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8.1. Introduction: The Meaning of Localization —
Delocalization Transitions in Solids with Exomp|es

The concept of localization-delocalization transition is at the forefront
of condensed matter physics as it is directly connected to delocalization
of localized (atomic-like) states and a formation of a quantum liquid of itin-
erant (band) electrons. In the latter state, we talk often about an almost lo-
calized Fermi liquid. The situation is represented schematically in Fig. 8.1,
where a lattice of hydrogenic-like states transforms into electron liquid,
in which the skeleton of created thus ions (cations) remains intact. Ob-
viously, the persistence of the atomic states of electrons in a solid is also
nontrivial; one can intuitively expect that it is possible only under special
circumstances, e.g., when the interatomic distance is large enough, so that
particles located on the nearest neighboring atoms are in the states with
their wave functions overlapping weakly. A quantification of all this is one
of the subjects of this chapter. First we start with examples.

8.1.2. Crystallization of Liquid *He as Mott-Hubbard Transition

In the clearest form, this localization-delocalization transition is observed
in three particular situations. First of them is the solidification of liquid *He,
where the whole atoms can be regarded as quantum particles with (nuclear)
spin 1/2 which below the boiling point 7, ~ 4.2 K form the Fermi liquid [1].
Above the critical pressure (depending on temperature) this liquid crystal-
lizes into a close-packed lattice. The phase diagram of condensed *He is
shown in Fig 8.2. Note that in this case, contrary to the situation depicted
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224 8. Electronic Correlations and Metal-Insulator Transitions

in Fig. 8.1, the freezing of He atoms comprises a spontaneous breakdown
of the translational symmetry at the liquid-solid transition. The sponta-
neous freezing of quantum particle gas into lattice is independent of the
quantum statistics of the particles (see below). Nonetheless, providing the
mechanism for the localization and discussing the role of mutual interpar-
ticle interaction, at least in a model situation, is our principal task.
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Figure 8.1. Tllustrative representation of the metallic (a) and Mott insulating (b) (localized)
states. Note that in the state (a) the electrons derive from the parent atoms (only positive cations
K" are left) and form still a lattice, as even in the delocalized state electrons regarded as the only
relevant quantum particles.
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8.1.2. Localization-Delocalization Transition of Ultracold
Atoms

The second example of localization-transition is provided by ultracold gas-
es in optical lattice [2]. This example illustrates the role of the single-parti-
cle periodic lattice potential in the system of mutually interacting quantum
particles. Namely, in distinction to electronic lattices, the shape (and the
depth) of the trapping potential strength can be accurately changed even
in the regime of the transition. Exemplary results are drawn in Fig. 8.3,
where the superfluid states are also marked. Because of the possibility
of changing easily the lattice spacing and the potential — well depth, the
systems can be regarded as quantum simulators of many-body processes.
Additionally, since the periodic potential is imposed by laser fields, the
transition can be studied in this clearest form, i.e., without the accompany-
ing effect of lattice distortion.
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Figure 8.2. Schematic phase diagram on the pressure-temperature (p-7) plane involving only
normal (non-magnetic, non-superfluid) phases. The meaning of the two curves 7.(p) will be
explained later in the text. The transition line is of the first-order character and a reentrant liquid
phase is observed at low temperature 7" < 0.32 K. Note that the shape of the curve is attributed
to the circumstance that the entropy of solid in large than that liquid. The same will appear for
electron systems with metal-insulator transition as explained later. [cf. J. Spalek, Eur. Phys. J.,
21, 511 (2000)].
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226 8. Electronic Correlations and Metal-Insulator Transitions

