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1 Introduction

Liquid crystals are condensed matter structures which occur quite frequently
in nature [1,2]. But the relationship between molecular interactions and rel-
ative stability of the corresponding liquid crystalline phases is still not fully
understood. While it is widely accepted that the origin of liquid crystals rests
in the elongated or flat or generally anisotropic shape of the molecules exper-
iment and theory clearly show the importance of dispersive, induction and
electrostatic interactions. Among them are the interactions between strong
dipolar groups of particular interest. This has become evident soon after Gray
et al. performed the synthesis of cyanobiphenyles [3,4]. In these mesogens, a
new class of phenomena known as reentrant phase transitions [5] was discov-
ered and studied over the whole decade [6–8]. Also they appeared important
in liquid crystal based display technology. Subsequently, strong dipoles were
shown to affect not only the relative stability and the range of liquid crys-
talline phases, but also their symmetry [1,9–11].

Interesting orderings can also be realized when dipole-dipole interactions
are competing with entropy of packing as induced by molecular shape asym-
metry. Such a situation is realized e.g. in the case of smectic phases formed
by banana-shaped liquid crystalline molecules [12–14].

A direct and reliable way to account for structures that could be induced
by dipolar forces is offered by computer simulations [15,16]. They provide ex-
act information about molecular ordering that results from particular molec-
ular interactions. A purpose of this chapter is to discuss the effect of dipolar
forces on mesophase formation and stability as derived from computer simu-
lations. We are going to concentrate on effects that result from such forces by
studying relatively simple models for which the case of a vanishing dipole is
understood, too. In particular we shall be concerned with hard-rod and pro-
late Gay-Berne like molecules with embedded dipole moments for which many
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detailed simulations have been reported in the literature. The stability of var-
ious liquid crystals as function of position, orientation, molecular shape and
strength of the dipole moment will be discussed whenever possible. Emphasis
is put on the role that correlation functions play in a proper understanding
of the structures and of their local, dipolar organization. Finally, an attempt
is made to make the chapter selfcontained by clarifying the essential points
associated with the study of dipolar systems. However, we do not intend to
give an exhaustive presentation of all known liquid crystalline phases with
dipolar ordering. Our choice restricts to those cases that have been accessed
in computer simulations, or are relevant to their understanding.

2 Liquid crystalline phases and dipolar ordering.

Of all liquid crystalline phases the simplest one is the uniaxial nematic phase
of calamitic liquid crystals. There the long range positional ordering of the
centers of mass of the particles is absent and the correlations between the
centers of mass of the molecules are similar to those existing in conventional
liquids. The long axes of the molecules, on the other hand, lie on average par-
allel to each other defining a microscopically preferred direction, the director.
Usually it is denoted by a unit vector n̂ .

Though the constituent molecules may be polar, no ferroelectric nematics
have been found experimentally so far in low molar mass liquid crystals.
Microscopically this means that each molecule points ”up” or ”down” with
equal probability and, consequently, the directions n̂ and−n̂ are equivalent. A
typical snapshot of the molecular configuration is shown in Fig. 1a. However,
the existence of a uniaxial polar nematic (which would be a ferroelectric
fluid with a macroscopic dipole moment) is not forbidden by symmetry (see
Fig. 1b). Actually it has been observed in computer simulations [17,18] and
in polymeric systems [19].

More organized structures that could acquire some kind of polar ordering
are smectics where the molecules are arranged in equidistant layers. Inside
each layer the centers of mass may show no long-range positional order in
which case each layer is a two-dimensional liquid. The molecules are, on the
average, ordered perpendicular to the layer, as in the smectic A phase, or are
tilted. In general, intra-layer diffusion of the molecules is easier than inter-
layer. If an extra long-range positional order exists inside the layers such
smectics are often referred to as crystal smectics.

The simplest of the smectic phases is the uniaxial smectic A phase of
calamitics, which is shown in Fig. 2a. Note that the long molecular axes
are, on the average, parallel to the layer normal and the dipoles (if present)
are disordered to make the net macroscopic polarization vanish. The layer
structure is rather weak and has a periodicity comparable to the length of a
molecule in its fully extended configuration.
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(a) (b)

Fig. 1. Snapshot of molecular arrangement in (a) uniaxial nematic phase composed
of polar molecules and (b) uniaxial polar nematic phase of rod-like molecules. Ar-
rows indicate orientation of dipole moments. In the case (a) the average performed
over snapshots cancels out the dipole moment locally

(a) (b)

Fig. 2. Snapshot of the molecular arrangement in (a) a uniaxial, nonpolar smectic
A phase and (b) a uniaxial polar smectic A phase of rod-like molecules. Arrows
indicate the orientation of dipole moments. The average performed over snapshots
(a) cancels out the dipole moment

As in the case of nematics the existence of a uniaxial polar smectic A
phase (Fig. 2b) is not forbidden by symmetry and, indeed, was found in
computer simulations of pear-shaped molecules with embedded axial dipole
[18]. As far as we are aware of, it has not yet been detected in thermotropic
or lyotropic liquid crystals, but films of more than a hundred layers stacked
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in a polar arrangement have been found to form by self-assembled mushroom
shaped nanostructures of miniaturized triblock copolymers [20].

Another class of orthogonal smectic phases with polarized layers exists in
liquid crystal compounds consisting of molecules with a strongly polar cyano-
or NO2 group at the one end of the aromatic core and only a single paraffin
tail at the other [1,9,10]. The smectic layers have a thickness ranging from
one to two molecular lengths and one observes phase transitions between the
optically identical smectic A phases. Out of these phases the so called smectic
Ad, Fig.(3a), is similar to classical smectic A. One of the differences is that
its periodicity is greater than the molecular length by a factor ranging from
1.1 to 1.6, with a typical value of 1.4. In the smectic A2 phase, Fig.(3b), each

(a) (b)

Fig. 3. (a) Molecular arrangement and dipolar ordering in the uniaxial, smectic Ad

phase with cross section parallel to the layer normal. (b) Schematic representation
of antiferroelectric order in the smectic A2 phase with cross section parallel to the
layer normal. Arrows indicate the orientation of dipole moments

layer has a periodicity comparable to the molecular length but, contrary to
the layers of ordinary smectic A phases, it is ferroelectric. The ferroelectricity
alternates on going from one layer to the next yielding an overall vanishing
macroscopic polarization and antiferroelectric ordering (double layer struc-
ture).

A very interesting molecular arrangement is observed in the smectic Ã
phase, also known as ‘antiphase’, which has been detected both experimen-
tally [10] and in computer simulations [18]. Locally the phase is similar to
the smectic A2, but globally antiferroelectric smectic A2 domains are ob-
served. They are arranged in a two-dimensional centered, rectangular lattice
as shown in Fig.(4a). Thus the polarization of a single sublayer vanishes. If
the lattice is assumed to be formed in the (x, z)-plane, the liquid character
of the phase is maintained only in the y-direction.
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(a) (b)

Fig. 4. (a) Molecular arrangement and dipolar ordering in the smectic Ã phase
with cross section parallel to the layer normal. (b) Schematic representation of fer-
roelectric order in the biaxial smectic A phase formed by banana-shaped molecules
with cross section parallel to the layer normal. Arrows indicate orientation of dipole
moments

Interestingly, the general rule that the lower temperature phases must
display a greater degree of long range order does not always hold for this
class of strongly polar liquid crystals. For example, the nematic state could
be observed not only at temperatures above the domain of the smectic phase,
but also below [5–8]. This behavior is now referred to as reentrant phase
transition. Also one is able to observe phase transitions between the optically
identical smectic A phases [8–11].

A new type of (anti-) ferroelectric ordering could be predicted for systems
where the entropy of packing of molecules within layers is competing strongly
with dipolar interactions. This is exactly what we observe for systems of
banana-like shaped molecules, where a biaxial, ferroelectric, smectic A phase
is formed with spontaneous polarization perpendicular to the layer normal
[21], Fig.(4b). On the other hand, discotic molecules with the dipole moments
parallel to the rotation axis like to form polarized columns [22] or polar
domains within the columns [23]. The overall resulting columnar structure
is, however, nonpolar.

