
L,=—1—. (5.22)

9¢
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Using the above definitions the value of H”® can be expressed as

Hsj'tT = E(Oés, Oét) Z SgTLZt- (523)

T]:I7y7z

The spin part is just a triple product of two spinors and a matrix
ST =¢:5"¢,. (5.24)

The angular part is the expectation value of the angular momentum for given
orbitals

L = / Sin 0d0dY;, (60, &)LYo (0, &), (5.25)
and thus, the radial part is

32 al 204757/ ?

T Z(as TS (5.26)
The last result was obtained under the assumption that the Coulomb po-
tential V*P"(r) originates from charge +Z. All the above expressions can
be computed in a straightforward manner. The calculation of the non-
spherical part is more cumbersome. In our model depicted in Fig. 5.2 all
charges except that of the central nucleus are included in the charge distri-
bution p(r’). Because we are dealing with the point charges the distribution
is a sum of Dirac delta functions, i.e.

p() = > Z7( ). (5.27)

i=dx,+y,tz

=(as, ) = /TZdTC(r)Rgd(r;ozs)Rgd(r; ay) = —

The calculation can be separated into two parts in a manner similar to the

spherical case
Hio=a Y S5 Y (L), (5.28)

n=x,y,z i=*tx,+y,+z
where 7 indicates the charge in the octahedra surrounding we are dealing with,
and 7 the components of vector variables. The vector I; can be evaluated for
1 = +2z, which means the charge lying on the z axis in the distance R from
origin in the positive direction,

L.= /d?’rgzﬁ:(r)

where r,, = (0,0, R). The momentum operator in the spherical coordinates
has the form (h = 1)

27

o rop (T X p) (), (5.29)

: KA cosfcos¢ §  sing 9
SIHQCOS¢8T + r 00 rsinf d¢

— : : 0 cosfsing & ~ cos¢p 9
p=—t sm@smgbar+8 TS0 ramae | (5.30)
Sin
coslly. — =25
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The most difficult point of the whole calculation is the expansion for the
inverse of |[r — r ,|>. We use the spherical coordinates where r = (7,0, ¢).
The inverse-distance expansions are described in Appendix C. The usual
expansion defined by Eq. (C.3) does not work, since we have the third power
here. One could try to use expression (C.4) but, unfortunately, it yields during
the calculation infinite series, which are difficult to deal with. In effect, one
has to use the expression

1 (e}

. 12; R_s,(r, R)Py(cos ), (5.31)
which is the special case of Eq. (C.5). The R_3; is a rational function of its
arguments. P is the Legendre polynomial. In connection with the Legendre
polynomials included in the wave functions, the integration over 6 cancels all
terms with [ > 5. Because of this cancellation, we can compute the values of
I..

To get the values for the additional charges located in places other than
+z, we have to rotate the spherical harmonics in a manner similar to the cal-
culation of the crystal field. The rotation of spherical harmonics is described
in Appendix H. Nevertheless, one has to be very careful while executing this
procedure, as it also mixes the angular momentum components. For each
rotation, the initial angular momentum components have to be swapped in
such way that after the rotation they are in the correct order.

For both spherical and non-spherical part of the spin-orbit interaction we
obtain exact analytic formulas. In the limit ® — 0 the non-spherical part
goes over into the spherical one. As it is proportional to the charge Z, we
obtain a contribution of the order of (> Z*')/Z, which in case of one and
two electrons is respectively 75% and 80% percent. The R dependence of the
non-spherical part is an exponential decay multiplied by a rational function.
For R in the interval between 3ay and 4ay the magnitude of the non-spherical
part is approximately the same for inverse size equal to o = 1/3 and 5% of
the initial value for o = 4/3.

The form of the Hamiltonian matrices for this calculation is much more
complicated. For one electron case, it is still possible to obtain analytic ex-
pressions for the eigenenergies. For two electrons, it is not possible any more
and one has to resort to a numerical diagonalization.