8.1.3. Metal-Insulator Transition in Doped V,O;

The third example is the canonical system — the chromium doped vanadium
sesquioxide of the formula (V,_Cr,),0;, where x represents the portion
of Cr atoms substituted for V. As V" ion contains two 3d electrons and
Cr’* has three, one would expect that we introduce into the system an extra
3d electrons so the system should be driven towards metallicity. In fact,
the opposite is true as in the Cr’* case 3d wave functions are tighter bound
to its parent nucleus than those in the case of V", Therefore, neglecting
the disorder introduced by substitutions one may say that the bare band-
width W of 3d states is reduced and upon a minute substitution Cr the pure
V,0; is driven towards the (Mott-Hubbard) insulating state, which means
that then the system becomes an insulating Heisenberg antiferromagnet.
Temperature dependence of electrical resistivity p vs. 1/T and the phase
diagram of the doped system is shown in Fig. 8.4(a), (b) [3]. In Fig. 8.4(a)
we observe discontinuous transitions: insulator-metal (from antiferromag-
netic insulator (AFI) to paramagnetic metal (PM) one and from PM to
paramagnetic insulator (PI)) follow by a gradual to (reentrant) transition
back to the paramagnetic metallic (PM’) phase. In the next Section, we
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Figure 8.3. Schematic phase diagram for the bosons described by the Hubbard model. MI
means Mott insulator, whereas SF — superfluid phase. This phase diagram is on the plane relative
chemical potential — magnitude of the hopping to interaction (u/U—t/U). Note that the Mott insu-
lating (localized) phase can appear also for bosons. The phenomenon localization-delocalization
transition is thus universal for a sufficiently large interaction amplitude U with respect to the
amplitude of the particle hopping J between the neighboring sites (taken from [2]).
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interpret these transitions within a simple scheme based on the Hubbard
model as a starting point. Note that the changes of resistivity accompany-
ing the transitions involve many-order jumps in resistivity, at temperatures
in the range 120-350 K, so they must involve a rather radical alteration
of the nature of relevant electronic states.
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Figure 8.4. a) temperature dependence of the electrical resistivity (in logarithmic scale) vs. 1/T
for Cr-doped V,0;. A very shape transition from antiferromagnetic insulating (AFI) to para-
magnetic metallic (PM) phase is followed by a reverse PM — PI at higher temperature, which
in turn is followed by PI — PM’ crossover transition and a reentrant metallic (PM”) transition
at still higher temperatures. b) phase diagram for the same system on 7-x plane; the hatched are
depicts the hysteretic behavior accompanying the discontinuous transitions (taken from Ref.
[3]), with small modifications.

A separate field of study is the effect of atomic disorder on the behavior
of those correlated systems. Also, the role of interparticle interaction on the
localization in nanophysical systems is particularly timely with the advent
of nanotechnology. These are very important subjects and will be discussed
briefly at the end.
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228 8. Electronic Correlations and Metal-Insulator Transitions

8.2. Elementary Approach to the Metal-Insulator
(Mott-Hubbard) Transitions

8.2.1. Normal metal as a Landau Fermi liquid: basic
characteristics

The concept of ideal gas of electrons (in general, fermions) of spin S'= 1/2
is well established. It is characterized by the Pauli principle (or the anti-
symmetry of N — particle wave function with respect to the two-particle
coordinates ((r,0,) and (r,0,) transposition), from which a number of its
basic properties follow. Those properties are described by characteristics
listed in Table 8.1 for normal and correlated metals regarded as Landau
Fermi liquids.

Table 8.1: Scaling laws of single-particle excitations in principal quantities of an almost local-
ized Fermi liquid. The quantities are: 7" = T/q, H = H,/q, = /g and those with the subscript
zero represent noninteracting particles, H, is applied magnetic field, and £ is the effective ex-

change field.
@ Property Forrpula fOT . Scaling property for ALFL @
noninteracting particles
Leaner specific heat Cc,=yT Y =7/q
Pauli paramagnetism | M = yH, 1=x(TH/gS
Fermi temperature Try = to/ky Tr=Trlq
Density of states p(e) =%Z,0(e—¢,) p(E) = (1/g) py(e)
Free energy functional | F, = E,— TS, F(T,H,) = q[F(T" H,p") + f'm] + Ud"
e (e.7) = Wi(e—u + (1Y) | (e, T) = 7. )
Quasiparticle energy e—oH, E=qle—o(H -f)]
Wilson ratio Ry = xo/%o Ry,=R/S, I<R,<4

To obtain the characteristics listed in Table 1 one describes the sin-
gle-particle states by the (quasi)momentum p = #ik, where k is the wave
vector of the corresponding matter wave of length 4 = 27/|k| = 2n/k. In the
simplest situation, the Fermi liquid is characterized by individual energy
&, =M Ik*/2m’, where m" is the renormalized-by-interactions effective mass.
The states |ko) are occupied up to the Fermi energy, which in this case is

272 1/3
ng%szTF, with kpz(ngj : (8.1)
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where T’ is the so-called Fermi temperature and &, the corresponding wave
vector. n In more general situation the electronic spectrum near the Fermi
energy can be linearized, i.e., expressed as

ek—sF:% (k—k.)=hv, (k—kg), (8.2)

kF
where the expression after the second equality sign is valid for an iso-
tropic in k-space electronic liquid and v, is the Fermi velocity, which can
be expressed also by v, = p/m" = hk,/m". In the case of multiple bands
(characterized by the dispersion relations ¢, = ¢;,,) we have multiple Fermi
velocities vy, = hk,/m,.
The next basic quantity is the density of states at the Fermi level. i.e.,