Finally, we mention that there exist tilted smectic phases of practical
importance, with more complex types of polar ordering. They are not dis-
cussed here as we are not aware of any computer simulations relevant to
them. Detailed information about their structure is given in [1,24]. Interest-
ing thoughts about liquid crystalline phases with polar order are found in an
article by Blinov [25].
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3 Models of interacting liquid crystalline molecules

It is obvious that the stability of a given liquid crystalline ordering is a direct
consequence of intermolecular interactions. But it is also clear that the use of
realistic many-body potentials in computer simulations at nonzero temper-
atures is an enormously complex computational problem. We therefore are
forced to use relatively simple models, which only partly account for known
properties of real liquid crystalline molecules. Fortunately, it proves satis-
factory for studying gross features of liquid crystalline phases and of their
long-range organization. An advantage of such modelling is that it can pin-
point the molecular features that should be looked for in realistic systems
to produce a given type of ordering. Our intention in this section is to in-
troduce one of the most successful pair interaction potentials used to study
mesophases by means of computer simulations, the Gay-Berne potential.

But before we are going to discuss properties of this model we summa-
rize characteristic features of interactions between an arbitrarily shaped, but
isolated, pair of molecules. The system is assumed to be in its quantum
mechanical ground state. This approach promises a better understanding of
what is actually disregarded in the original model and in which direction it
could be generalized. Clearly, a restriction to pair interactions is already an
approximation to more elaborated approaches in which the total electrostatic
interaction between an ensemble of molecules is taken into account by use of
the full apparatus of quantum statistical mechanics.

3.1 Pair potentials for liquid crystalline molecules

Under the restrictions discussed above the pair interaction for two isolated
molecules can generally be written as the quantum mechanical average of
the electrostatic interaction operator over the ground state of the system.
However, a detailed analysis of such expression is quite complicated (if not
impossible) and further simplifying assumptions are necessary (see e.g. [26]
and references therein). One of them is that the flexibility of the molecules
is of secondary importance. Then it simply follows that:

• at large intermolecular separations the potential must vanish;
• at short distances, the overlap of the electron clouds results in a strong

repulsion. Though in general interactions at short distances are non-
additive (due to electronic exchange effect) often a good approximation
of the repulsive part is obtained by treating the molecules as hard bodies1.

At short distances the hard body model introduces a simple character-
istic of a molecular system, the so called packing fraction. It is defined as
the ratio of the molecular (“Van der Waals”) volume to the average volume

1 By definition a hard body is impenetrable when in contact with another hard
body but otherwise do not interact.



Computer Simulations 7

per particle (as calculated from the density number). For example, cylinders
closely packed in a hexagonal lattice yield a packing fraction π

2
√

3
≈ 0.906.

The experimentally found packing fraction for high temperature liquid crys-
talline phases is of the order of 0.66. For an ensemble of strongly elongated
molecules it results in a tendency towards parallel ordering of long molecular
axes (entropic excluded volume effects).

At another extreme, i.e. for large intermolecular separations, the overlap-
ping of electronic clouds can be disregarded and thus the complete single-
molecule bases can be used to decompose the ground state of the two mole-
cules. The resulting expression yields three classes of terms

• The electrostatic energy. It is the electrostatic interaction between
two separated, generally inhomogeneous, but in total neutral clouds of
charges, where both molecules are assumed to be in the ground state.
By performing multipole expansion of the charge densities the electro-
static energy can further be represented as an interaction energy be-
tween dipole-, quadrupole and higher multipole moments. In particular
the dipole-dipole contribution relevant for us reads

Vdipole−dipole =
µ1µ2

r3
12

[µ̂1 · µ̂2 − 3(µ̂1 · r̂12)(µ̂2 · r̂12)]. (1)

• The induction energy. It is obtained if one of the two molecules is
in an excited state while the other is in the ground state. Such terms
describe the distortion of the charge distribution of one molecule by fixed
distribution of charges of the other, yielding what is known as dipole-
induced dipole, quadrupole and multipole interactions. Again the leading
term takes the form

Vdipole−induced dipole = −V0ᾱµ2

r6
12

[ 1 + P2(µ̂1 · â2)P2(â2 · r̂12)

+P2(µ̂2 · â1)P2(â1 · r̂12) ] . (2)

• The dispersion energy. It is obtained if both molecules are in excited
states and can be thought of as an interaction between mutually excited
charge distributions on both molecules. An example is provided by the
standard induced dipole-induced dipole interaction

Vdispersion = − 1
r6
12

{V1[â1 · â2 − 3(â1 · r̂12)(â2 · r̂12)]2

+V2[(â1 · r̂12)2 + (â2 · r̂12)2]}. (3)

In the formulas above r12 is the distance between the (induced) dipole (a1)
µ1 and the (induced) dipole (a2) µ2; (âα) µ̂α is the unit vector parallel to the
orientation of the (induced) dipole ′α′; r̂12 is the unit vector pointing from
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the (induced) dipole “1” towards the (induced) dipole “2”; ᾱ is the average
molecular polarizability, and P2 is the second-order Legendre polynomial.

Defined as above, the dispersive forces are expected to be strongly sensi-
tive to the molecular electron distribution. Since the electron density defines
the molecular shape the anisotropy of dispersive forces follows, in most cases,
the molecular shape anisotropy. For “sufficiently” anisotropic molecules and
for fixed distances between the centers of mass of the molecules the minimum
of the dispersive part of the interaction is thus expected for parallel alignment
of the long molecular axes.

Two different approaches are now possible. In the first one we may think
of the interaction between total molecular multipole moments, referred to the
center of mass of the molecule. An often used alternative approach divides
each of the two molecules into “well localized” electronic units. If the localiza-
tion of the units can indeed be justified the interaction between the molecules
can be viewed as interaction between each of the units. Hence, the molecule
can be regarded as having a certain distribution of localized multiple moments
(e.g. dipole moment associated with the cyano end group of cyanobiphenyles)
as well as distribution of induction and dispersion contributions.

A few comments seem appropriate at this place:

• In our discussion we have disregarded three-body and, in general, many-
body interactions, which may not necessarily be correct for dense systems.
However, as far as we are aware of no systematic studies exist to date of
many body interactions on liquid crystalline properties.

• There are other contributions to pair interactions not discussed here like
resonance and magnetic ones, but they are much weaker as compared to
the ones already introduced. We may also think of modifications due to
molecular flexibility or specific molecular shape.

• We have so far discussed some general features of pair interactions for
anisotropic molecules. The approach as given, although very successful for
an identification of relevant terms characterizing potential energy of two
molecules, is not easily applicable for quantitative, ab initio predictions
of liquid crystalline properties. One is often forced to use a series of ad-
ditional simplifying assumptions thus making the final formulae severely
limited.

Owing to the technical difficulties in ab initio modelling of real pair inter-
actions between large molecules it is often more appropriate to use an alterna-
tive, semi-empirical description. In such approach the actual intermolecular
interactions are approximated by functions depending on a number of ad-
justable parameters which, if necessary, can be fitted to experimental data.
One commonly used form is the atom-atom Lennard-Jones interaction with
attractive and repulsive parts that decay as 6th and 12th inverse powers of
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distance

VLJ =
∑

ab

4εab

[(
σab

rab

)12

−
(

σab

rab

)6
]

, (4)

where εab is the potential well depth, and σab is the shape parameter (i.e. dis-
tance at which the potential changes sign) for the interaction between atoms
a on the molecule ’1’ and atoms b on the molecule ’2’. Note that V , Eq.(4),
includes part of attractive dispersion forces (3) and approximates repulsion
at short distances. Terms that are normally added to (4) involve Coulomb,
bond bending and torsional interactions. Detailed examples are discussed by
Cook and Wilson in their atomistic simulations of liquid crystalline systems
in the isotropic phase [27].

3.2 Gay-Berne pair potential

A difficulty in using realistic potentials like (4) for computer simulations is
that they become computationally extremely expensive for large molecules
[27]. Alternatives that proved very successful in modelling the general behav-
ior of liquid crystals are single site potentials that depend not only on the
relative distance between the centers of mass of the molecules, but also on the
mutual molecular orientations. One of the most popular pair interaction be-
longing to this class is a nonspherical version of the Lennard-Jones potential
(4) as introduced by Gay and Berne [28]. For molecules of uniaxial symmetry
it depends on the unit vectors êi and êj describing the orientations of a
pair of molecules and on the separation vector r = ri − rj of their centers of
mass ri and rj . The detailed expressions are

VGB(êi, êj , r) = 4 ε(êi, êj , r̂)
(
R−12 −R−6

)
, (5)

where

R = [r − σ(êi, êj , r̂) + σ0] /σ0. (6)

Here r = |r| is the length of the separation vector and r̂ = r/r is the unit
vector describing its orientation.