The general form of the results, after including the spin orbit interac-
tion does not change significantly. The difference between these two cases for
a single electron is shown in Fig. 5.9. The spin-orbit interaction shifts the
ground state by a value of order of 107 of the initial value. The change in
optimal o, also is not significant. The main is difference is the lifting of the
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Figure 5.9. Change in the ground-state energy in the octahedral crystal field
for a single electron in 3d* configuration under the influence of the spin-orbit
coupling. The difference in the optimized ground-state energy and in the
optimization parameter « is shown.

ground state degeneracy. The initial 6-fold degenerate state splits up into
two lower-laying states and four higher-laying states.

For the two-electron case the results are shown in Fig. 5.10. They show
that the change in energy for all 45 states due to the introduction of the spin-
orbit interaction as a function of R. One sees that the contribution is larger
for larger R when the electrons are located closer to the center. The numeri-
cal values of the calculation are shown in Table 5.2. The introduction of the
spin-orbit interaction lifts the degeneracy also in this case. This is because
in the crystal-field presence the angular momentum is not a good quantum
number. The behavior of the spin-orbit splitting for the two-electron case is
generally similar to the one-electron case, just analogically, as it was without
the spin-orbit interaction (cf. Section 5.1).

Concluding briefly this Chapter one may say that we have shown the
EDABI method feasibility in the situation when we consider an atom in an
effective potential of the surrounding atoms at nanoscale. The evolution is
provided as a function of interatomic distance. Also, the same method can be
applied to the arbitrary 3d" configuration with n > 2, but the correspond-
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Table 5.2. The results for two electrons in the crystal field. The optimized
ground state energy Eg and the inverse size parameter o, is displayed.
Electron - electron and the spin-orbit interactions are included. The values
AEg and Aa,y show the difference between the displayed values and the
case without the spin-orbit interaction.

R  Eg (Ry) AEg (mRy) appao  Aaguag (107°)
-0.606257 -0.00393101 0.554265 0.00552596
2 -0.640402 -0.00696643 0.636646 0.0172102
3 -1.09376 -0.135879 1.34359 0.142002
4 -1.86717 -0.178994 1.50346 0.0971859
5 -2.42211 -0.192729 1.53612 0.109143
6 -2.81023 -0.208104 1.54477 0.116282
7
8
9

—_

-3.09194 -0.220503 1.54756 0.124974
-3.30461 -0.233996 1.54867 0.140295
-3.47054 -0.25149 1.54919 0.162035
10 -3.60352 -0.273405 1.54946 0.185649

ing Hamiltonian matrices in the Fock space will be of higher dimension. For
example, for N = 3 electrons we will have (130) = 120 three electron states in
our Fock subspace. Also, the results can be applied to two concrete situations.
First, we can compare the present results with measured crystal field splitting
for the Mott insulators containing 3d" configurations. But to perform that
fully, we should repeat our calculations also for slightly distorted octahedra
because not only the numbers matter, but also the trends of the data, which
make the whole picture coherent. This is still before us. Second, we should
extend our method to a truly nanoscopic cluster, for example to the nanowire
Nay or Nag or to the cluster e.g. V,Oq, both measured experimentally and

containing correlated electronic states.
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Figure 5.10. The spin-orbit interaction correction (difference between the en-
ergy of a state with and without the LS terms in the Hamiltonian) for two
electrons in octahedral crystal field for all 45 states. The lines are plotted
as a function of the distance R of the crystal-field charges from the center.
The peaks are a numerical artifact in the crossover regime, when the param-
eter « is changing rapidly. The thicker black line shows the corresponding
dependence for the ground state.
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Chapter 6

Summary and conclusions

In this Thesis we have introduced the formal aspects (cf. Chapter 2) of the
original method (EDABI) of calculating the many-electron states microscop-
ically, as well have tested it on the simple examples from atomic (cf. Chapter
3), molecular (cf. Chapter 4), and cluster (cf. 5) quantum physics. Together
with the Appendices (A-I), the present Thesis can be seen as a basis to
concrete application in nanophysics calculations, though it stops short of
providing them. Concrete applications will require additional time, as the
formulation of the method to this stage required an extensive reevaluation
of the past atomic and molecular approaches to quantum physics. In this
reformulation both wave- and particle (matrix)- aspects of quantum theory
are intertwined.