V m NY? 3
p(gF) 2 72 (3 ’ Vj =5N8;1: (8.3)
for the case of electron gas; V is the system volume. Usually, the density
is listed per particle per one spin direction; then (2.3) must be divided by
2N. Note that if N is large (~10%), the number of available single-particle
states in 1eV interval around the Fermi surface is enormous, so the energy
distribution is a continuous function for all practical purposes.
For the sake of completeness, one has to add the distribution of parti-
cle energies at temperature 7. For 7> 0 it redistributes then around ¢, = u
in accordance with the Fermi-Dirac distribution.

_ 1
Foy =n =
f( k) ko expl:[),(gk_
where the energies {¢,} are here spin-independent and u is the chemical
potential determined from the fact that the total number of particles in the
system is established and equal to N, i.e.,

N, anc 22 exp[

The summation for the system of N states runs over the first Brillouin
zone (BZ) and B = (k,T )" is the inverse temperature in energy units (k
is the Boltzmann constant). Note that 4 = u(7T, n), where n = N/N is the
so-called band filling. Also, u(T = 0, n) = ¢, . Other characteristics are
discussed later.

I (8.4)

mYE (8.5)
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230 8. Electronic Correlations and Metal-Insulator Transitions

8.2.2. Mott-Wigner Criterion of Localization

The Landau theory of Fermi liquids encompasses both the renormalized
by-interaction basic characteristics, as well as the collective excitations
— the sounds, all of which were treated first on a phenomenological basis.
A full description also requires an elaboration of plasmon excitations
for a charged liquid, with the corresponding damping of the modes [4].
Nonetheless, the theory does not address the situation when the inter-
action becomes comparable to the kinetic (band) energy of individual
quasiparticles or even becomes predominant. The last two situations cor-
respond to the case with the correlated or strongly correlated electrons,
respectively.

To estimate the stability of the electron gas against localization induced
by the interparticle interaction we start from expression for the average
kinetic energy per particle which is

2 2/3
g3 (320 (8.6)
5om* "

If we define the particle density as p = N,/V, we see that in three-di-
mensional gas this energy increases with density as ~p>° (in d-dimensions
it is ~p*“). On the other hand, the average Coulomb interaction per particle

can be estimated as
1/3
£, = €2 :i Ne :ipl/S’ (87)
2er, 2e\V 2¢

where ¢ is the static dielectric constant of the system and (V/N,)'” is the av-
erage distance between the electrons. One sees that for d = 3 the interaction
energy is ~p'” and hence the kinetic energy increases faster when p is larger
than the critical value p = p,.. To determine this value we seté=¢, .. An ele-
mentary inspection into this identity leads us to the the following condition

a,p'* =02, (8.8)

where a, = h’e/(me’) is the effective Bohr radius for electron in an insu-
lating medium with a well defined static dielectric constant ¢ and p, is
this critical density. This condition is called as the Mott (or Mott-Wigner)
criterion for the localization threshold for particles in the gas. Note also
that since p, =, the effective distance between the particles frozen on the
lattice is then of the order of 5a,.

Interpretation of this reasoning is as follows. For p < p, the interaction
energy ¢,_, > &, whereas for high densities (p > p,) the kinetic energy dom-
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Figure 8.5. Schematic illustration of the transition between the delocalized (plane-wave) states
of ideal electron gas and the localized (atomic, frozen) configurations of the Mott-Wigner type.
This transition requires further analysis and is carried out next. The discussion relies on em-
phasizing a mutual competition between kinetic energy and repulsive interparticle Coulomb
interaction.

inates. At the extreme densities p > p,, (¢,../¢) — 0 and hence the interact-
ing gas approaches the limit of the ideal (non-interacting) gas even though
¢, — . A closer inspection leads us also to the conclusion that for p < p,
the states are localized, since the dominating then repulsive interaction
forces the particles to spread from each other as far away as possible (to
the distance ~r,). Parenthetically, this is also the reason why the effective
Bohr radius appears out of nowhere at this “critical point” p,, even though
there is no sign of any attractive atomic centers on which the electrons
can establish atomic states. The mutual energetics is illustrated in Fig. 8.5.
QCP denotes a quantum critical point if such a transition can be regarded
as a continuous phase transition.