The Gay-Berne potential (5) is thus an anisotropic and shifted version of
the potential (4). It differs from (4) in that both the potential well ε and the
molecular shape parameter σ 2 are orientationally dependent. Originally the
form of ε and σ was selected to give the best fit to the pair potential for a linear
array of four equidistant point Lennard-Jones particles with a separation of
2σ0 between the first and fourth sites. The currently used definitions for the
well and depth are

σ(êi, êj , r̂) = σ0

{
1− 1

2
χ

[
(r̂ · êi + r̂ · êj)2

1 + χ (êi · êj)
+

(r̂ · êi − r̂ · êj)2

1− χ (êi · êj)

]}−1/2

(7)

2 Molecular shape is defined through the equipotential surface VGB = 0, for which
we have r|VGB=0 = σ
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ε(êi, êj , r̂) = ε0 εν(êi, êj) ε′µ(êi, êj , r̂) (8)

and

ε(êi, êj) =
[
1− χ2 (êi · êj)2

]−1/2
(9)

ε′(êi, êj , r̂) = 1− 1

2
χ′

[
(r̂ · êi + r̂ · êj)2

1 + χ′ (êi · êj)
+

(r̂ · êi − r̂ · êj)2

1− χ′ (êi · êj)

]
. (10)

The potential contains six parameters (κ, κ′, µ, ν) and (σ0, ε0). The first four
determine the anisotropy of the repulsive and attractive forces while the other
two introduce a natural length and energy scale. The parameters χ and χ′ in
(7-10) are related to the length-to-breadth ratio κ and potential well depths
ratio κ′ for the side-to-side and end-to-end molecular configurations

χ =
κ2 − 1
κ2 + 1

, (11a)

χ′ =
κ′1/µ − 1
κ′1/µ + 1

. (11b)

They both vanish for spherical particles while χ is +1 for infinitely long rods
and −1 for infinitely thin disks. The pair (σ0, ε0) corresponds to the shape
parameter and well depth calculated for a configuration when all three molec-
ular vectors êi, êj , and r̂ are mutually perpendicular (cross configuration).
The last two parameters, µ and ν, tune the shape of the well depth in a more
subtle way. In particular, the role of µ is comprehended, to a large extend,
by relation (11b) while ν is connected to the well depth ratio κ′′ for the
side-to-side and cross configurations

κ′′ =
1

(1− χ2)ν/2
. (12)

As already indicated before the parameters ε0 and σ0 of the Gay-Berne
potential provide a natural length and energy scale. In terms of these con-
stants all relevant physical quantities can be rendered dimensionless. The
most often used (dimensionless) reduced quantities (denoted by a star) are
listed below:

• length: l∗ = l/σ0

• time: t∗ =
√

mσ2
0/ε0

• density: ρ∗ = ρ σ3
0

• energy: E∗ = E/ε0
• temperature: T ∗ = kT/ε0
• dipole moment: µ∗ = µ (ε0σ3

0)−1/2.

Among the cases studied the original Gay-Berne model (OGB) [28], de-
fined by κ = 3, κ′ = 5, µ = 2 and ν = 1, is the one most thoroughly
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Fig. 5. (a)The potential energy contours calculated for a pair of Gay-Berne parti-
cles. The molecules are assumed to be parallel to the z axis of the laboratory frame.
The center of the reference molecule is located at the origin of laboratory frame.
Owing to the cylindrical symmetry of the interactions only x−z cross section of the
potential is shown. The contours are parameterized by the dimensionless potential
energy (VGB/ε0). The innermost contours correspond to 2 and the other contours
are for values of the scaled potential energy decreasing in steps of 0.25 until -5. In
this figure and in all figures that follow quantities are given in reduced units. (b)
Schematic representation of the corresponding phase diagram as determined from
simulations by Miguel et al. [31]

documented in the literature [29–31]. Its potential energy contours for the
long molecular axes parallel to each other are shown in Fig.(5a).

Clearly, the OGB potential prefers a side-to-side arrangement of the pair
of molecules which, in turn, promotes liquid crystallinity. The length-to-
breadth ratio3 is 3:1, as the value of κ suggests, and this seems to be the
minimum value that is found experimentally for molecules forming liquid
crystals. The complete phase diagram for this model is found in [31] and its
sketch is shown in Fig.(5b). It is particularly simple, revealing only vapor,
isotropic liquid, nematic and smectic B phases.

The Gay-Berne potential is very rich in predictions and remarkably suc-
cessful in computer simulations of liquid crystalline phases. Using molecular
3 It is defined as a ratio of distances corresponding to VGB = 0 for end-to-end and

side-to-side configurations
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dynamics and Monte Carlo techniques a phase behavior of the four-parameter
Gay-Berne potential has been studied to prove that the model agrees well
with what is observed for real mesogens [29–33].

In view of this success the original Gay-Berne potential has been de-
veloped further to include molecular biaxiality [34] (and to stabilize biaxial
nematic phase [35]), flexibility [36], more complex molecules composed of a
collection of Gay-Berne sites [37], dipolar forces [38–49], steric dipoles [18]
and zig-zag shaped molecules [50].

Extension of the Gay-Berne potential to include dipole-dipole interactions
due to a permanent dipole moment is straightforward. In this case the pair
potential energy (5) should be supplemented by the contribution (1)

V = VGB + Vdipole−dipole. (13)

Just to have an impression what the potential energy for a pair of dipolar
Gay-Berne particles looks like we sketch the energy contours in Fig.(6) for
the OGB potential with a single longitudinal dipole moment per molecule.
Note changes of the contours on going from central to terminal dipoles.
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Fig. 6. The potential energy contours calculated for a pair of Gay-Berne particles
with embedded longitudinal dipole moment. The molecules and the dipole mo-
ments are taken parallel to the z axis of the laboratory frame. The center of the
reference molecule is located at the origin of the laboratory frame. The contours
are parameterized by the dimensionless total potential energy (V/ε0). The inner-
most contours correspond to 2 and the other contours are for values of the scaled
potential energy decreasing in steps of 0.25 until -5. Orientation and localization
of the dipole moments along the molecules is indicated by arrows. The position
d∗ = 2 × (actual position from molecular center)/σ0 of the dipoles is: (a) d∗ arbi-
trary, (b) d∗ = 0, (c) d∗ = 0.75. In all cases the value of the dipole moment is
µ∗ = 2.5
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As the OGB with longitudinal dipole moments is one of the most fre-
quently studied polar version of the Gay-Berne potential we are going to
discuss in detail the relation between the strength and position of the longi-
tudinal dipole moment on the formation of mesophases. Not only central and
terminal, but also intermediate positions of the dipoles are considered. The
discussion will be illustrated with the results obtained for an ideally oriented
polar version of the OGB system with longitudinal dipoles [48], here referred
to as IOGB. In the IOGB model the translational degrees of freedom of the
molecules are unrestricted but their orientations are fixed parallel to the z
axis of the laboratory frame. That is the dipoles can be oriented either par-
allel or antiparallel to the positive z axis and are given by µi = µ siẑ, where
si = ±1. Their location on the molecular axis is given by a parameter d∗ (see
Fig.(6)), which denotes the distance of the dipole from the molecular center.

At high temperatures, the IOGB model exhibits an ideally oriented ne-
matic phase, which is the reference state of the system. In the limit of vani-
shing dipole moment nematic4, smectic A and smectic B phases are stable.
The simplification of the ideal nematic order is reasonable whenever struc-
tures with strong alignment are expected, which is the case for smectic- and
crystalline phases of the polar OGB system.

4 Computer simulations with dipoles

Simulations of a system can be done at many different levels of fidelity. The
simulations dealt with here are Molecular Dynamics (MD) and Monte Carlo
(MC) simulations for a classical system of molecules interacting through a
potential like (13). Our goal is to extract information about equilibrium bulk
properties for given temperature and pressure (or density). We do not intend
to discuss here specific MD or MC algorithms used in simulations, which are
well presented in [15,16], but rather describe essential details specific to the
analysis of phase behavior of polar mesogens.