Let us summarize briefly the principal original results of the Thesis.
In Chapter 2 we extend the equivalence between 1°* and 2"? quantization
schemes to the formal expressions for the corresponding wave functions in
the Hilbert and Fock spaces. One should underline that it follows that to
define the quantum state |U > (in the Dirac sense) in the Fock space we
need to know the many-particle wave function ¥(ry,...,ry) in the Hilbert
space, and vice versa. Therefore, the two representations (Fock and Hilbert)
are complementary, as is the physical picture of the particles. This formal
relation between the representations allowed us, among others, to define the
many-body covalency for Hy molecule. We are not aware of that definition
being used in the literature. The truly fundamental feature there is the self-
adjusted wave equation, which we are not able so far to solve exactly in any
realistic situation.

In Chapter 3 we essentially reproduce the results for simplest two- and
three- electron atoms and ions. The method provides rapidly converging re-
sults with the enlargement of quantum-mechanical basis for the Fock space,
although the extension to including n = 3 orbitals would be required to reach
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truly quantitative results comparable with the best variational estimates.

In Chapter 4 we study Hs molecule and H, ion and relate the deter-
mination of the ground state and the first excited states to the many-body
models of correlated electrons, with explicit calculation of the correspond-
ing microscopic parameters. We also analyze there the situation with the
so-called mobile orbitals, which decrease the energy of the ground state by
about 0.2%. Such displacement of the centers of orbitals with respect to those
of their parent nuclei introduces compensating electric dipole moment, which
are often present in the solid-state systems, although this topic is beyond the
scope of the Thesis.

In Chapter 5 we consider a cluster composed of a central atom with well
localized quasiatomic 3d" states (n = 1,2), in the Coulomb field of anions ar-
ranged in the octahedral configuration. This calculation is only the first step
in truly first-principle crystal-field calculations of nanoclusters. The nontriv-
ial result here is a quantum "phase transition" characterized by an orbital-
size jump, here obtained as a function of the distance between the central
atom and the surrounding anions. The calculations performed in Chapter 5
show clearly what sort of mixture of analytic and numerical skills we should
acquire before approaching the exact calculations of both multiple-electron
configurations and the single-particle wave function simultaneously.

A separate project resulting from this Thesis should involve creation of
a code for calculating the properties of nanoclusters rigorously for any space
configuration of atoms.



Appendix A

Spherical harmonics

There are many possible definitions of the Legendre polynomials. They can
be defined in terms of a generating function

o

1
=N P, |t <1 Al
e - @ (A1)

They appear in the inverse distance expansion, i.e. in the multipole expansion
and in many other physical systems, e.g. the expressions for hydrogen- and
hydrogenic- like wave functions. The associated Legendre functions® P™ are
connected to the Legendre polynomials by

dm
B (p) = (=1)"(1 ~ uz)m”w—sz(u), m >0, (A.2)
and for negative m by

(Il —m)!

P (p) = <—1)mmpzm(ﬂ)- (A.3)

The orthogonality and the normalization criteria, widely used in this Thesis
as a tool of reducing the infinite series, is

/_1Bm(u)P£“(u)du = 2lil E;fzgz&k (A.4)

The complex spherical harmonics Y},,,(0, ¢) can be expressed in terms of
the associated Legendre functions P/"(z) as follows

Yim (0, ) = Bun P (cos ) exp(rmao), (A.5)

!They are the solutions of one of the separated parts of Helmholtz equation in spherical
coordinates.
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where [, is a normalization constant. In the case we want them to fulfil the
normalization criterion

‘/}%(ﬂﬁmﬂﬂdrzéw@mw (A.6)

we have to set them as

A (1 4+ m)!