The purpose of this elementary reasoning is to show that the competing
energies can lead to a qualitative change of character of physical states.
Next, we will show on a slightly modified model — the Hubbard model —
this peculiar type of physical behavior can indeed lead to true phase tran-
sitions in the 7' — 0 limit for realistic (lattice) systems, starting with well
define atomic states at large interatomic distances. Such a refined analysis
is required since also the effective-mass value depends on the repulsive
interaction magnitude. Also, we would like to model the situation with
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232 8. Electronic Correlations and Metal-Insulator Transitions

electrons propagating in the periodic lattice of positively charged ions, not
in a homogeneous positive and passive background charge, as is in our
simple model. This last assumption is implicitly assumed in the above rea-
soning, since only then we can consider the electron gas as a stable system.

8.2.3 Localization on the Lattice: Hubbard Model

We start now with a lattice of atoms; for simplicity, we assume that each
atom is contributing one electron to the system. Effectively, one can im-
agine a lattice of hydrogenic-like atoms with one valence electron each
in the s-like state (cf. Fig. 8.1). Only the lattice of those initial s-like states
will concern us and the question is when the assembly of electrons sits on
atoms (in localized atomic states) and when, instead, they form a collective
gas of interacting electrons confined by a remaining skeleton of positive
ions, the latter playing only a passive role in the whole consideration. The
question is what happens in between the two pictures?

The simplest Hamiltonian describing such an interacting gas on the
lattice has been proposed by Hubbard (1963) and its explicit form is

H= ngcnkc + UZ"iT”ii' (8.9)
* i

Here as before, ¢, is the energy of an individual particle in the spin
nonpolarized state and with the wave vector &, n,, is the number of particles
in the single-particle state characterized by the quantum numbers (&, o),
and n,, =0, 1 is the number of electrons on given lattice site i with the spin
o. U is the interaction magnitude of contact (Hubbard) interaction when the
two particles with opposite spins meet on the same atomic site i. At first
look, this Hamiltonian has no connection to the reasoning of the preceding
subsection, but not quite so. The rationale behind the similarity is following
one. The energy ¢, varies in the interval [-W/2, W/2] (we assume that the
reference atomic energy of each particle can be regarded as ¢, = 0). The
quantity W is called the bandwidth and the single-particle part (the first
term) is more negative (the energy is smaller) if W increases. If we assume
that the energies are spread uniformly, the average energy per particle is
—W/4. The average interaction energy per pair of particles is U(n;, ;). If we
have one particle per atom, then the mean-field (Hartree-Fock) estimate is
(niyn) =~ (nip )y = 1/4. In effect, the two energies balance out each other
when they are of the same magnitude, i.e., when

w U

EE<H)=—?+Z=O, (8.10)
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i.e., when U = W. This condition replaces now the former condition (8.8)
and physically amounts to the same. Namely, if W > U then the single-par-
ticle (“kinetic”) energy dominates and the fluid with {k} as a good quantum
number is realized. The new principle is that in the opposite limit, the double
occupancies, characterized by joint probability (n;,n,,), vanish. But all this
requires a more careful study as the last statements represent assumptions
of a more detailed quantitative approach. Such an analysis is provided next.

8.2.4. Quantitative Discussion of the Metal-Insulator Transition

The basic quantitative question we face when discussing the localiza-
tion-delocalization transition is as follows. The kinetic (now band) energy
of electrons in the delocalized state is of the order W ~ 1-3 eV per particle.
We are interested in considering the limit U 2 W. The thermal energy in the
interesting us range is kz7= 10 meV ~ 100 K. The principal question is then
how is it possible that such a small external thermal stimulus can drastically
change the character of electronic states from itinerant to localized states
or vice versa? Note also that this is a macrostate containing ~10> parti-
cles. The shortest answer we can provide is that close to the transition the
energies in (8.10) almost compensate each other, making thus the system
extremely sensitive to small perturbations such as the thermal stimulus,
external pressure or chemical doping. Parenthetically, it is worth noting
that the metallic state is a robust state of matter. A separate class is the state
with localized electrons, regarded also as another such a universal state.
The question is: when they become unstable, one with respect to the other?

To put this argument on a more quantitative basis we assume that the
correlation function # = (n;, n,y) 1s a new basic physical parameter, in addi-
tion to the individual particle energies {¢,} and the interaction parameter
U . The parameter 7 will differentiate between the delocalized and localized
states in the following manner:

n:{<nﬁ><nl¢>=% for U=0; &1
0 for U —oo.