Usually a simulation for a system with dipoles is carried out for an en-
semble of a few hundred to a few thousand of molecules. Though the number
depends strongly on actual computational resources available and on the
problem studied a system size dependence was observed when the number of
particles was less than 500 (see e.g. simulation for dipolar hard-core system
[53]). This dependence may result from a combination of the long-range na-
ture of dipolar (or generally electrostatic) interactions, approximations used
to calculate them and the structure analyzed. Importantly, the system size
sets up the limit for the allowed wavelengths of fluctuations. Hence the corre-
lation length in the system that we simulate should actually be smaller than
the system size. In studying systems close to a second- or weakly first or-
der phase transition, where usually the correlation length exceeds the system
4 Nematic phase of perfectly oriented Gay-Berne model without dipoles has been

studied by Wagner [51,52]
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size, a finite size scaling analysis of quantities looked for is necessary. As a
rule, it is always important to carry out tests with larger systems for possible
finite size effects, especially for systems with long-range interactions.

Assume now that our collection of molecules is restricted to a rectangular
volume Lx×Ly ×Lz. With a small system size we cannot simulate correctly
bulk properties as a considerable number of particles resides on its surface
(about 49% for a cubic box of 1000 molecules). To overcome this difficulty
one usually introduces periodic boundary conditions where the system of in-
terest, called central box, is surrounded by identical systems i.e. with exactly
the same configuration of molecules at any moment of simulations [15]. As a
particle moves through a boundary its image from a neighboring box enters
and hence the constant density is maintained in every box as well as in the
whole system. It is assumed that the behavior of a real, infinite system is most
similar to that composed of periodic images of the central box. The interac-
tion potential of the real system can now be approximated by an interaction
between any two particles i and j of the central box and their images. It is
thus given by the following expression

V =
1
2

∑

i 6=j

VPBC(ri, rj , . . .) +
∑

i

VPBC(ri, ri, . . .) (14)

where

VPBC(ri, rj , . . .) =
∑
m

′
V (ri − rj +

∑
α=x,y,z

Lα mα, . . .). (15)

The sum in Eq.(15) runs over all vectors m with integer coefficients mα,
and Lα are the vectors of length Lα parallel to the edges of the box. The
prime indicates that for m = 0 the terms with i = j are to be omitted. Note
that rj −

∑
α=x,y,z Lαmα are image particles of the particle ′j ′ and that

the second term in Eq.(14) represents interaction of the particle ′i ′ with all
its images. Clearly, only positions and orientations of the molecules in the
central box are to be stored during simulations.

Usually special techniques, discussed in the next subsections, are needed
to have a credible estimate of the infinite sum (14) for the electrostatic part of
the interactions. The trouble, in particular with the dipole-dipole interaction,
is due to its long range. The sum (14) is only conditionally convergent in this
case, which means that the result depends on the way in which we add up
the terms. It also means that the straight truncation of the dipole-dipole in-
teraction at a given (spherical) cutoff (so that the interactions beyond cutoff
are neglected) is generally not acceptable at the cutoff distances commonly
used for simulations5. Such straight truncation is known to yield wrong pre-
dictions for energetic, dynamical and dielectric properties of the system. We
5 A standard potential cutoff, which we utilize for the Gay-Bernie part of (15) is

r∗cut = 4.0, i.e. VGB = 0 for r > rcut. Correspondingly, the system size Lmin =
min(Lx, Ly, Lz) must be taken greater than 2 rcut. Choosing Lmin we must be
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should add that the proper treatment of the dipolar forces is the most time
consuming part of the simulations and it is this part of the code that limits
the system size in practice.

The available methods fall into two categories, the explicit molecule-
molecule description and the molecule-continuum description. Two most com-
monly used representatives of these methods are the Ewald summation tech-
nique [15,16,54–64] and the Onsager reaction-field [15,62–66] method, respec-
tively. The Ewald summation technique treats essentially in an exact manner
the interaction between the dipoles in the central box and its periodic replicas,
whereas the Onsager reaction field replaces “uninteresting” dipole moments,
located beyond the cutoff radius from a given dipole, by a dielectric con-
tinuum. Recently, some improvements over the original techniques also have
been proposed [67–70].

4.1 Ewald summation technique for dipolar interactions

The Ewald summation technique for the calculation of the dipole-dipole part
in the sum (15) is probably the most reliable one available today. It could
be introduced using a few equivalent formulations but from a mathematical
point of view it amounts in multiplying each m-dependent term in (15) by a
convergence factor, usually of the Gaussian form exp(−s|m|2), which makes
(15) absolutely convergent. If we then calculate the so modified lattice sum by
any correct method and take the limit of s → 0 afterwards, we obtain a finite
result. It becomes equivalent to performing a conditional summation (15)
over spherical shells. The dipole-dipole part of the potential energy (14) so
calculated splits itself into rapidly converging real- and Fourier-space lattice
sums. More specifically, it is being reduced to four different terms: (a) a
real term arising from the short-range interaction in the real space; (b) a
reciprocal term arising from the long-range interaction in the reciprocal space;
(c) a self-energy term correcting the contribution in the reciprocal space, and
(d) a surface term connected with the continuum surrounding the replicated
sample. They read [64,71]

Vdd =
1
2

∑

i 6=j

(µi ·µj)B(rij)− (µi ·rij) (µj ·rij)C(rij)

+
2π

V

∑

k 6=0

exp(−k2/4γ2)
k2

|F (k)|2 − 2γ3

3
√

π

N∑

i=1

µ2
i

+
2π

(2εsurr + 1) V

(∑

i=1

µi

)2

. (16)

aware of finite size effects when the actual correlation length in the system is
comparable with Lmin
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In the expression above k denotes the reciprocal lattice vector given by k =
(2πnx/Lx, 2πny/Ly, 2πnz/Lz) with nx, ny, nz = 0, .., nmax and γ is the
convergence parameter. The functions B(rij) and C(rij) are defined as

B(rij) =
erfc(γrij)

r3
ij

+ 2
γ√
π

exp(−γ2 r2
ij)

r2
ij

(17)

and

C(rij) = 3
erfc(γrij)

r5
ij

+ 2
γ√
π

(
2γ2 +

3
r2
ij

)
exp(−γ2 r2

ij)
r2
ij

, (18)

whereas the so-called dipole structure factor |F (k)|2 is given by

F (k) =
N∑

i=1

(µi ·k) exp(ik·ri); (19)

erfc(x) = 2√
π

∫∞
x

dt e−t2 is the complementary error function. Finally, the
surface term acts as a depolarization field and is due to the total dipole
moment of the central box confined in the volume V . The parameter εsurr

that enters the surface term is the dielectric constant of the continuum sur-
rounding the whole system i.e. central box plus all its replicas. Actually it
is not clear what is the best choice for εsurr. Assuming that the surround-
ing medium is the same as the bulk one this parameter should be found
selfconsistently so that the bulk dielectric constant is equal to the surface
one. However, this would considerably slow down simulation so the standard
choice for εsurr is an a priori value taken to be either infinity (tinfoil or
metal boundary conditions) or 1 (vacuum boundary conditions). For dipolar
systems the first extreme value would be most desirable because it makes
the surface term vanish. Indeed when the net polarization in the simulation
cell could be disregarded (

∑N
i=1 µi/N ≈ 0), as e.g. for structures with no

net polarization, adopting tinfoil boundaries seems legitimate6 as there is no
considerable polarization effects coming from the bulk. But this term is not
necessarily negligible when there is a net dipole moment in the simulation cell
and it may modify the internal energy in an essential way. Thus, in general,
the choice of the boundary conditions may have an influence on the results
of simulations [71–73].

The infinite Ewald sum, Eq.(16), is independent of the convergence pa-
rameter γ. In the calculations, however, when only a finite number of terms
can be considered, γ and the number of k vectors are adjustable parameters
and are typically chosen to optimize computations. In particular γ is usually
chosen large so that the sum in real space disregards pairs separated more
6 Exception here could be a calculation of the dielectric constant, which may de-

pend on the boundaries adopted
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than Lmin/2, where Lmin = min(Lx, Ly, Lz). Typically, one uses γ ∼= 5/Lmin

and includes about 100-500 wavevectors in the sum over reciprocal space. An
analysis of the errors resulting from such truncation of both series has been
reported by Neumann et al. [58], Kolafa et al. [59], Fincham [60] and Hum-
mer [61]. In particular Hummer [61] has proposed an empirical rule allowing
to achieve the same accuracy for the Fourier sum with two different values
of γ. The rule states that the corresponding k-space cutoff distances have to
be chosen according to |n1,max|/|n2,max| = γ1/γ2.