@m_¢m+na—mg

From the definitions it is easily to derive, that the following symmetry rela-
tions hold:

Vi = (=1)"Yiom,

UNOTM* m l+ m ! unorm
g = (e
Yzm(l“) = <_1)ZY2m(_r)' (A7)

Ymorm stands here for the not normalized spherical harmonics with 5, =
1. For further details regarding the Legendre functions and the spherical
harmonics, see [45, 46].



Appendix B

Lowdin method of wave-function
orthogonalization

There is no unique way to orthogonalize a set of functions. The transforma-
tion from a non-orthogonal to an orthogonal set of functions can be achieved
to an accuracy, at least of a unitary transformation.

One of the method of orthogonalization is the Lowdin method, which
yields symmetrical results. For normalized atomic wave functions the over-
lap matrix has the diagonal elements equal to unity and off-diagonal, we
want to get rid off, equal to S;;. We diagonalize the overlap matrix by a uni-
tary transformation matrix O, such that O'SO is diagonal. Next, we square
root and invert the obtained diagonal elements, and then do the inverse O
transformation. In this way we define

S712 = o(0ts0)~1201. (B.1)

If we apply this matrix to a vector composed of atomic functions, we get a
vector of orthogonal Wannier functions. For infinite systems this may require
some refinement [12]. The method of orthogonalization does not change the
result, as long as we do not do any subsequent approximations. It helps to
simplify the calculations. For spatially extended centers of wave functions
we may define the level of orthogonality as a number n, which says that
(n+ 1)-th and further neighbor overlaps have been set to zero by hand. This
simplifies the orthogonalization process.
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Appendix C

Inverse distance expansions

In this Thesis we often use expressions involving powers of the inverse dis-
tance between two points. In spherical coordinates, let us define two points
r = (r,0,¢) and ' = (1,6, ¢’), with a reference point at a common origin.
The inverse distance between r and r’ is given by the well-known Legendre
expansion, which originates directly from the generating function (A.1) of
the Legendre polynomials, namely

L _ r3! i <T—<>le(cos <(r,r')), (C.1)

r — 1| —o \>

where - and r- are the minimum and maximum of r and r’. The angle be-
tween the vectors r and r’ is often not very convenient in the calculations, but
it can be expressed by the coordinates of each vector using the trigonometric
identity

cos <{(r,r") = cosf cos§ + sinfsinf cos(¢p — ¢'). (C.2)

Combining this equation with Eq. (C.1) we obtain on the basis of the addition
theorem for Legendre functions

Z Z (= fmi ( ) P|m|(cos«9)P| |(cos&’) m($=¢") - (C.3)

|r —r| I+ |m|)!
This expansion is widely used in the determination of the microscopic pa-
rameters in this Thesis.

Sometimes, there is a necessity to expand other powers of the inverse dis-
tance. There exists a formula [48], which preserves the expansion in powers
of r/r~

-1 = r;%i (T<>l C¥(cos <(r, 1)), (C.4)

”
1=0 >
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where CV are the Gegenbauer polynomials'. Sometimes it is more convenient
to preserve the angular dependence expressed through the Legendre polyno-
mials. This is particularly useful when subsequent angular integrations can
make all the terms with [ larger than a certain value, vanish. There exists
such expansion [49]

r—1'|" = Z Ry (r,r")P/(cos <(r,1")). (C.5)
I

The whole expansion is hidden inside the R, (r, ") functions. To define them
we need some preliminary definitions. First,

F(a+s)

(@)s=ala+1)---(a+s—1)= (o)

(C.6)
is the Pochhammer symbol, where I' is the Euler Gamma function. Second,
the Gauss’ hypergeometric function is defined as

JFi(a, Biviw) =) %w (C.7)

If the arguments a or [ are non-positive integers, then the hypergeometric
function is a finite series, i.e. a polynomial in argument x. With the help of
above expressions we can write down the formula

N (—3n) ,, (< ! 1 1 o3
Rnl(rar) - rs E 2F1(l_ 5”,_5(714‘ 1)7l+ 577”_2> (08)

>

In the case, we are interested in in Section 5.2, we have n = —3. The first
two arguments of the hypergeometric function are positive, which yields an
infinite series

3 3 r? = /r2\° 1
B+ =, L+ = =) = <—<) = = (C.9)
2 2'r2 ; r2 1_:_2<
>

which fortunately is a geometric series, and can be recast into a closed form.