In other words, 7 plays in this very intuitive formulation the role of the
order parameter, i.e., is the basic quantity which introduces the interelec-
tronic (local) correlations. The task is to determine the explicit form of the
dependence of the thermodynamic Landau-type functional on the param-
eter 7.

At this point, we make a further assumption that since the two terms
composing the total energy are of comparable magnitude, there appears
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234 8. Electronic Correlations and Metal-Insulator Transitions

renormalization by the interaction of the kinetic energy part assumed in the
following form

g > Pg, =E, with 0<d<], (8.12)
where @ = ®(7) and has the following property

()= 1 for n=(n,)(n,)=1 (for U=0)
=10 for n=0 (for U=U,).

These two conditions mean respectively, that the band energy takes the
usual form (£, = ¢,) when U < W and that the band energy and the inter-
action energies disappear when U > W (®¢, = Uy = 0). This last condition
amounts to what we term as the perfect compensation of the two competing
energies. It takes place, we expect, around U = W.

Explicitly, we have in view the situation when U — W. Then, in the
spirit of Landau expansion for the order parameter, we may assume that
O(n) =1, + fim + fon” + o(). The coefficients f;, f;, and f,, which are as-
sumed as independent of U/W, are determined from the known limiting
situations (2.13), together with as the fact that # = 1/4 for U = 0. The sets
of conditions, when implemented to the modified expression ((H)), lead

E=(H)/N=®(n)zg +Un. (8.14)

(8.13)

The explicit expression for 7 is obtained from the Landau-type min-
imization condition 0E/0n = 0 for # = 1/4, leads to the explicit result for
®(n), namely

®(n)=8n(1-2n). (8.15)

Furthermore, the explicit results for all the involved quantities are then
after minimization of £ with respect to 7 equal to

n=n,=(1/4)(1-U/U,), (8.16)
Y

=0, = 1—[aj : (8.17)
L .

E =& 1-70} , (8.18)

where now U, =2W and & = —W/4. We thus see that all the quantities scale
with U/U, and hence, the value U, plays the role of the uppermost critical
value, up to which the metallic (delocalized) state of particles is stable.
This critical value replaces the criterion (8.8) which valid for electron gas.
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It is determined by the bare bandwidth 7 and thus, at least qualitatively,
is independent of crystal structure under the proviso that we have a single
band with correlated electrons, and all other bands are energetically sepa-
rated from it. With this formulation we cannot go beyond the value U= U..
Namely, for U > U, the state is that of atomic states on the lattice, i.e.,
that of the Mott-Hubbard insulating state. For all the practical purposes,
the state is then that of a Heisenberg antiferromagnet, depicted schemati-
cally in Fig. 8.1. One should note that the system remains insulating even
above the Néel temperature, as discussed in detail below. However, the
inclusion of antiferromagnetic state requires an essential extension of the
present approach to incorporate, among others, the exchange interactions
in the insulating phase, which in turn is the starting point to the discussion
of temperature low-T regime the metal-insulator transition, comprising
also the magnetic states. We quote the results, not elaborated here', which
document explicitly the critical behavior as U — U, = §|&| = 2. Namely,
the static magnetic susceptibility at 7= 0 of the system in the delocalized
state is

g1+U/(2UL)] (8.19)

=(5.)/®,|1-
1 =) 0[ W (1+U/U.)

where y, is the Pauli susceptibility for the noninteracting electron gas. If
U— U, -0 then’

X

0

4 —>ow for U->U, (8.20)
where the optimal value of ® = @, is denoted by ¢ in Table 8.1.

There is a clear sign of singularity when @ — 0. Moreover, probably
the most spectacular feature associated with this transition is the behavior
of the magnitude of spin §; when U — U.. It amounts to the relation [10, 11]

<sf>=§ 1+ 2053 for U—U.. (8.21)
8 U 4

Note that as U = U, {(S?) — reaches the value 3/4 = 1/2(1/2+1), i.e.,
we recover the full atomic spin 1/2. The Mott insulator is thus indeed
a quantum Heisenberg spin system. This sole result shows clearly, under

c

" For a detailed summary of the results obtained for such a mean-field picture see e.g.:
J. Spatek, J. Sol. St. Chem. 88, 77-93 (1990).