In our simulations of the IOGB systems [48] at densities of the order
of 0.3 we found that the optimal value for the parameter γ is 5.75/Lmin.
With this choice of γ the real space part of the Ewald sum could indeed be
limited to the central box and the Fourier space part restricted to vectors
k = (2πnx/Lx, 2πny/Ly, 2πnz/Lz), such that |n| =

√
n2

x + n2
y + n2

z ≤ 6.

4.2 Reaction field method

A direct use of the Ewald summation technique is computationally very ex-
pensive, especially for large systems. Another widely used approach, which
stays relatively cheap, is the Onsager reaction field method [65,66]. In this
method each particle ”i” interacts with other particles confined within a
sphere Si of radius r∗cut. The medium outside the cutoff sphere of each
molecule is replaced by a uniform dielectric continuum with a static dielec-
tric constant εRF . It gives rise to a reaction field ERF,i on the dipole ”i”.
The solution of the Maxwell equations adequate to the above approximation
yields an electric field at the center of the sphere given by

ERF,i =
2(εRF − 1)

(2εRF + 1)r3
cut

Mi, (20)

where Mi is the total dipole moment of the sphere Si. A dipole µi immersed
in the field (20) has a potential energy

VRF,i = −2(εRF − 1)
(2εRF + 1)

Mi · µi

r3
cut

. (21)

Consequently, the dipole-dipole energy of the whole system is

Vdd =
1
2

∑

i 6=j

[
Vdipole−dipole(rij)− 2(εRF − 1)

(2εRF + 1)
µi · µj

r3
cut

]
θ(rcut − rij), (22)

where θ is the theta Heaviside function. As expected, the reaction field van-
ishes for vacuum (εRF = 1) whereas it is maximal for metallic (εRF = ∞)
surroundings. Its action on the system is to polarize molecules in the central
box. Hence the direct antiferroelectric ordering between the dipole moments
is weakened. As εsurr for the Ewald method the true εRF should be calcu-
lated selfconsistently so that the average dielectric constant of the central
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box agrees with εRF . But in practice, as in the case of the Ewald summation,
the simulations are often carried out with a fixed value of εRF >> 1. For
example, in the case of the structures with vanishing average dipole moment
of the central box, a substitution εRF = ∞ is usually a satisfactory choice.
The detailed value of εRF , given it is large, does not affect significantly calcu-
lated thermodynamic properties and correlation functions in this case. This
has been explicitly demonstrated for the Stockmayer fluid [74] in liquid and
vapor phases, and for the dipolar Gay-Berne with longitudinal dipole mo-
ments where both selfconsistent and tin-foil values of εRF have been used
[48,49,62,63].

To complete this subsection we note that the Ewald summation and the
approximate reaction field method are not equivalent. This is quite clear if we
compare the respective formulas (16) and (22). While the Ewald technique
correctly accounts for long-range nature of the dipolar forces the reaction field
method turns the dipole-dipole interaction into a spherically symmetric, rela-
tively short-ranged effective potential, like the Gay-Berne one 7. However, for
many cases studied in the literature concerned with polar Gay-Berne systems
[48,49,62–64] the differences between the use of the Ewald summation and
the reaction field with conducting boundary conditions (εRF = ∞) appear to
be of secondary importance. This holds true both for nonpolar liquid phases
like nematic and isotropic liquids and for nonpolar crystalline phases. The
proper use of the reaction field requires, however, the use of a selfconsistently
calculated averaged dielectric constant εRF .

4.3 Further computational details

Simulations of model polar liquid crystalline systems can be carried out us-
ing either classical Molecular Dynamics (MD) or Monte Carlo (MC) methods.
They allow to find a direct connection between pair interactions and the cor-
responding structural, dynamic and energetic properties of the system. Sim-
ulations are usually performed in the NV T (constant number of molecules
N , volume V and temperature T ) or NPT (constant number of molecules N ,
pressure P and temperature T ) ensemble as described in [15,16]. In order to
investigate the phase behavior of mesogenic systems constant pressure simu-
lations (NPT ) seem more suitable, especially for small systems. By allowing
the central box dimensions to change the natural smectic and crystal struc-
tures can easily fit the dimensions of the simulation box, which is harder to
achieve in the NV T ensemble.

But when dipolar interactions are calculated using the Ewald summation
technique, the NPT simulations are computationally much more expensive
than the NV T simulations. The reason is the necessity of recalculating tabu-
lated earlier wave vectors and consequently also wave vector dependent terms
exp(−k2/4γ2)/k2 in Eq.(16) when the box dimensions are changed.
7 A generalization of the reaction field to include a possible anisotropy of the

dielectric continuum also is possible although we are not aware of such analysis
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A typical time step taken in MD simulations for the integration of the
equations of motion is δt∗ ' 0.001t∗. Usually about 104 − 106 timesteps
are needed to equilibrate the system of more than 500 molecules. Quantities
of interest are calculated and averaged over 104 − 106 additional timesteps.
Large runs are needed especially close to a phase transition.

A single time step in a MD run corresponds to one cycle of MC simulation,
where one cycle represents N trial displacements and reorientations of the
molecules at constant volume followed by one attempted box length move.
The last step applies, of course, only when NPT simulations are carried
out. The parameters controlling maximal increment of the displacements, the
orientations and of the box dimensions are chosen such that the acceptance
ratio for attempted moves is between 20% and 50%.

5 Structure analysis

The structures of liquid crystalline phases identified in simulations are charac-
terized in terms of the probability densities for finding groups of one, two, or
more molecules at specified positions and orientations in phase space [76–78].
The most important of these are the singlet and the pair distributions. They
can be used to calculate some of the equilibrium properties of mesophases,
like the total average potential energy, pressure, specific heat, etc. [76–78].

In this section we are going to discuss in detail various singlet, pair and
three-body distribution functions and the way in which they can be ex-
tracted from the simulation data. We demonstrate, by referring to an ide-
ally oriented system of Gay-Berne molecules with embedded longitudinal
dipole moments [48], that all these functions are necessary to elucidate the
short-range and long-range organization in liquid crystalline phases formed
by polar systems. In particular, the importance of triplet correlations for a
proper understanding of the structures and of their local, dipolar organi-
zation is demonstrated. In order to simplify the notation we assume that
the model mesogenic molecules are axially symmetric with inversion symme-
try, i.e. only longitudinal components of the dipole moments are considered.
Generalization to the biaxial case, as induced e.g. by transversal dipoles, is
straightforward [76].

5.1 Singlet distribution functions and order parameters

The simplest of the distribution functions is the one-particle density distribu-
tion function. For liquid crystals composed of uniaxial molecules it is defined
as

P (1)(r, Ω̂) =
1
N

<

N∑

i=1

δ(r− ri
′) δ(Ω̂− Ω̂i

′) >, (23)
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where δ is the Dirac delta function and the ensemble average < ... > is per-
formed over primed variables representing the molecular positions and orien-
tations. Clearly, P (1)(r, Ω̂) d3r dΩ̂ gives the probability of finding a mesogenic
molecule within the range [ r, r+dr ] of positions and the range [ Ω̂, Ω̂+dΩ̂ ]
of orientations, where the latter being represented by the unit vector Ω̂.
Integration of P (1) over positions and orientations yields the normalization
condition:

∫
d3r dΩ̂ P (1)(r, Ω̂) = 1.

Associated with the distribution function (23) are the order parameters.
They can be introduced by referring to the Fourier integral representation of
the spatial Dirac delta function: δ(r) = 1

V

∑
k ei k·r and the representation

of the angular delta: δ(Ω̂− Ω̂ ′) =
∑

L,m Y L
m(Ω̂)Y L

m(Ω̂ ′)
∗
, where ki = 2πmi

Li
;

mi = 0,±1, ...; i = x, y, z, and where the functions Y L
m are the spherical

harmonics [79]. Substitution of these representations into (23) yields

P (1)(r, Ω̂) =
1
V

∑

k,L,m

PkLm ei k·r Y L
m(Ω̂) , (24a)

PkLm =
1
N

<

N∑

i=1

e−i k·ri ′ Y L
m(Ω̂i

′)∗ > . (24b)

The averages PkLm are just the order parameters and many of them van-
ish in practice. In general, the set of indices {k, L, m} giving nonzero values
for PkLm can be selected by referring to irreducible representations of the
space group associated with the structure. Identification of nonzero {k, L, m}
is particularly simple for uniaxial nematics and for orthogonal uniaxial smec-
tics with one dimensional density modulation [76,81]. In the former case there
is no dependence on positions in Eq.(24a), due to the translational symme-
try of the nematics. That is, only P 0Lm = < PL > Y L

m(n̂)∗ order parameters,
with < PL > being the average value of the L-th order Legendre polynomial,
are nonzero [79]. It yields

P (1)(r, Ω̂) = P (1)(Ω̂) =
1
V

∑

L

< PL >

L∑

m=−L

Y L
m(Ω̂)Y L

m(n̂)∗

=
1
V

∑

L

2L + 1
4π

< PL > PL(Ω̂ · n̂) = P (1)(Ω̂ · n̂).