There exists also a symmetric definition of R,;, in the sense that there
are v’ and r instead of r~ and r~ in it. The formula is more complicated, so
the splitting of integrals involving this expansion according to Eq. (3.25) is
more advisable. For details of the symmetric case, see [49].

!They can be regarded as an extension of the Legendre polynomials, their generating
function is equal to Formula (A.1) raised to the power 2v. For v = 1/2 they are the same.



Appendix D

Analytic formulas for the
two-particle interaction
parameters

The interaction integrals between two electrons located on atomic hydrogenic-
like orbitals centered at the same origin can be evaluated analytically, as de-
scribed in Section 3.2.2. The orbitals numbered 1...5 are respectively 1s, 2s,
2p0, 2pl, and 2p-1. Each orbital has its own inverse size parameter a; ... as.
The interaction is defined by Eqgs. (3.20) and (3.21). Not all nonzero ele-
ments are independent, some permutations of ijkl indices lead to the same
parameters. All nonequivalent nonzero Vjj; elements are listed below:

5o
Viin = Tla
16 (03] (Oél Oég)% (33 0614 — 70(13 g — 43 Oé12 Oé22 —21 (0751 0423 - 20424>
Vitie = 3 4 !
(o1 + a9)” (Bayg + an)
aray (a* +5a® ag + 6 a2 ap? + 10 g an® + 2 ap?)
‘/1212 - 5 )
(1 + )
_ 3o+«
Viziz = 0435 (as ‘- 1735)
(051 + Oég)

5 _ 6oy + oy + «
Visis = 16 (g a5)? <(Oé4+045) t ! ! > )

(201 + as + as)’
8ard an® (5ay? — 15 a5 ag + 13 an?)
(a1 + )"
8ay (o Oég)%

(a1 + as)® (@ + 3 )’

Vitge =

)

‘/1222 =
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X (1 +1501° as + 68 an* an® + 170 o ® o’ — 5l ® aw® — 729 g a® — 690 a2?)
8 (Oq 062)% (08
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‘/1323 =
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Appendix E

Fock space states for He.

The complete spectrum of states for the He atom for the case with 5 orbitals.
All 45 energy levels together with the corresponding multiparticle states are
shown. The creation operators a' correspond to the atomic orbitals not the
Wannier functions.

By = —5.79404,
1 >=—0.82274al, a},; — 0.4045124 am by, +0.309636 @ als . a2sT

~0.021729 &b, . Qb + 0.0357708 &b o, @byoy — 0.0357641a),,, af,

+0.0357641 @l b, 1|0 >,
Ey = —2.36898,
2 >= —0.727924 al Taz | —0.7279244a], b, — 15338510 %al, . ab

~1.53385107%af,, af ;[0 >,

B3 = —2.36898,
|3 >=1.02044a},, ab,, +2.16919107%a} ., ab 1|0 >,
Ey = —2.36898,

14 >= —1.02944 alsl a2sl +8.76031 1078 4 am ab, , +1.21637107%al ab,
~2.16919107 azpu b,y +8.76031107%al ab

+1.2163710" ¥ @, aj, 1[0 >,

Es = —1.37035,

|5 >= 0.567495 a1 Laly —0.381789al, TaQS | +0.53849a1, aQST

—0.433411a}, ) aby; — 0.00910772 a0 @b, +0.00912602a,,, ah,

—0.00912602aj,, | @b, ;10 >,
Eg = —1.26427,
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6 >= —0.895812a], aj , +0.262975a],, aml 14716310717 al ab
—2.04336 10 &b 4l +1.47163107al, af,
+2.04336 10~ al,, a0 >,