? Note also that there is also another singularity when the other factor [...] = 0. This corre-
sponds to the so-called Stoner instability for the onset of ferromagnetism, which is not discussed
here.
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what conditions we can regard the systems as a lattice composed of (1/2)
spins. We see that this is not at all a trivial assumption, since it requires
a formation of stable atomic states on the lattice. Simply put, the electrons
in atomic states in a solid appear then in the singly-occupied states, since
the energy of their a motion (hopping) from site to site requires an increase
of energy by U, the energy which exceeds by far the gain in kinetic energy
(=W/4). This is the reason for the existence of spins of atomic character
in a solid, i.e., the state electronically entirely different from that of a metal,
characterized by the band structure, renormalized masses of carriers the
Fermi surface, and the absence of Pauli susceptibility.

8.2.5. Quasiparticle Representation of Correlated-Electron
System and the Phase Diagram

So far we have dealt with 7= 0 transformation of itinerant to localized
charge carriers or vice versa. The fact that measurable physical quantities
are divergent at that point tells us that, at least within this simple scheme,
the many-particle quantum states can become then singular. Obviously, one
is not able to do measurements at 7= 0 directly. Therefore, a natural ques-
tion arises whether one can generalize these results to 7> 0, which would
reduce to those just discussed when the limit 77— 0 is taken in a straight-
forward manner. This is the task we are going to address next.

First, one should note that the single-particle part of energy in (8.14) is
multiplied by @(7). Here we make a bold assumption that may seem natural
to define renormalized individual single-particle states, i.e., assume that
E, = @g,. The reason for this renormalization of each individual quantum
single-particle state is that then we can write that at 7= 0 we have

@(n)E:%d)zgknkc z%cp > g, =% D> (Pe,)= D E, (822)
ko k<kpoc k<kpoc k<kpoc
Hence we may say that in this (correlated) quantum liquid the correlat-
ed character is acquired by the renormalized individual energies E, = Qg,.
We also assume that to the first approximation those quasiparticles of ener-
gy E, obey still the Fermi-Dirac distribution’ at 7> 0, i.e.,

? This assumption is in the spirit of Landau (1956) theory of Fermi liquids; cf. J. Spatek,
in Reference Module in Materials Science and Materials Engineering (Elsevier, Oxford, 2016)
pp. 1-20. However, one must emphasize that the Landau theory of Fermi liquid does not com-
prise any discussion of particle localization into the Mott state localized spins.
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1
exp[ﬂ(Eka —,u)]+1’

where u is the chemical potential. For interesting us case of one electron
per atom one can take u =0, 1.e., it is placed in the middle point of the band
energies ranging from —W/2 to W/2, since we assume that the particle-hole
symmetry holds, i.e., the energy is symmetric with respect to the middle
point of the band. Note again that we have put the quasiparticle energies

into the Fermi function, in the spirit of Landau the Fermi-liquid theory.
With those assumptions one can write down explicitly the Landau-type
free-energy functional for the system of fermions in the following manner

[10, 11].
F 1

kT
—=—> E fi, TUn+-=
N N%‘ wfio TUN N

nko‘ = f}ccr =

(8.23)

[ oty +(1= fi )0 (1= £,,) ], (8.24)

where now 5 = n(T) plays, as above, the role of the temperature-dependent
order parameter. The first two terms represent the effective internal energy,
whereas the last is the entropy contribution in given configuration charac-
terized by #(7 ). The true free energy (equal to the Gibbs energy as u = 0)
is found from the minimum conditions:
2

8_}":0; a—'7;>0. (8.25)
on on

The value of # = 5(T) obtained in this manner, when substituted to
(8.24), determines the physical free energy F = F, (T ). One sees that
the simplest (mean-field-type) theory is much more involved in the case
of fermions (quantum particles) compared to that for pure spin systems,
as it contains logarithmic contribution to the entropy, the part that cannot
be expanded in the even powers of the order parameter directly.

The analysis of the solution of (8.24) is subtle and in general case, must
be carried out numerically [5]. For the sake of simplicity, it is sufficient to
limit to the low-temperature limit, which we overview briefly next. The
results for Landau-function expression to the order at 77 is

F w v, T? .