(25)

The director dependence of P 0Lm follows from the fact that in the ne-
matic state the global O(3) symmetry is broken to its uniaxial subgroup. In
simulations n̂ could be identified with the direction maximizing the expres-
sion < PL >= Max

n̂:|n̂|=1

1
N <

∑N
i=1 PL(Ω̂i

′ · n̂) > or, equivalently, with an

eigenvector of the alignment tensor [80] Q = 1
2N

〈∑N
i=1( 3 Ω̂i

′ ⊗ Ω̂i
′ − 1)

〉
,

corresponding to a nondegenerate eigenvalue.
For nonpolar nematics the states n̂ and −n̂ of the director are equiva-

lent and only terms with even Ls are nonzero in Eq.(25). For polar nematics
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[17,18] both even and odd Ls must be retained. In particular, < P1 > is the
average polarization of the phase. Typical forms of the one-particle distri-
bution function (25) for a nematic phase formed in Gay-Berne system along
with some values of < P2 > and < P4 > are given by Bates and Luckhurst
[32].

Our exemplary simulations of polar liquid crystals are restricted to the
IOGB model, where < P2L >= 1. In this case the general formulas (23,24a)
become much simpler, especially for orthogonal smectics. More specifically,
for smectic ordering along the director the one-particle distribution function
reduces to P (1)(s, z) given by [48]

P (1)(s, z) =
1
N

〈
N∑

i=1

δs,s′i δ(z − z′i)

〉

=
1

2Lz

[
1 + 2

∑
n=0

ζ2n+1 s cos [(2n + 1)qz] + 2
∑
n=1

τ2n cos (2nqz)

]
,

(26)

where we introduced smectic ( τ2n ) and dipolar ( ζ2n+1 ) order parameters.
Their definitions follow from the Fourier expansion of P (s, z) under normal-
ization condition:

∑
s=±1

∫ Lz

0
dzP (1)(s, z) = 1, with q = π

l being the wave-
length of the smectic structure and l being the layer spacing. The leading
amplitudes ζ1 and τ2 are given by

ζ1 = Max
{l}

∣∣∣∣∣∣
1
N

〈
N∑

j=1

s′j exp
(
i πz′j / l

)
〉∣∣∣∣∣∣

(27)

τ2 = Max
{l}

∣∣∣∣∣∣
1
N

〈
N∑

j=1

exp
(
2 i πz′j / l

)
〉 ∣∣∣∣∣∣

. (28)

The same procedure can be used to find higher order amplitudes of the singlet
distribution function (26).

5.2 Pair distribution functions

The one-particle properties of uniaxial nematics and smectics are well under-
stood. But a similar analysis for pair and higher order distribution functions
is still far from being complete. A reason for that becomes clear if we write
the definition of the simplest of these functions, namely that of the pair dis-
tribution [76,77]

P (2)(r1, Ω̂1, r2, Ω̂2) =

<

N∑

i,j,i 6=j

δ(r1 − r′i) δ( Ω̂1 − Ω̂′
i ) δ(r2 − r′j) δ(Ω̂2 − Ω̂′

j) > .
(29)
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Though (29) seems a straightforward generalization of the formula (23), in
practice it appears to be a complex quantity, both to calculate and to rep-
resent graphically. Even for uniaxial nematics composed of uniaxial, rigid
molecules we need to analyze a function depending on seven variables. Only
recently this issue has been resolved by studying a complete set of rotational
invariants [82]. Interestingly, it has been shown that the seemingly large group
of these invariants can be divided into classes having the same asymptotic
behavior at large distances and at high orientational order.

The analysis of pair correlations becomes much easier for the ideal nematic
order as present in the IOGB model. In this case a simpler version of P (2)

can be introduced through the relation [48]

P (2) ≡ P (2)(r, s1ẑ, s2ẑ) =
V

N2

〈∑

i

∑

j 6=i

δs1siδs2sj δ(r− ri + rj)

〉

= P (2)(r, r̂ · ẑ, s1s2) =
∑

L

2L + 1
2

P
(2)
L (r, s1s2) PL(cos θ), (30)

where θ is the angle between the unit intermolecular vector and ẑ. P (2) gives
the probability that one particle with dipole orientation s1 is separated by
a distance r from another with dipole s2 (irrespective of their absolute po-
sitions), relative to the probability expected for a completely random distri-
bution at the same density. It represents pair correlations of translationally
invariant phases and is an approximation of the correlations for crystalline
structures.

There are two pair distribution functions that can be derived from P (2),
which are of particular interest for layered structures. One is the axial pair
distribution function, P

(2)
‖ (z, s1s2), defined as

P
(2)
‖ (z, s1s2) =

Lz

2N2

〈∑

i

∑

j 6=i

δs1si δs2sj δ(z − |zi − zj |)
〉

. (31)

It gives the probability of finding centers of mass of two particles at a resolved,
relative distance of z along the director, and with orientations s1, s2 of the
molecular dipoles relative to the same probability calculated for an ideal gas
of particles at the same density. We calculate P

(2)
‖ (z, ↑↑) for pairs of molecules

with the same dipolar orientations and P
(2)
‖ (z, ↑↓) for pairs of molecules with

their dipoles oriented in opposite directions, where s = 1 ≡↑ and s = −1 ≡↓.
From these two functions we then obtain P

(2)
‖ (z) for arbitrary orientation of

the dipoles by summing over s1 and s2.
The structure perpendicular to the director can be probed with the trans-

versal pair distribution function, P
(2)
⊥ (r⊥, s1s2), where r⊥ is the distance

between the centers of mass of particles projected onto a plane orthogonal to
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ẑ. It is defined by [48]

P
(2)
⊥ (r⊥, s1s2) =

1
4πD

∫ 2π

0

dφ

∫ D

−D

dz P (2)(r⊥, φ, z, s1s2) =
V

4πr⊥DN2

×
〈∑

i

∑

j 6=i

δs1si δs2sj δ(r⊥ − |ri − rj |⊥)Θ(D − |zi − zj |)
〉

. (32)

Here Θ(x) denotes the Heaviside step function and D is a small parameter
(D∗ ≈ 0.5) defining what is meant in simulations by saying that molecules
belong to the same plane normal to ẑ. Note that regarding ri and rj in the
Eq.(30) as positions of the dipole moments yields another interesting pair
distribution function. It shows the tendency for the dipoles to gather in the
plane.

In analogy to the case of longitudinal correlations (31), we can intro-
duce transversal correlations P

(2)
⊥ (r⊥, ↑↑) and P

(2)
⊥ (r⊥, ↑↓), for parallel and

antiparallel dipolar orientations, respectively, and P
(2)
⊥ (r⊥), for arbitrary ori-

entation of the dipoles. Also, by expanding the general g⊥(r⊥) into angular
Fourier series we can introduce tetratic, hexatic etc. order parameters measur-
ing the degree of angular correlations between the clusters of molecules. For
example, the hexatic order is given by the hexatic order parameters Ψ6n(r⊥)
defined as

P
(2)
⊥ (r⊥) ≡ 1

2D

∑
s1s2

∫ D

−D

P (2)(r, s1ẑ, s2ẑ) dz

= P⊥(r⊥)
∑

n

Ψ6n(r⊥) exp (i 6nφjk),
(33)

where r⊥ is the average in-plane nearest neighbor separation (position of
the leading peak of g⊥(r⊥)) and φjk is the angle that the separation vector
rj − rk between neighboring molecules j and k makes with the x-axis. The
dominant hexatic order parameter corresponds to n = 1 in the formula (33).
In selecting the nearest neighbors we can consider molecules separated e.g.
between r⊥ ± δ with δ being the distance from r⊥, where the magnitude of
the leading peak of g⊥(r⊥) halves. For ideal triangular lattice Ψ6 = 1.