By = —1.26427,

|7 >= —0.633435a],, ab o, + 0.185951 &b, af o — 0.633435al,, ab o,
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—2.63853 10" @, aj, 1[0 >,

Ess = 3.87003,

38 >=2.2330510"°al,, al,, + 1.ab,;, a5, 1,10 >,
Esy = 3.87003,

— 2.63853107* &l

i
Aop_1)
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139 >=1.57910"%al,, al,, + 1.579107%al,, al , +0.707107a},,, @b, _,,

+0.707107 @, | @b, 1,10 >,
Eqo = 4.07503,
|40 >= 0.000393282al,, al,, — 0.000138099a},, ah,, + 0.000134757 a},, al,,

+0.000439612 @b, @, + 0.819196 b by + 0.405535ab 1, ab,
—0.405535 a@l,,| @b, 1[0 >,

By = 4.07536,
|41 >= 0.707107 G @by, 1, — 0.707107 @}, @, 1[0 >,
By = 4.07595,

|42 >= 0.707107 Gy @by, — 0.707107 @b o @by110 >,
Ey3 = 4.07691,

43 >=—1.a},_, @b, 1,10 >,

By = 4.07808,

44 >= —1.a},, ab .0 >,

By = 4.4453,

|45 >= 0.080553 a},, al,;, — 0.0235083 am ab,, +0.024475 a als by
+0.0772817al,, @b, + 0.570136 ah o, ab o — 0.575924 @), d@b |

+0.575924 @l y @b, 14]0 > .
(E.1)



Appendix F

Spheroidal coordinates

There is a convenient coordinate system necessary for calculations of two cen-
ter integrals. Such integrals contain expressions depending on the distance
from two different points separated by a distance R. The spheroidal coordi-
nate system is very useful here [44]. In two dimensions one can define the
elliptical coordinates and then easily extend them to three dimensions.

All the following definitions are illustrated in Fig. F.1. Let r, and 7, be
the distances from two points A and B. Point O is the origin of the Cartesian
coordinate system. The z axis is also shown. Let us define new coordinates
s Te T 7T T T

a b a b
A= 7 p=—7 (F.1)
r, and 7, can be interpreted as the distances to the foci of a family of confocal
ellipses and hyperbolas, where R is the distance between foci. The parameters

of such ellipses can be expressed by the new coordinates in the form

R R R 1
_ — —_ — 2 _ —_ — = —
a 2)\, b 2\/)\ 1, e 5 =\

where a is the semi-major axis, b is the semi-minor axis and e is the eccentric-
ity. From Eq. (F.1) we see that 1 < A < oo and —1 < g < 1. One can write
down the equation for confocal ellipses mentioned before in the Cartesian
coordinates ! as

(F.2)

22 y> R\’

F—)\Q_l:(?). (1< A< ) (F.3)
Analogously, for the hyperbolas

22 y> R\’

E_il_llf(;) C(1<p<) (F.4)

'Let us denote here in two dimensions one axis as z the second one as y.
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Figure F.1. The prolate spheroidal coordinates system. If we disregard the
rotation around the z axis is disregarded we get the elliptical coordinate
system.

The relations between Cartesian and elliptical coordinates are

_ RAp

c= Ny = D) (F.5)

We may get to three dimensions if the system of confocal ellipses and
hyperbolas referred to in Eqgs. (F.3,F.4) revolves around the major axis?,
which is the z axis in this case. The z coordinate does not change whereas
the former y coordinate defines together with the rotation angle ¢, which
takes values in the range 0 < ¢ < 2w, the values of the Cartesian x and y
coordinates

z = %, x = g\/()\2 —1)(1 —p?)cos¢p == g\/()@ — 1)(1 — p?)sin ¢.
(F.6)
The Jacobian, which defines the volume element is
3
d*r = 3 (N = p?) dAdudo. (F.7)