= d—+Un-2—+0o(T"). 8.26

=0 U g rel(r) (8:20)

The first two terms appeared before, the third represents the thermal

excitations across the Fermi level located at 4 = 0, and the quantity y,/®

represents the renormalized linear-specific heat (Sommerfeld) coefficient,
with
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238 8. Electronic Correlations and Metal-Insulator Transitions
2n*
7= ksp(0), (8.27)

being its unrenormalized and p(0) is the density of unrenormalized states
at the Fermi level (per atom per spin). Note that in our simplified discus-
sion p(0) = 1/W. One additional warning is in place at this point. Namely,
(8.26) becomes a singular expression for ® — 0 and 7 > 0. Therefore,
one sees that a singular jump to the # = 0 state is possible. Fortunately, it
is the physics that comes to the rescue to avoid that and tackle it properly.
Namely, as we have noted earlier, the fermionic liquid is assumed to trans-
form to a system of localized moments. In the latter state, the free energy
is also nonzero, and neglecting the exchange interaction among the spins
(magnetic order ignored), it can be written in the form

% — kT2, (8.28)

1.e., we include only the entropy part of freely fluctuating spins S = 1/2.
In effect, if we are interested in a discontinuous (first-order) transition, the
condition is that F,,, = F,,., where F,,, is the physical free energy of the
delocalized (metallic) state obtained after minimization of F* with respect
to #, combined with its low-7 expansion. In what follows, we discuss only
the final results [3, 4, 5].
Let us define I = U/U.. The functional (8.26) transforms then into an

intuitively clear expression for the free energy, namely

F;nel _ 2 — }/OT ’ 4

N (1-1)'% 1 +o(T*). (8.29)

_J?

Equating (8.28) and (8.29) we obtain two transition temperatures. Ex-
plicitly,

kT, 3

uY ) . 1-u/u,|”

This result is depicted in Fig. 8.6 (as before, U, = 2W'). The lower tem-
perature branch (7)) is drawn as a solid line, whereas the 7', part is actually
a crossover line, not accounted properly by making our low-7" expansion.
The T_ ends up in a classical critical point which determines the lowest val-
ue of U= U, determined the condition from 7', = 7_, below which the delo-

calized states are always stable. The value of the critical temperature 7, is

2
ks;; :1_3211122{1_(%} } 8.31)
T
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Figure 8.6. Phase diagram in the paramagnetic (PM, PI) regions of the metal-insulator tran-
sition. The critical points and characteristic temperatures are marked explicitly; the points
(T, T. = 0) terminate the first-order (blue solid) line.

The value of 7,= 0 appears for U= U, =2W . This critical point can be
called a quantum critical point (QCP) as the entropy is zero and the two
mechanical energies compensate each other. On the other hand, the solid
line in between 7, and zero represents the line of discontinuous transitions,
as is illustrated further in Fig. 8.7, where we have drawn the free energies
of the two phases. The curves a—e depict the evolution from of Fermi liquid
state the low U < U,, region, for the U — U, limit. When the parabola is
tangent to the straight line (between a and b) we reach the lower critical
value U, for the transition to take place. Furthermore, for U between U,
and U, we observe two transitions. The point U = U. is singular as both
curves coalesce into a single QCP. Moreover, for U € (U,, U,) the two
curves intersect at a non-zero angle, which means that then the entropy
S'=—0F/0T jumps when the transition takes place. Hence, it is a first-order
transition except the points U = U,. and U.. Strictly speaking, the QCP
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Figure 8.7. Plots of temperature dependence of free energy in the paramagnetic state: The
parabolas a — e represent the energy of the metallic (Fermi-liquid) state with ascending U/U,
ratio. The straight line (in red) represents the energy of the Mott insulating (PI) state. The points
of crossing L and J correspond to a discontinuous PM — PI transition, whereas those at K and
M correspond to the reverse PI — PM” transition. The transition to the high-7 PM’ metallic
phase can also take the form of a crossover behavior. Note that the competitions between the
energy and the entropy contribution in creating the two transition, both of the Mott type at 7> 0.

becomes a hidden critical point when we include the exchange interaction
in the localized phase, but this topic will not be touched upon here.

Finally, we would like to present the theoretical version of the phase
diagram drawn in Fig. 8.4(b) results of our simple theoretical approach are
displayed in Fig. 8.8, together with the experimental results of Fig. 8.4(b)
in the inset. The symbol AFS means the Slater (band) insulator, with the
so-called Slater splitting of the original band into two subbands and caused
by the antiferromagnetic ordering. The principal difference between the
AFS and AFI states is that the former becomes metallic (PM) above the
Néel temperature, so we recover the delocalized states when the gap due
to the antiferromagnetic superstructure disappears. The gap remains in the
Mott (PI) phase even though the antiferromagnetic is absent. A systematic
evolution of the Slater gap to its Mott-Hubbard correspondent as a function
of the relative interaction strength has been analyzed elsewhere [5]. A sim-
ilar evolution of the system (in the opposite direction) takes place also for
NiS, Se, [6] and other systems [7].
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Figure 8.8. Phase diagram on the plane 7 — U/W of possible metal-insulator transitions. Note
reentrant metallic phases on sandwiching antiferromagnetic-Slater (AFS) and paramagnetic-in-
sulating (PI) phase, and one at the high temperatures. Inset: Experimental transitions in the 7—x
plane for (V,_,Cr,),0;. For details see main text.