5.3 Three-body distribution functions

Structural properties of a system could further be characterized using higher
order distributions. Of them, the triplet distribution function is of particu-
lar importance, especially for strongly polar liquid crystals where frustration
plays an important rôle [5–7]. Although correlations higher than two-body are
straightforward to evaluate in simulations [77] the results for liquid crystals
are scarce [48]. This is probably due to the fact that the general parametriza-
tion of the three-body distribution in terms of spherical invariants is quite
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complicated and the calculation of averages time consuming. Even for a rel-
atively small system of N = 648 IOGB molecules which we have studied the
number of triplet configurations to be analyzed in one cycle is gigantic and
equals N(N−1)(N−2)/6 = 45 139 896. Also visualization of the correlations,
even if we manage to count triplets, is a nontrivial task.

For ideally oriented dipolar systems the task is manageable as the triplet
distribution function P (3) considerably simplifies [48]. Actually, we are going
to concentrate only on the translationally invariant part of the in plane three-
body correlations which reads

P
(3)
⊥ (r⊥, θ, s1s2s3) =

V 2

8πr2
⊥D2N3

〈 ∑

i

∑

j 6=i

∑

k 6=j 6=i

δs1si
δs2sj

δs3sk

δ(r⊥ − |rj + ri|⊥) δ(r⊥ − |rk + ri|⊥)Θ(D − |zj − zi|) (34)

Θ(D − |zk − zi|) δ(θ −Min(|φj − φk|, 2π − |φj − φk|))
〉

.

By definition P
(3)
⊥ counts only those triplets that lie in planes perpendicular

to the director and form isosceles triangles with two of the three sides being
r and the angle between them being θ.

Owing to the symmetry of the IOGB model we think that other configu-
rations do not contribute in an essential way to a quantitative understanding
of the three-body correlations. As for the pair distribution two cases are con-
sidered. In the first case the vectors ri, rj , and rk in (34) are assumed to
refer to the centers of mass of the molecules. In the second case these vectors
parameterize positions of the dipole moments. Thus P

(3)
⊥ accounts for ten-

dency of the three centers of mass or, in the second case, of the three dipole
moments to gather in planes perpendicular to the director.

Moreover we will distinguish three nonequivalent dipole configurations:
s1s2s3 = ↑↑↑, ↑↑↓ and ↑↓↓, and determine corresponding distribution func-
tions P

(3)
⊥ (r⊥, θ, ↑↑↑), P

(3)
⊥ (r⊥, θ, ↑↑↓) and P

(3)
⊥ (r⊥, θ, ↑↓↓), where the dipole

moment s1 refers to the nonequivalent vertex of isosceles triangles. Sum-
ming up over all possible orientations of s1s2s3 yields the total distribution
P

(3)
⊥ (r⊥, θ). All technical details concerned with the calculations of P

(3)
⊥ are

given in our publication [48].

6 Hard particles with dipoles

Zarragoicoechea and coworkers were the first to examine by means of com-
puter simulations the effect of the dipole moment immersed into several hard
body molecules (cut-spheres [83–85], ellipsoids of revolution [86], spherocylin-
ders [85,87,88]) on phase equilibria. They concluded that the dipolar forces
are of minor importance to the formation of mesogenic phases.
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By re-examining the hard spherocylinder case McGrother and coworkers
[62,89–92] only partly supported these observations. Their detailed simula-
tions refer to the case of the spherocylinders with length to diameter ratio
equal to 5, for which the system of vanishing dipole moment is well documen-
ted and exhibits isotropic, nematic and smectic A phases [75]. They found
that central longitudinal dipole moments tend to destabilize the nematic
phase relative to the isotropic and the smectic A phases as compared to the
non-polar system. This is due to the strong enhancement of the molecular
side-by-side in-plane antiparallel correlations which are responsible for the
formation of the smectic layers. It is also found that an isotropic - nematic -
smectic A triple point exists below which the nematic phase disappears.

The nematic phase is also destabilized relative to the smectic A phase
(but not to the isotropic phase) for systems with a central transverse dipole
moment. In this case the enhanced tendency to form layers is due to strong
nose-to-tail interaction of the transverse dipoles. These interactions cause
that the dipoles can form chain and ring domain structures within smec-
tic layers. The terminal longitudinal dipoles, on the other hand, destabilize
smectic A relative to nematic, where the latter phase becomes stable only at
high densities.

7 Dipolar Gay-Berne systems

Although the dipolar interactions added to anisotropic repulsion yield an
interesting model system with rich liquid crystalline phase behavior, the
anisotropic attraction is by no means negligible in the stabilization of orien-
tationally ordered phases. A model that takes all the three elements into
account i.e. repulsion at short distances, dispersive interactions at large dis-
tances and dipolar forces is the Gay-Berne system with embedded dipole
moments. Here we discuss the results of computer simulations for this model.
The discussion is illustrated with our NV T Monte Carlo simulations for the
IOGB system composed of N = 648 polar molecules with longitudinal dipole
moments (some tests being performed for N = 2592) [48]. The dipolar energy
is calculated with the help of both, Ewald summation technique and reaction
field. We investigate the influence of the dipole strength and the dipole loca-
tion in the molecule on the formation of the smectic A phase and of higher
ordered phases. Studied are also dipolar correlations in these phases.

7.1 Central dipole moments

For central, longitudinal dipole moments (d∗ = 0) Satoh et al. [38] have
shown that the isotropic liquid - nematic phase transition is not sensitive to
the value of the dipole moment. Contrary to that the nematic-smectic A phase
transition is shown to depend on the strength of the dipole moment. Moreover
the stability range of the smectic phase for strong dipoles is wider compared
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to that in nonpolar systems. That is the central dipole moments enhance
stability of smectic layers, which agrees qualitatively with what is reported
for dipolar hard spherocylinders. Similar conclusions can be drawn for the
IOGB model. We illustrate this with simulations performed for T ∗ = 2.8
and ρ∗ = 0.335. Starting from the nematic reference state we find that an
increase of the central dipole moment from µ∗ = 0 to µ∗ = 1.5 (the average
dipole-dipole energy < Vdd > / < V > being 23% of the total energy) yields
a (weak) dipole-induced smectic A structure. The structure is characterized
by τ2 = 0.11 (ζ2n+1 = 0), and the layer spacing, l∗ ≈ 2.7, indicating that the
layers are slightly interdigitated.

The pair distributions, Figs. (7a) and (7b), are fluid-like and similar to
what is observed in the nematic phase. As deduced from Figs. (7a) and (7b)
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Fig. 7. (a) The pair distribution functions P
(2)
L (r∗) for L = 2 and L = 4 (inset)

in the nematic phase of nonpolar molecules (continuous line) and P
(2)
L (r∗, s1s2) in

the smectic A phase of the IOGB model with central dipole moment µ∗ = 1.5. The
dotted line represents the s1s2 =↑↓ while the dashed one corresponds to s1s2 =↑↑
dipole configurations. (b)The transversal pair distribution functions P

(2)
⊥ (r∗⊥) for

the same cases as in (a). Additionally, the dash-dotted line represents the total

distribution function, P
(2)
⊥ (r∗⊥)

the dipoles are distributed randomly within the layers, with no track of long-
range ordering. The short-range, in-plane correlations are dominated by the
antiparallel molecular arrangement (Fig. (7b)). The ‘fine structure’ of these
correlations, as displayed by the triplet in-plane distribution function, shows
local hexagonal structure and linear correlations of the triplets. The leading
peak of these correlations is dominated by the triplets occupying equilateral
triangles as seen from Figs. (8a) and (8b). Figures (8a) and (8b) also show
that the peak at 60◦ is due to the triplets with one dipole moment being
oriented in the opposite direction than the other two. The contribution from
linear triplets, where the middle dipole has different orientation than the
terminal ones, is equally important (see peak at 180◦ in Fig. (8b)). The
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Fig. 8. The triplet distribution function P
(3)
⊥ (r∗⊥, θ, s1s2s3) for the IOGB model

with central dipole moments of µ∗ = 1.5 in the smectic A phase: (a) s1s2s3 =↑↑↓;
(b)s1s2s3 =↑↓↓

distribution function where all three dipoles are oriented in the same direction
is negligible.