The expression for Laplacian is

2 A (1 0 (e yON, L O a0
v R2\ N2 — 20 % 1)8)\ +)\2—,u28u (1 'u)ﬁu +

1 02
)

2The rotation around the minor axis gives the so called oblate spheroidal coordinates.
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Sometimes there is also an alternate definition [43] of prolate spheroidal co-
ordinates used which is related to this one by

A=cosh&, pu=cosn, ¢=a¢. (F.9)
The Cartesian coordinates are then expressed via
x = g sinh & sin 7 cos ¢,
y = g sinh & sin 7 sin ¢,

R
z = Ecoshfcosn. (F.10)



Appendix G

The three-center element 7;;;. ot
the hopping integral ¢/

In this Appendix we evaluate the following integral
3 —a(ri+ry)
Tikla,a, h) = = / drs—— (G.1)
™ Tk

where « is a parameter and h and a define the geometry of the system
as shown in Fig. G.1. We should express the value of r, with the help of
other parameters and then go over to the spheroidal coordinates. From basic
triangular geometry we know

2_ .2, 2 ,
{ r{ =15 +a® — 2ar;cost (G.2)

r =1+ (% +h)? —2(% + h)rjcosf
We use prolate spheroidal coordinates with foci in the origins of r; and r;
ri T =a\ rp—rj=ap. (G.3)
Solving the system of Eqgs. (G.2) we get the value

ry = \/“ZQ (02— 1) (1— p2) + </\u— - h) (G.4)

We may insert it into Eq. (G.1) and integrate over the variables ¢ and pu
without any major difficulties obtaining

00 3 ,—aa\
T = / A (2 64 (V/(2h + aN)2(6hA — a) — /(aX — 20)2(6hA + a)
1

2hA —a+ +/(aX —2h)?

2hA + a+ \/(a)X + 2h)?

(a® —4h?)(3A* — 1) In ).
(G.5)
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<

al2

Figure G.1. The geometry of the system used to calculate the three center
integral.

In this expression, there are many square roots of a value squared. It may
be greatly simplified, enabling further computation, by splitting it up in
different h regions. These regions are (i) h > a/2, (i) a/2 > h > —a/2 and
(iii) —a/2 > h. Because of the symmetry one might also add the assumption
h > 0 but it is not necessary. In various regions we split up the integration
over )\ into two parts simplifying the expressions according to the chosen
region. Finally we obtain two different results
1
= ﬁ(e’““((aQ — 4h*)(3 + 3aa + a*a®) (Ypuer + In2 + In(ac))
a
—aa(4a® — 24h* + a’a — 12ah’a)) +
e*(a® — 4h*)(3 — 3aa + a*a*)1(0, 2aa)), (G.6)

where T'(a, z) is the incomplete gamma function I'(a, z) = [~ t* 'e~'dt and
Yeuler = 0.5772 is the Euler’s constant, and
1
B= 503 (4a (e7**h(3 + 3aa + a’a®) — e*"*(3h + a’a)) +
a
+(a® — 4h?)(e*(3 — 3aa + a*a®)T(0, (2h + a)a) —

—e7%(3 + 3aar + a20?)(T(0, (2h — a)a) + In (2h — “) ). (G.7)

2h+a
They are valid respectively

B h € (i)
Tik(a, a, h) = A h e (ii) . (G.8)
B:h— —h he (i)
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01} i

0,0 1 s 1 s 1 s 1 s 1

Figure G.2. The three center integral 7,;;(c, a, h). For this plot we set o =
a=1.

A the region borders the function is continuous. The results for the three
center integrals are exact, and could be obtained because the origins of r;, r;
and r; were located collinear. The function is plotted in Fig. G.2.