8.2.6. Mott-Hubbard Localization in Correlated Nanoscopic
Systems

As we have seen already in Fig. 8.1, the Mott-Hubbard transition is in its
essence a transition between atomic and itinerant (band) states in a sol-
id or other quantum condensed-matter system. An interesting question is
how this evolution will look in the case of a nanoscopic system? Related
to that is the question of how small a piece of quantum wire can have
preserved some of the principal metallic characteristics? These problems
can be modeled in a simple manner by considering a linear chain of atoms
with s-like valence electrons, one electron per atom. Additionally, both
open chains as well as those with periodic boundary conditions can be
considered. In Figs. 8.9-8.11 we present exemplary results. First, in Fig.
8.9 the statistical distribution function n,, is drawn, for selected inter-
atomic distances R/a, = 2—5, where a, is the 1s Bohr radius. We note three
characteristic features. First, the exact results arrange themselves into the
systematic pattern for different values of the number of atoms N. Second,
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Figure 8.9. Statistical distribution #,, for electrons in a chain of N = 614 atoms with periodic
boundary conditions. The interatomic distance R is specified in units of Bohr radius a,. The
continuous line represents the parabolic interpolation, which is of the same type for both &k > k.

and k < k.

w(Ry)
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Figure 8.10. Spectral-density-peak positions for the nanochain of N= 10 (left panel) and N =11
(right panel) atoms with generalized boundary conditions [8]. The Hartree-Fock (solid line) and
noninteracting system (dashed line) dispersion relations are shown for comparison. For an ex-
planation of the splitting located i the middle of the band see main text (for details see Ref. [8]).
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Figure 8.11. Parity effect on spin ordering: spin-spin correlations for nanochains of N =10 (a)
and N =11 (b) atoms. The values of the interatomic distance R are specified in the atomic units
(a,=0.529 A). The correlations encompases the whole system and thus mimic the long-range
ordering of the spin-density wave type (for details see Ref. [8]).

the vertical dashed lines mark the position of Fermi level for this half-
filled configuration. Third, the distribution function loses its discontinuous
points located k.R/r = +0.5 at a critical interacting distance R >~ 5a,. The
smeared out distribution function for R = 5a, around the value n,,= 1/2
defines roughly the transition from the delocalized states of electrons in this
nanoscopic system to the localized states, since for R > 5a, k is not a good
quantum number anymore.

Two other characteristics of those correlated nanosystems should be
noted. First, we have plotted in Fig. 8.10 the electronic band structure for
N =10 and 11 for selected R < a,.

We observe well defined electronic bands, as marked by the continuous
lines. The dashed lines represent the band obtained in the tight binding ap-
proximation, when no correlations are included. One feature is striking: the
band structure exhibits a well defined gap located at the Fermi wave vector.
This may look surprising at first, since no long-range (antiferromagnetic) or-
dering can be expected for such a small system. However, the picture clarifies
when one plots the spin-spin correlation function for those two situations,
as shown in Fig. 8.11(a), (b). Note, that the correlation functions encompass
the whole length of the chain as if the systems were ordered in an antiferro-
magnetic manner. In other words, the correlation length is at least of the order
of the system size. Thus effectively, the electronic structure has an appearance
of a magnetically ordered state, with diminishing magnitude in a quasiperiodic
manner, reminiscent of the spin-density-wave state. This is a truly nanoscopic
physics, in which both the Slater and the Mott-Hubbard features are present.

In other words, an evolution from atomic physics to the condensed-mat-
ter state with itinerant carriers in the latter state is a universal feature, inde-
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pendent of the system size. This is more involved when the atomic disorder,
in addition to the correlation effects, appears [9].

8.3. Concluding Remarks

In this article we have outlined basic features of systems with metal-insu-
lator transition of the Mott-Hubbard type. These systems are at the fore-
front of research as they represent on one hand the borderline between the
physics of metals and ordering magnets from one side and that of Mott in-
sulators, magnetic semiconductors, and high-temperature superconductors
from the other. The theory of strongly correlated system is still in the pro-
cess of making; available are models and sophisticated band-structure-cal-
culation methods such as DFT-DMFT, LDA+U, etc.
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