Further increase of magnitude of the central dipole to µ∗ = 2.0 (< Vdd >
/ < V >≈ 37%) leads to a new structure which, most likely, is a crystalline
SB with ABAB stacking. Again no long-range dipolar order across the layers
(Fig. (9a)) or within the layers is observed even though the smectic order
parameter τ2 of 0.8 is close to its saturation value of 1. Inspection of P

(2)
⊥

(Fig. (9b)) shows that the system has developed hexagonal type of correla-
tions with the hexatic order parameter Ψ6, Eq.(33), of 0.69. The hexagonal
in-plane arrangement becomes even more apparent by looking at the triplet
correlations. They follow the same trends as previously observed ones for
µ∗ = 1.5 with one exception that the corresponding peaks are now much
better resolved and with higher amplitudes. A similar structure also exists
for an even higher central dipole moment (µ∗ = 2.5) or lower temperatures.
This is in line with the very recent MC NPT simulations by Houssa et al.
[63], who also observe a stable dipolar SB phase, most probably of AA or AB
stacking, although this aspect of the ordering has not been studied.

Simulations of Houssa et al. [63] additionally allow interesting conclusions
to be drawn about the stability of the nematic phase. Namely they show
that for sufficiently strong dipole moments (µ∗ = 2.5) added to the OGB
potential the nematic phase could be eliminated forcing the system to evolve
directly from the isotropic phase to smectic B phase. Again most of the results
obtained for the dipolar Gay-Berne systems are in qualitative agreement with
those of equivalent dipolar hard spherocylinders.
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Fig. 9. (a)The axial pair distribution function P
(2)

|| (z∗, s1s2) and (b) the transver-

sal pair distribution function, P
(2)
⊥ (r∗⊥, s1s2) in the smectic B phase. The dipolar

strength of the central dipole is µ∗ = 2. The solid lines represent dipole-averaged
total distribution functions and the dashed lines are for the s1s2 =↑↑ distribu-
tion. The dotted lines give the s1s2 =↑↓ distributions. The inset in (b) shows the
transversal distribution in the same phase, but for T ∗ = 2

Central dipole moments perpendicular to the long molecular axis of the
OGB molecules also have been considered [41,46], and the results appear
somewhat controversial. Namely in the paper [41] the dipoles were found
to have no impact on the liquid crystalline transitions, in contrast to an
equivalent hard spherocylinders system, where transverse dipoles enhance
the stability of the smectic A phase [90]. On the other hand, similar studies
performed by Berardi et al. [46] demonstrate enhanced layering and formation
of chains and rings of dipoles in smectic planes, consistent with the results for
dipolar hard spherocylinders [90]. One possible explanation of this discrep-
ancy is that in the paper [41] the long-range dipole-dipole interactions have
been treated in the same way as the Gay-Berne part, i.e. without referring
to the Ewald- or reaction field methods.

7.2 Intermediate and terminal dipole moments

Simulations with noncentral locations of the dipole moments also were per-
formed. In particular, terminal longitudinal dipoles were studied by Satoh et
al. [39]. They found that the isotropic liquid - nematic transition tempera-
ture is shifted towards higher temperatures and the temperature range of the
stability of the nematic phase is enhanced with increasing value of the dipole
moment. Additionally, the strong terminal dipoles form at low temperatures
a crystalline structure with tetragonal order within layers [42]. Berardi et al.
[40] concentrated on the smectic phases and they found smectic Ã phase for
the OGB system with terminal dipoles.

Simulations carried out for the equivalent IOGB model are consistent with
those findings although our system was too small to observe modulated anti-
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ferroelectric bilayer stripe domains characteristic of smectic Ã. Two cases
were considered: (a) nearly terminal dipoles (d∗ = 0.75) and (b) the dipoles
localized at molecular end (d∗ = 1).

One of the structures found for d∗ ≈ 0.75 and for moderate dipole mo-
ments (µ∗ ≈ 1.5) is, with high probability, the smectic Ad. Such identifica-
tion is supported by the small value of the translational order parameter τ2

(τ2 ≈ 0.35) and by properties of the correlation functions. Indeed, we observe
that the relative distance between the positions of the molecular centers along
the z direction is about 1.7, which means that the layers are strongly interdig-
itated. Analysis of transversal distributions of the molecules within a single
layer and within the planes of the dipole moments additionally shows that
the strongest transversal pair correlations (and hence also the triplet ones)
are for in-plane antiparallel dipole moments with the corresponding centers of
mass of the molecules being separated by l ≈ 1.7 (see Figs.(10a) and (10b)).
The leading peak of P

(2)
⊥ at r∗⊥ ≈ 0.9, Fig.(10a) comes from molecular pairs
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Fig. 10. (a) The transversal pair distribution function, P
(2)
⊥ (r∗⊥, s1s2) for the in-

plane dipole moments, in the smectic Ad phase of the IOGB model. The dipole
moment µ∗ of 1.5 is located at d∗ = 0.75. The molecular centers are localized in
the neighboring layers. The continuous line represents the total distribution func-
tion, P

(2)
⊥ (r∗⊥); dotted and dashed lines correspond to s1s2 =↑↓ and s1s2 =↑↑,

respectively. The inset shows the corresponding transversal distribution viewed
from smectic plane of molecular centers. (b) The triplet distribution function

P
(3)
⊥ (r∗⊥, θ, s1s2s3) for the case (a) in the plane of ↑↓↓-oriented dipole moments

(the centers of mass of the molecules with oppositely oriented dipoles are located in
the neighboring layers). This case shows the strongest dipolar correlations between
the dipoles



30 Lech Longa et al.

that compensate their dipole moments (weak dimers) and is much stronger
than the peak at r∗⊥ ≈ 1.06 of the in-layer correlations (inset in Fig. (10a)).
The total triplet dipole correlations, calculated in the plane of the dipoles,
are practically dominated by the s1s2s3 =↑↓↓ triplet correlations, which we
show in Fig. (10b). These correlations have essentially two broad peaks at
90◦ and 180◦. Although this phase could also be a crystalline phase with
interdigitated, tetragonal layers (ScrT ) the apparently very small probability
to have in-plane molecules with parallel dipole moments at reduced distance
of 0.9×√2 suggests that the structure is more likely of smectic Ad-type. The
smectic layers could be viewed as being supported by correlated dimers with
the layer spacing 2l∗ of approximately 3.4. Interestingly, the local hexagonal
ordering of central dipoles is transformed into a tetragonal one.

For dipole moments of magnitude µ∗ = 2 the peaks of the distribution
functions become sharper and their fine structure could be resolved indi-
cating that the structure is of ScrT type, similar to that reported by Satoh
[42]. But even now with relatively strong dipolar interactions, no long-range
dipolar order has been found. We observe, however, a strong enhancement of
the ↑↑↑ triplet correlations indicating that for stronger dipoles we should de-
tect a crystalline phase with polarized layers. Indeed, for very strong dipoles
(µ∗ = 2.5) a bilayer crystalline structure with tetragonal in-plane ordering
is stabilized. Now both order parameters ζ1 and τ2 are nonzero and high
(ζ1 = 0.89, τ2 = 0.75), which indicates that the antiferroelectric dipolar or-
der is even stronger than the smectic ordering. The crystalline structure thus
has dipolar ordering similar to that observed for the antiferroelectric smectic
A2 phase. Interestingly, the axial up–up correlations are stronger than the
up–down correlations. The up–down correlations within one smectic layer are
almost negligible.

For large shifts in the dipole location (d∗ = 1) and for µ∗ = 2 we recovered
planar domains very similar to those reported by Berardi et al. [40], but
present systems were too small for a quantitative analysis of the ordering.

8 Towards realistic simulations

Computer simulations based on detailed atomistic interactions between liquid
crystalline molecules are still quite rare (see e.g. [27,93,94] and references
therein). The reason for that is the computational complexity of interac-
tions, which causes that only small systems are manageable so far (up to
144 molecules). Consequently, studies are restricted to the isotropic, nematic
and, sometimes, crystalline phases for which the system size is not a severe
obstacle.

As concerning simulations of realistic polar liquid crystals the molecular
systems considered so far were those with terminal dipoles (PCH5, PCH5-Cl,
5CB, 5OCB). Of these the most accurate atomistic studies are by Cook and
Wilson [27]. Their comparison with experiment of densities and of dipolar
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properties of PCH5 and PCH5-Cl molecules in the isotropic phase is quite
encouraging. It shows that atomistic simulations indeed may have predictive
power for bulk properties of mesogens. We expect that within the next few
years a determination of liquid crystalline behavior from molecular modelling
prior to synthesis should be possible.
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