Appendix H

Rotation of spherical harmonics

Performing a rotation of the spherical harmonics is sometimes useful. It allows
to express some parameters by their values calculated for a simpler geometry
of the system. We want to get form a coordinate system r = (r,60,¢) to a
rotated ' = (1,0, ¢'). The procedure is described in detail in [45]. It can
be done by a consecutive rotation about angle a around z axis, then about
angle § around the y axis and finally about v around the z axis. The angular
momentum operator L = (L,, L,, L,) act as the rotation operator generators
on the spherical harmonics. We can describe such rotation as

l
Km(ela (b/) _ e—zaLzefzaLzefzaLzY;m(Q’ (;5) = Z wa(a,ﬁ, ’y)YEMOg, (b)
pn=-—l1

(H.1)
The angular momentum operators do not lead us outside the subspace with
a fixed [, hence we can write the second equality. Because the spherical har-
monics are eigenfunctions of the L, operator we can write

Di,w(a, B,7v) = e’lmvdfnu(ﬁ)e’wo‘. (H.2)

The coefficients d'mu(3) can be systematically computed using the formula

x xcos 3 — zsin 3
ey |y | = Y . (H.3)
z rsin B+ zcos 3

They have the form polynomials of sing and cosg. There is a recursion

relation which simplifies the calculation

1 d
5 (@mi1di 1, (B) = @mdiy 1, (8)) = %dfnu(ﬁ), (H.4)

where a; 11 = /(1 + 1) — m(m + 1). For details see [45].
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Appendix I

Spin-orbit coupling term

The spin-orbit coupling follows naturally from the Dirac equation.Since we
are dealing with interacting electrons, and there is no Dirac equation for
the many-particle case, we need to obtain the non-relativistic limit of this
equation [50]. It can be achieved by means of the Pauli approximation. We
will now derive a wave equation for a two-component function similar to
the Schrodinger equation that contains relativistic corrections to the order
(1/c)?. The present treatment closely follows Landau and Lifschitz [51].
The time independent Dirac equation can be written in the matrix form

2 E .
eV 4+ mec co 12) 13 0, (L1)
co-p eV +me”—FE 10}
where eV is the electron potential energy, m is the electron mass, p = —zh%,

¢ and ¢ are the components of the wave function, and o are the Pauli ma-
trices. To get to the energy scale of the Schrodinger equation we have to
subtract the rest energy of the electron Eg = E — mc?. The formula for the
component £ can be extracted from the above matrix equation

(eV — Es+ *(o-p)(—eV +2mc® + Eg) (o - p)) £ = 0. (I.2)

Now we do the following expansion in terms of inverse ¢, leaving only the
leading terms, which is the non-relativistic limit,

- ! (1 - M) . (1.3)

—eV +2m + Es ~ 2m 2mc?

Applying this expansion to Eq. (I.2) one can write down the terms which are
included in Eg

2 4
p w-px[p.eV] p-[peV]
Esé = | — — — — . 14
s 2m eV 8m3c? dm2c2 4Am?? ¢ (I4)
H/
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The first two terms are the Hamiltonian for the Schrodinger equation. The
third term is the relativistic kinetic energy correction. The fourth is the spin-
orbit coupling H’'. The fifth term is another relativistic correction.

The term H' can be written as

eh 6‘/ a.u. 8\/
H/:m2c20' (gxp) = oo - (§Xp>, (I.5)

with the corresponding definitions in atomic units (a.u.) after the second
equality sign. o ~ %7 is the fine structure constant. The above expression
takes the known form of spin-orbit coupling for spherically symmetric po-
tential only. We can separate the potential into the spherically symmetric

and the remaining part V = V" + V' where V'’ can be originating from

Coulomb interaction (r')
p(r
V'(r) = /dgr/ | (1.6)

Inserting it into the formula for H' we get the following two terms

H/(I') — Cﬂ}a_‘/L . S + a2/d3r12p(r )S : ((I‘ —31') X p) (17)
r or r—r|

The first is a special case of the second term, and gives the name to the spin-
orbit interaction. The second is the general formula for an arbitrary location
of charges producing the potential, and is more difficult to calculate due to
the third power in the inverse |r — r’| dependence.
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